Aufgaben:Aufgabe 3.2: VTF zur Aufgabe 3.1: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(11 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID114__Sto_A_3_2.png|right|Cosinus-Quadrat- und Dirac-VTF]]
+
[[Datei:P_ID114__Sto_A_3_2.png|right|frame|VTF der kontinuierlichen und der diskreten Zufallsgröße]]
Es gelten die gleichen Voraussetzungen wie bei [[Aufgaben:3.1_cos²_-_und_Dirac-WDF|Aufgabe 3.1]].  
+
Es gelten die gleichen Voraussetzungen wie für die  [[Aufgaben:3.1_cos²_-_und_Dirac-WDF|Aufgabe 3.1]].  
*Die WDF der wertkontinuierlichen Zufallsgröße ist in den Bereichen $|x| > 2$ identisch Null, und im Bereich $-2 \le x \le +2$ gilt:
+
*Die WDF der wertkontinuierlichen Zufallsgröße ist in den Bereichen  $|x| > 2$  identisch Null,  und im Bereich  $-2 \le x \le +2$  gilt:
 
:$$f_x(x)={1}/{2}\cdot \cos^2({\pi}/{4}\cdot x).$$
 
:$$f_x(x)={1}/{2}\cdot \cos^2({\pi}/{4}\cdot x).$$
  
*Auch die diskrete Zufallsgröße $y$ ist auf den Bereich $\pm 2$ begrenzt. Es gelten folgende Wahrscheinlichkeiten:
+
*Auch die diskrete Zufallsgröße  $y$  ist auf den Bereich  $\pm 2$  begrenzt.  Hier gelten folgende Wahrscheinlichkeiten:
 
:$${\rm \Pr}(y=0)=0.4,$$
 
:$${\rm \Pr}(y=0)=0.4,$$
 
:$${\rm \Pr}(y=+1)={\rm \Pr}(y=-1)=0.2,$$
 
:$${\rm \Pr}(y=+1)={\rm \Pr}(y=-1)=0.2,$$
Zeile 14: Zeile 14:
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]].
+
 
*Eine Zusammenfassung der hier behandelten Thematik bietet das Lernvideo [[Zusammenhang zwischen WDF und VTF]].
+
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
Hinweise:  
 +
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Verteilungsfunktion|Verteilungsfunktion]].
 +
*Eine Zusammenfassung der hier behandelten Thematik bietet das Lernvideo  [[Zusammenhang_zwischen_WDF_und_VTF_(Lernvideo)|Zusammenhang zwischen WDF und VTF]].
 
*Gegeben ist die folgende Gleichung:
 
*Gegeben ist die folgende Gleichung:
 
:$$\int \cos^{\rm 2}( ax)\, {\rm d}x=\frac{x}{2}+\frac{1}{4  a}\cdot \sin(2 ax).$$
 
:$$\int \cos^{\rm 2}( ax)\, {\rm d}x=\frac{x}{2}+\frac{1}{4  a}\cdot \sin(2 ax).$$
 +
  
  
Zeile 26: Zeile 29:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind f&uuml;r die Verteilungsfunktion $F_x(r)$ der wertkontinuierlichen Zufallsgr&ouml;&szlig;e $x$ richtig?
+
{Welche der folgenden Aussagen sind f&uuml;r die Verteilungsfunktion&nbsp; $F_x(r)$&nbsp; der wertkontinuierlichen Zufallsgr&ouml;&szlig;e&nbsp; $x$&nbsp; richtig?
 
|type="[]"}
 
|type="[]"}
+ Die VTF ist f&uuml;r alle Werte $r \le -2$ gleich  $F_x(r) \equiv 0$.
+
+ Die VTF ist f&uuml;r alle Werte&nbsp; $r \le -2$&nbsp; gleich&nbsp; $F_x(r) \equiv 0$.
+ Die VTF ist f&uuml;r alle Werte $r \ge +2$  gleich  $F_x(r) \equiv 1$.
+
+ Die VTF ist f&uuml;r alle Werte&nbsp; $r \ge +2$&nbsp; gleich&nbsp; $F_x(r) \equiv 1$.
+ Der Verlauf von $F_x(r)$ ist monoton steigend.
+
+ Der Verlauf von&nbsp; $F_x(r)$&nbsp; ist monoton steigend.
  
  
{Welche der nachfolgenden Aussagen sind f&uuml;r die Verteilungsfunktion $F_y(r)$ der wertdiskreten Zufallsgr&ouml;&szlig;e $y$ richtig?
+
{Welche der folgenden Aussagen sind f&uuml;r die Verteilungsfunktion&nbsp; $F_y(r)$&nbsp; der wertdiskreten Zufallsgr&ouml;&szlig;e&nbsp; $y$&nbsp; richtig?
 
|type="[]"}
 
|type="[]"}
- Die VTF ist f&uuml;r alle Werte $r \le -2$ gleich  $F_y(r) \equiv 0$.
+
- Die VTF ist f&uuml;r alle Werte&nbsp; $r \le -2$&nbsp; gleich&nbsp; $F_y(r) \equiv 0$.
+ Die VTF ist f&uuml;r alle Werte $r \ge +2$  gleich  $F_y(r) \equiv 1$.
+
+ Die VTF ist f&uuml;r alle Werte&nbsp; $r \ge +2$&nbsp; gleich&nbsp; $F_y(r) \equiv 1$.
+ Der Verlauf von $F_y(r)$ ist monoton steigend.
+
+ Der Verlauf von&nbsp; $F_y(r)$&nbsp; ist monoton steigend.
  
  
{Berechnen Sie die Verteilungsfunktion $F_x(r)$. Beschr&auml;nken Sie sich hier auf den Bereich  $0 \le r \le +2$. Welcher Wert ergibt sich f&uuml;r $r = +1$?
+
{Berechnen Sie die Verteilungsfunktion&nbsp; $F_x(r)$.&nbsp; Beschr&auml;nken Sie sich hier auf den Bereich&nbsp; $0 \le r \le +2$. <br>Welcher Wert ergibt sich f&uuml;r&nbsp; $r = +1$?
 
|type="{}"}
 
|type="{}"}
$F_x(r=+1) \ = $ { 0.909 3% }
+
$F_x(r=+1) \ = \ $ { 0.909 3% }
  
  
{Welcher Zusammenhang besteht zwischen $F_x(r)$ und $F_x(-r)$? Geben Sie den VTF-Wert f&uuml;r $-1$ ein.
+
{Welcher Zusammenhang besteht zwischen&nbsp; $F_x(r)$&nbsp; und&nbsp; $F_x(-r)$?&nbsp; Geben Sie den VTF-Wert&nbsp; $F_x(r=-1)$&nbsp; ein.
 
|type="{}"}
 
|type="{}"}
$F_x(r=-1) \ = $  { 0.091 3% }
+
$F_x(r=-1) \ = $  { 0.091 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass $x$ betragsm&auml;&szlig;ig kleiner als $1$ ist. Vergleichen Sie das Resultat mit dem Ergebnis der Teilaufgabe (7) von Aufgabe 3.1.
+
{Berechnen Sie die Wahrscheinlichkeit,&nbsp; dass&nbsp; $x$&nbsp; betragsm&auml;&szlig;ig kleiner als&nbsp; $1$&nbsp; ist. <br>Vergleichen Sie das Resultat mit dem Ergebnis der Teilaufgabe&nbsp; '''(7)'''&nbsp; von Aufgabe 3.1.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(|x| < 1) \ = $  { 0.818 3% }
+
${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}| < 1) \ = $  { 0.818 3% }
  
  
{Welchen Wert erh&auml;lt man f&uuml;r die Verteilungsfunktion der diskreten Zufallsgr&ouml;&szlig;e $y$ an der Stelle $r = 0$?
+
{Welchen Wert erh&auml;lt man f&uuml;r die Verteilungsfunktion der diskreten Zufallsgr&ouml;&szlig;e&nbsp; $y$&nbsp; an der Stelle&nbsp; $r = 0$?
 
|type="{}"}
 
|type="{}"}
$F_y(r = 0)\ = $ { 0.7 3% }
+
$F_y(r = 0)\ = \ $ { 0.7 3% }
  
  
Zeile 66: Zeile 69:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Da $x$ eine kontinuierliche Zufallsgr&ouml;&szlig;e und auf den Bereich $|x|$ < 2 begrenzt ist, sind <u>alle drei vorgegebenen Aussagen</u> richtig.
+
'''(1)'''&nbsp; Da&nbsp; $x$&nbsp; eine kontinuierliche Zufallsgr&ouml;&szlig;e und auf den Bereich&nbsp; $|\hspace{0.05cm}x\hspace{0.05cm}< 2|$&nbsp;  begrenzt ist,&nbsp; sind&nbsp; <u>alle drei vorgegebenen Aussagen</u>&nbsp; richtig.
 +
 
 +
 
  
 
'''(2)'''&nbsp; Richtig sind hier nur die <u>Aussagen 2 und 3</u>:
 
'''(2)'''&nbsp; Richtig sind hier nur die <u>Aussagen 2 und 3</u>:
*Bei einer diskreten Zufallsgr&ouml;&szlig;e steigt die Verteilungsfunktion nur schwach monoton an, d. h. es gibt au&szlig;er Spr&uuml;ngen ausschlie&szlig;lich horizontale Abschnitte der VTF.  
+
*Bei einer diskreten Zufallsgr&ouml;&szlig;e steigt die Verteilungsfunktion nur schwach monoton an.
*Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt, ist demzufolge $F_y(-2) = 0.1$, also ungleich $0$.  
+
* Das heißt: &nbsp; Es gibt au&szlig;er Spr&uuml;ngen ausschlie&szlig;lich horizontale Abschnitte der VTF.  
 +
*Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt,&nbsp; ist demzufolge&nbsp; $F_y(-2) = 0.1$,&nbsp; also ungleich Null.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Die VTF&nbsp; $F_x(r)$&nbsp; berechnet sich als das Integral von&nbsp; $-\infty$&nbsp; bis&nbsp; $r$&nbsp; &uuml;ber die WDF&nbsp; $f_x(x)$.
 +
 
 +
*Aufgrund der Symmetrie kann hierf&uuml;r im Bereich&nbsp; $0 \le r \le +2$&nbsp; geschrieben werden:
 +
:$$F_{x} (r) =\frac{1}{2} +  \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} +  \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$
 +
 
 +
*In gleicher Weise wie bei der Teilaufgabe&nbsp; '''(7)'''&nbsp; der Aufgabe 3.1 erh&auml;lt man somit:
 +
:$$F_{x} (r) =\frac{1}{2} +  \frac{ r}{ 4} +  \frac{1}{2 \pi}  \cdot \sin({\pi}/{2}\cdot  r),$$
 +
:$$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi}  \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$
 +
:$$F_{x} (r=1) =\rm \frac{1}{2} +  \frac{\rm 1}{\rm 4} + \rm \frac{1}{2 \pi}\cdot  \rm sin({\pi}/{2})\hspace{0.15cm}\underline{=0.909},$$
 +
:$$F_{x} (r=2) =\rm \frac{1}{2} +  \frac{\rm1}{\rm 2} + \rm \frac{1}{2 \pi} \cdot  \rm sin(\pi)\hspace{0.15cm}{= 1.000}.$$
 +
 
  
 +
'''(4)'''&nbsp; Aufgrund der Punktsymmetrie um&nbsp; $r=0$&nbsp; &nbsp;bzw.&nbsp; $F_{x} (0) = 1/2$&nbsp; und wegen&nbsp; $\sin(-x) = -\sin(x)$&nbsp; gilt diese Formel im gesamten Bereich,&nbsp; wie die folgende Kontrollrechnung zeigt:
 +
:$$F_{x} (r=-2) =\rm \frac{1}{2} -  \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi}  \cdot\rm sin(\pi)=0,$$
 +
:$$F_{x} (r=-1) =\rm \frac{1}{2} -  \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi}  \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$
  
'''(3)'''&nbsp; Die VTF $F_x(r)$ berechnet sich als das Integral von $-\infty$ bis $r$ &uuml;ber die WDF $f_x(x)$. Aufgrund der Symmetrie kann hierf&uuml;r im Bereich $0 \le r \le +2$ geschrieben werden:
 
$$F_{x} (r) =\frac{1}{2} +  \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} +  \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$
 
  
In gleicher Weise wie bei der Teilaufgabe (7) der Aufgabe 3.1 erh&auml;lt man somit:
+
'''(5)'''&nbsp; F&uuml;r die Wahrscheinlichkeit,&nbsp; dass&nbsp; $x$&nbsp; zwischen&nbsp; $-1$&nbsp; und&nbsp; $+1$&nbsp; liegt,&nbsp; gilt:
$$F_{x} (r) =\rm \frac{1}{2} + \frac{\it r}{\rm 4} + \rm \frac{1}{2 \pi}  \cdot\rm sin({\pi}/{2}\cdot \it r),$$
+
:$${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}|< 1)= F_{x}(+1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$
$$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi}  \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$
 
$$F_{x} (r=1) =\rm \frac{1}{2} +  \frac{\rm 1}{\rm 4} + \rm \frac{1}{2 \pi}\cdot  \rm sin({\pi}/{2})\hspace{0.15cm}\underline{=0.909},$$
 
$$F_{x} (r=2) =\rm \frac{1}{2} +  \frac{\rm1}{\rm 2} + \rm \frac{1}{2 \pi} \cdot  \rm sin(\pi)\hspace{0.15cm}{= 1.000}.$$
 
  
'''(41)'''&nbsp; Aufgrund der Punktsymmetrie um $r=0$ bzw. $F_{x} (0) = 1/2$ und wegen $\sin(-x) = -sin(x)$ gilt diese Formel im gesamten Bereich, wie die folgende Kontrollrechnung zeigt:
+
*Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe&nbsp; '''(7)'''&nbsp; der Aufgabe 3.1 &uuml;berein,&nbsp; das durch direkte Integration &uuml;ber die WDF ermittelt wurde.
$$F_{x} (r=-2) =\rm \frac{1}{2} -  \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi}  \cdot\rm sin(\pi)=0,$$
 
$$F_{x} (r=-1) =\rm \frac{1}{2} -  \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi}  \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$
 
  
'''(5)'''&nbsp; F&uuml;r die Wahrscheinlichkeit, dass $x$ zwischen $-1$ und $+1$ liegt, gilt:
 
$${\rm Pr}(|x|< 1)= F_{x}(1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$
 
  
Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe (7) der Aufgabe 3.1 &uuml;berein, das durch direkte Integration &uuml;ber die WDF ermittelt wurde.
 
  
'''(6)'''&nbsp; Die VTF der diskreten Zufallsgr&ouml;&szlig;e $y$ an der Stelle $y =0$ ist die Summe der Wahrscheinlichkeiten von $-2$, $-1$ und $0$, also gilt $F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}$.
+
'''(6)'''&nbsp; Die VTF der diskreten Zufallsgr&ouml;&szlig;e&nbsp; $y$&nbsp; an der Stelle&nbsp; $y =0$&nbsp; ist die Summe der Wahrscheinlichkeiten von&nbsp; $-2$,&nbsp; $-1$&nbsp; und&nbsp; $0$,&nbsp; also gilt:
 +
:$$F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 4. Januar 2022, 14:39 Uhr

VTF der kontinuierlichen und der diskreten Zufallsgröße

Es gelten die gleichen Voraussetzungen wie für die  Aufgabe 3.1.

  • Die WDF der wertkontinuierlichen Zufallsgröße ist in den Bereichen  $|x| > 2$  identisch Null,  und im Bereich  $-2 \le x \le +2$  gilt:
$$f_x(x)={1}/{2}\cdot \cos^2({\pi}/{4}\cdot x).$$
  • Auch die diskrete Zufallsgröße  $y$  ist auf den Bereich  $\pm 2$  begrenzt.  Hier gelten folgende Wahrscheinlichkeiten:
$${\rm \Pr}(y=0)=0.4,$$
$${\rm \Pr}(y=+1)={\rm \Pr}(y=-1)=0.2,$$
$${\rm \Pr}(y=+2)={\rm \Pr}(y=-2)=0.1.$$



Hinweise:

$$\int \cos^{\rm 2}( ax)\, {\rm d}x=\frac{x}{2}+\frac{1}{4 a}\cdot \sin(2 ax).$$



Fragebogen

1

Welche der folgenden Aussagen sind für die Verteilungsfunktion  $F_x(r)$  der wertkontinuierlichen Zufallsgröße  $x$  richtig?

Die VTF ist für alle Werte  $r \le -2$  gleich  $F_x(r) \equiv 0$.
Die VTF ist für alle Werte  $r \ge +2$  gleich  $F_x(r) \equiv 1$.
Der Verlauf von  $F_x(r)$  ist monoton steigend.

2

Welche der folgenden Aussagen sind für die Verteilungsfunktion  $F_y(r)$  der wertdiskreten Zufallsgröße  $y$  richtig?

Die VTF ist für alle Werte  $r \le -2$  gleich  $F_y(r) \equiv 0$.
Die VTF ist für alle Werte  $r \ge +2$  gleich  $F_y(r) \equiv 1$.
Der Verlauf von  $F_y(r)$  ist monoton steigend.

3

Berechnen Sie die Verteilungsfunktion  $F_x(r)$.  Beschränken Sie sich hier auf den Bereich  $0 \le r \le +2$.
Welcher Wert ergibt sich für  $r = +1$?

$F_x(r=+1) \ = \ $

4

Welcher Zusammenhang besteht zwischen  $F_x(r)$  und  $F_x(-r)$?  Geben Sie den VTF-Wert  $F_x(r=-1)$  ein.

$F_x(r=-1) \ = \ $

5

Berechnen Sie die Wahrscheinlichkeit,  dass  $x$  betragsmäßig kleiner als  $1$  ist.
Vergleichen Sie das Resultat mit dem Ergebnis der Teilaufgabe  (7)  von Aufgabe 3.1.

${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}| < 1) \ = \ $

6

Welchen Wert erhält man für die Verteilungsfunktion der diskreten Zufallsgröße  $y$  an der Stelle  $r = 0$?

$F_y(r = 0)\ = \ $


Musterlösung

(1)  Da  $x$  eine kontinuierliche Zufallsgröße und auf den Bereich  $|\hspace{0.05cm}x\hspace{0.05cm}< 2|$  begrenzt ist,  sind  alle drei vorgegebenen Aussagen  richtig.


(2)  Richtig sind hier nur die Aussagen 2 und 3:

  • Bei einer diskreten Zufallsgröße steigt die Verteilungsfunktion nur schwach monoton an.
  • Das heißt:   Es gibt außer Sprüngen ausschließlich horizontale Abschnitte der VTF.
  • Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt,  ist demzufolge  $F_y(-2) = 0.1$,  also ungleich Null.


(3)  Die VTF  $F_x(r)$  berechnet sich als das Integral von  $-\infty$  bis  $r$  über die WDF  $f_x(x)$.

  • Aufgrund der Symmetrie kann hierfür im Bereich  $0 \le r \le +2$  geschrieben werden:
$$F_{x} (r) =\frac{1}{2} + \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} + \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$
  • In gleicher Weise wie bei der Teilaufgabe  (7)  der Aufgabe 3.1 erhält man somit:
$$F_{x} (r) =\frac{1}{2} + \frac{ r}{ 4} + \frac{1}{2 \pi} \cdot \sin({\pi}/{2}\cdot r),$$
$$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi} \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$
$$F_{x} (r=1) =\rm \frac{1}{2} + \frac{\rm 1}{\rm 4} + \rm \frac{1}{2 \pi}\cdot \rm sin({\pi}/{2})\hspace{0.15cm}\underline{=0.909},$$
$$F_{x} (r=2) =\rm \frac{1}{2} + \frac{\rm1}{\rm 2} + \rm \frac{1}{2 \pi} \cdot \rm sin(\pi)\hspace{0.15cm}{= 1.000}.$$


(4)  Aufgrund der Punktsymmetrie um  $r=0$   bzw.  $F_{x} (0) = 1/2$  und wegen  $\sin(-x) = -\sin(x)$  gilt diese Formel im gesamten Bereich,  wie die folgende Kontrollrechnung zeigt:

$$F_{x} (r=-2) =\rm \frac{1}{2} - \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi} \cdot\rm sin(\pi)=0,$$
$$F_{x} (r=-1) =\rm \frac{1}{2} - \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$


(5)  Für die Wahrscheinlichkeit,  dass  $x$  zwischen  $-1$  und  $+1$  liegt,  gilt:

$${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}|< 1)= F_{x}(+1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$
  • Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe  (7)  der Aufgabe 3.1 überein,  das durch direkte Integration über die WDF ermittelt wurde.


(6)  Die VTF der diskreten Zufallsgröße  $y$  an der Stelle  $y =0$  ist die Summe der Wahrscheinlichkeiten von  $-2$,  $-1$  und  $0$,  also gilt:

$$F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}.$$