Stochastische Signaltheorie/Exponentialverteilte Zufallsgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(22 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
 
==Einseitige Exponentialverteilung==
 
==Einseitige Exponentialverteilung==
{{Definition}}
+
<br>
Eine kontinuierliche Zufallsgröße $x$ nennt man (negativ-)exponentialverteilt, wenn sie nur nicht-negative Werte annehmen kann und die WDF für $x$ > 0 folgenden Verlauf hat:  
+
{{BlaueBox|TEXT= 
$$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$
+
$\text{Definition:}$&nbsp;
{{end}}
+
Eine kontinuierliche Zufallsgröße&nbsp; $x$&nbsp; nennt man&nbsp; (einseitig)&nbsp; '''exponentialverteilt''',&nbsp; wenn sie nur nicht&ndash;negative Werte annehmen kann und die Wahrscheinlichkeitsdichtefunktion für&nbsp; $x>0$&nbsp; den folgenden Verlauf hat:  
 +
:$$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$}}
  
  
Das linke Bild zeigt die Wahrscheinlichkeitsdichtefunktion (WDF) einer exponentialverteilten Zufallsgröße $x$. Hervorzuheben ist:
+
[[Datei: P_ID72__Sto_T_3_6_S1_neu.png  |right|frame| WDF und VTF einer exponentialverteilten Zufallsgröße]]
*Definitionsgemäß gilt $f_{\rm x}(0) = λ/2.$
 
*Je größer der Verteilungsparameter $λ$ ist, um so steiler erfolgt der Abfall.
 
  
 +
Das linke Bild zeigt die&nbsp; "Wahrscheinlichkeitsdichtefunktion"&nbsp; $\rm (WDF)$&nbsp; einer solchen exponentialverteilten Zufallsgröße&nbsp; $x$.&nbsp; Hervorzuheben ist: 
 +
#Je größer der Verteilungsparameter&nbsp; $λ$&nbsp; ist,&nbsp; um so steiler erfolgt der Abfall.
 +
#Definitionsgemäß gilt&nbsp; $f_{x}(0) = λ/2$,&nbsp; also der Mittelwert aus linksseitigem Grenzwert&nbsp; $(0)$&nbsp;  und rechtsseitigem Grenzwert&nbsp; $(\lambda)$.
  
[[Datei: P_ID72__Sto_T_3_6_S1_neu.png  | WDF und VTF einer exponentialverteilten Zufallsgröße]]
+
*Für die&nbsp; "Verteilungsfunktion"&nbsp; $\rm (VTF)$ &nbsp; &rArr; &nbsp; rechte Grafik)&nbsp; erhält man für&nbsp; $r > 0$&nbsp; durch Integration über die WDF:
 +
:$$F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$
  
Für die Verteilungsfunktion (rechtes Bild) erhält man für $r$ > 0 durch Integration über die WDF:  
+
*Die&nbsp; "Momente"&nbsp; der einseitigen Exponentialverteilung sind allgemein gleich &nbsp;
$$F_{\rm x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$
+
:$$m_k = k!/λ^k.$$
 +
*Daraus und aus dem Satz von Steiner ergibt sich für den&nbsp; "Mittelwert"&nbsp; und die&nbsp; "Streuung":  
 +
:$$m_1={1}/{\lambda},$$
 +
:$$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.$$
  
Die Momente der Exponentialverteilung sind allgemein gleich $m_k = k!/λ^k.$ Daraus und aus dem Satz von Steiner ergibt sich für den Mittelwert und die Streuung:
+
{{GraueBox|TEXT=
$$m_1=\frac{1}{\lambda},$$
+
$\text{Beispiel 1:}$&nbsp; Die Exponentialverteilung hat große Bedeutung für Zuverlässigkeitsuntersuchungen,&nbsp; wobei in diesem Zusammenhang auch der Begriff &bdquo;Lebensdauerverteilung&rdquo; üblich ist.
$$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}=\frac{1}{\lambda}.$$
+
# Bei diesen Anwendungen ist die Zufallsgröße oft die Zeit&nbsp; $t$,&nbsp; die bis zum Ausfall einer Komponente vergeht.
 +
# Desweiteren ist anzumerken,&nbsp; dass die Exponentialverteilung eng mit der&nbsp; [[Stochastische_Signaltheorie/Poissonverteilung|Poissonverteilung]]&nbsp;  in Zusammenhang steht.}}
  
{{Beispiel}}
+
==Transformation von Zufallsgrößen==
Die Exponentialverteilung hat große Bedeutung für Zuverlässigkeitsuntersuchungen, wobei in diesem Zusammenhang auch der Begriff ''Lebensdauerverteilung'' üblich ist. Bei diesen Anwendungen ist die Zufallsgröße oft die Zeit $t$, die bis zum Ausfall einer Komponente vergeht. Desweiteren ist anzumerken, dass die Exponentialverteilung eng mit der Poissonverteilung in Zusammenhang steht.
+
<br>
{{end}}
+
Zur Erzeugung einer solchen exponentialverteilten Zufallsgröße an einem Digitalrechner kann zum Beispiel eine&nbsp; '''nichtlineare Transformation'''&nbsp; verwendet werden.&nbsp; Das zugrunde liegende Prinzip wird hier zunächst allgemein angegeben.
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Vorgehensweise:}$&nbsp; Besitzt eine kontinuierliche Zufallsgröße&nbsp; $u$&nbsp; die WDF&nbsp; $f_{u}(u)$,&nbsp; so gilt für die Wahrscheinlichkeitsdichtefunktion der an der nichtlinearen Kennlinie&nbsp; $x = g(u)$&nbsp; transformierten Zufallsgröße&nbsp; $x$:
 +
:$$f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.$$
 +
 
 +
Hierbei bezeichnet&nbsp; $g\hspace{0.05cm}'(u)$&nbsp; die Ableitung der Kennlinie&nbsp; $g(u)$&nbsp; und&nbsp; $h(x)$&nbsp; gibt die Umkehrfunktion zu&nbsp; $g(u)$&nbsp; an. }}
 +
 
 +
 
 +
*Obige Gleichung gilt allerdings nur unter der Voraussetzung,&nbsp; dass die Ableitung&nbsp; $g\hspace{0.03cm}'(u) \ne 0$&nbsp; ist.  
 +
*Bei einer Kennlinie mit horizontalen Abschnitten&nbsp; $(g\hspace{0.05cm}'(u) = 0)$&nbsp; treten in der WDF zusätzliche Diracfunktionen auf,&nbsp; wenn die Eingangsgröße in dem Bereich Anteile hat.  
 +
*Die Gewichte dieser Diracfunktionen sind gleich den Wahrscheinlichkeiten,&nbsp; dass die Eingangsgröße in diesen Bereichen liegt.
 +
 
 +
   
 +
[[Datei:P_ID76__Sto_T_3_6_S2_neu.png |frame| Zur Transformation von Zufallsgrößen | rechts]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;
 +
Gibt man eine zwischen&nbsp;  $–2$&nbsp; und&nbsp; $+2$&nbsp; dreieckverteilte Zufallsgröße&nbsp; $u$&nbsp; auf eine Nichtlinerität mit der Kennlinie&nbsp; $x = g(u)$,
 +
*die im Bereich&nbsp; $\vert u \vert ≤ 1$&nbsp; die Eingangswerte verdreifacht,&nbsp; und
 +
*alle Werte&nbsp; $\vert u \vert  > 1$&nbsp; je nach Vorzeichen auf&nbsp; $x = \pm 3$&nbsp; abbildet,
  
==Transformation von Zufallsgrößen==
 
Zur Erzeugung einer solchen exponentialverteilten Zufallsgröße an einem Digtalrechner kann zum Beispiel eine nichtlineare Transformation verwendet werden. Das zugrunde liegende Prinzip wird hier zunächst allgemein angegeben.
 
  
Besitzt eine kontinuierliche Zufallsgröße $u$ die WDF $f_{\rm u}(u)$, so gilt für die WDF der an der nichtlinearen Kennlinie $x = g(u)$ transformierten Zufallsgröße $x$:
+
so ergibt sich die rechts skizzierte WDF $f_{x}(x)$.  
$$f_{\rm x}(x)=\frac{f_u(u)}{\mid g'(u)\mid}\Bigg |_{\hspace{0.1cm} u=h(x)}.$$
 
  
Hierbei bezeichnet $g'(u)$ die Ableitung der Kennlinie; $h(x)$ gibt die Umkehrfunktion zu $g(u)$ an.
 
  
Diese Gleichung gilt allerdings nur unter der Voraussetzung, dass die Ableitung $g'(u)$ ungleich 0 ist. Bei einer Kennlinie mit horizontalen Abschnitten $(g'(u) =$ 0) treten in der WDF zusätzliche Diracfunktionen auf, wenn die Eingangsgröße in diesem Bereich Anteile besitzt. Die Gewichte dieser Diracfunktionen sind gleich den Wahrscheinlichkeiten, dass die Eingangsgröße in diesen Bereichen liegt.
+
Bitte beachten Sie:
  
{{Beispiel}}
+
'''(1)''' &nbsp; Aufgrund der Verstärkung um den Faktor&nbsp; $3$&nbsp; ist $f_{x}(x)$&nbsp; um diesen Faktor breiter und niedriger als $f_{u}(u).$  
[[Datei:P_ID76__Sto_T_3_6_S2_neu.png | Zur Transformation von Zufallsgrößen | rechts]]
 
Gibt man eine zwischen –2 und +2 dreieckverteilte Zufallsgröße $u$ auf eine Nichtlinerität mit der Kennlinie $x = g(u)$, die im Bereich $|u|$ ≤ 1 die Eingangswerte um den Faktor 3 verstärkt und alle Werte $|u|$ > 1 je nach Vorzeichen auf $x =$ ±3 abbildet, so ergibt sich die rechts skizzierte WDF $f_{\rm x}(x)$. Bitte beachten Sie:
 
*Aufgrund der Verstärkung um den Faktor 3 ist die WDF $f_{\rm x}(x)$ um diesen Faktor breiter und niedriger als $f_{\rm u}(u).$
 
*Die horizontalen Begrenzungen der Kennlinie bei $u =$ ±1 führen zu den beiden Diracfunktionen bei $x =$ ±3, jeweils mit Gewicht 1/8  ⇒  grüne Flächen in der WDF $f_{\rm u}(u).$
 
  
 +
'''(2)''' &nbsp; Die beiden horizontalen Begrenzungen der Kennlinie bei&nbsp; $u = ±1$&nbsp; führen zu den beiden Diracfunktionen bei&nbsp; $x = ±3$, jeweils mit dem Gewicht&nbsp; $1/8$.
  
{{end}}  
+
'''(3)''' &nbsp;  Das Gewicht&nbsp; $1/8$&nbsp; entspricht der grünen Flächen in der WDF $f_{u}(u).$}}  
  
==Erzeugung einer exponentialverteilten Zufallsgröße (1)==
+
==Erzeugung einer exponentialverteilten Zufallsgröße==
Es wird vorausgesetzt, dass die zu transformierende Zufallsgröße $u$ gleichverteilt zwischen 0 und 1 ist. Dann kann gezeigt werden, dass durch die monoton steigende Kennlinie  
+
<br>
$$x=\frac{1}{\lambda}\cdot \rm ln(\frac{1}{1-\it u})$$
+
{{BlaueBox|TEXT= 
eine  einseitig exponentialverteilte Zufallsgröße $x$ mit folgender WDF entsteht:
+
$\text{Vorgehensweise:}$&nbsp;
$$f_{\rm x}(x)=\lambda\cdot\rm e^{\it -\lambda  x}\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\it x}>0.$$
+
Nun wird vorausgesetzt,&nbsp; dass die zu transformierende Zufallsgröße&nbsp; $u$&nbsp; gleichverteilt zwischen&nbsp; $0$&nbsp; (inklusive) und&nbsp; $1$&nbsp; (exklusive) ist.&nbsp;
 +
*Außerdem betrachten wir die monoton steigende Kennlinie  
 +
:$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$
  
Für $x =$ 0 ist der WDF-Wert nur halb so groß. Negative $x$-Werte treten nicht auf, da für 0 ≤ $u$ < 1 das Argument der (natürlichen) Logarithmus–Funktion nicht kleiner wird als 1.  
+
*Es  kann gezeigt werden,&nbsp; dass durch diese Kennlinie&nbsp; $x=g_1(u)$&nbsp; eine  einseitig exponentialverteilte Zufallsgröße&nbsp; $x$&nbsp; mit folgender WDF entsteht&nbsp; <br>(Herleitung siehe [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Herleitung_der_zugeh.C3.B6rigen_Transformationskennlinie|nächste Seite]]):
 +
:$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm}  x}\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\it x}>0.$$
 +
*Für&nbsp; $x = 0$&nbsp; ist der WDF-Wert nur halb so groß&nbsp; $(\lambda/2)$.
 +
* Negative&nbsp; $x$-Werte treten nicht auf,&nbsp; da für&nbsp; $0 ≤ u < 1$&nbsp; das Argument der (natürlichen) Logarithmus–Funktion nicht kleiner wird als&nbsp; $1$.}}
 +
  
 
Die gleiche WDF erhält man übrigens mit der monoton fallenden Kennlinie  
 
Die gleiche WDF erhält man übrigens mit der monoton fallenden Kennlinie  
$$x=\frac{1}{\lambda}\cdot \rm ln(\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$
+
:$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$
 +
 
 +
Bitte beachten Sie:
 +
*Bei einer Rechnerimplementierung entsprechend der ersten Transformationskennlinie&nbsp; $x=g_1(u)$&nbsp; ist der Wert&nbsp; $u = 1$&nbsp; auszuschließen.
 +
*Verwendet man die zweite Transformationskennlinie&nbsp; $x=g_2(u)$,&nbsp; so muss dagegen der Wert&nbsp; $u =0$&nbsp; ausgeschlossen werden.
 +
 
 +
 
 +
Das Lernvideo&nbsp; [[Erzeugung_einer_Exponentialverteilung_(Lernvideo)|"Erzeugung einer Exponentialverteilung"]]&nbsp; soll die  hier abgeleiteten Transformationen verdeutlichen.
 +
 
 +
==Herleitung der zugehörigen Transformationskennlinie==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Aufgabenstellung:}$&nbsp;
 +
#&nbsp; Nun wird die bereits auf der letzten Seite verwendete Transformationskennlinie&nbsp; $x = g_1(u)= g(u)$&nbsp; hergeleitet.
 +
#&nbsp;  Diese formt aus der zwischen&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; gleichverteilten Zufallsgröße&nbsp; $u$&nbsp; mit  WDF&nbsp; $f_{u}(u)$&nbsp; eine einseitig exponentialverteilte Zufallsgröße&nbsp; $x$&nbsp; mit WDF&nbsp; $f_{x}(x)$:
 +
 
 +
::$$f_{u}(u)= \left\{          \begin{array}{*{2}{c} }          1 & \rm falls\hspace{0.3cm}  0 < {\it u} < 1,\\        0.5 & \rm falls\hspace{0.3cm}  {\it u} = 0, {\it u} = 1,\\          0 & \rm sonst, \\              \end{array}    \right. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
 +
f_{x}(x)= \left\{          \begin{array}{*{2}{c} }        \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm falls\hspace{0.3cm}  {\it x} > 0,\\        \lambda/2 &  \rm falls\hspace{0.3cm} {\it x} = 0  ,\\          0 & \rm falls\hspace{0.3cm} {\it x} < 0. \\              \end{array}    \right.$$}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Problemlösung:}$&nbsp;
 +
 
 +
'''(1)'''&nbsp; Ausgehend von der allgemeinen Transformationsgleichung
 +
:$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$
 +
erhält man durch Umstellen und Einsetzen der vorgegebenen WDF $f_{ x}(x):$
 +
:$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$
 +
Hierbei gibt&nbsp; $x = g\hspace{0.05cm}'(u)$&nbsp; die Ableitung der Kennlinie an, die wir als monoton steigend voraussetzen.
 +
 
 +
'''(2)'''&nbsp; Mit dieser Annahme erhält man &nbsp;$\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$&nbsp; und die Differentialgleichung &nbsp;${\rm d}u =  \lambda\  \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}  x}\, {\rm d}x$&nbsp; mit der Lösung &nbsp;$u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
 +
 
 +
'''(3)'''&nbsp; Aus der Bedingung, dass die Eingangsgröße &nbsp;$u =0$&nbsp; zum Ausgangswert &nbsp;$x =0$&nbsp; führen soll, erhält man für die Konstante&nbsp; $K =1$&nbsp;  und damit &nbsp;$u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
 +
 
 +
'''(4)'''&nbsp; Löst man diese Gleichung nach&nbsp; $x$&nbsp; auf, so ergibt sich die vorne angegebene Gleichung:
 +
:$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
 +
 
 +
*Bei einer Rechnerimplementierung ist allerdings sicherzustellen, dass für die gleichverteilte Eingangsgröße&nbsp; $u$&nbsp; der kritische Wert&nbsp; $1$&nbsp; ausgeschlossen wird.&nbsp;
 +
*Dies wirkt sich jedoch auf das Endergebnis (fast) nicht aus. }}
 +
 
 +
 
 +
==Zweiseitige Exponentialverteilung &ndash; Laplaceverteilung==
 +
<br>
 +
In engem Zusammenhang mit der Exponentialverteilung steht die sogenannte&nbsp; [https://de.wikipedia.org/wiki/Laplaceverteilung Laplaceverteilung]&nbsp; mit der Wahrscheinlichkeitsdichtefunktion
 +
:$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$
 +
 
 +
Die Laplaceverteilung ist eine&nbsp; ''zweiseitige Exponentialverteilung'', die insbesondere die Amplitudenverteilung von Sprach&ndash; und Musiksignalen ausreichend gut approximiert.
 +
* Die Momente&nbsp; $k$&ndash;ter Ordnung &nbsp; &rArr; &nbsp; $m_k$&nbsp; der Laplaceverteilung stimmen für geradzahliges&nbsp; $k$&nbsp; mit denen der Exponentialverteilung überein.
 +
* Für ungeradzahliges&nbsp; $k$&nbsp; ergibt sich bei der (symmetrischen) Laplaceverteilung dagegen  stets&nbsp; $m_k= 0$.
 +
 
  
Bei einer Rechnerimplementierung entsprechend der ersten Transformationskennlinie ist der Wert $u =$ 1 auszuschließen, im zweiten Fall der Wert $u =$ 0.
+
Zur Generierung verwendet man eine zwischen&nbsp; $±1$&nbsp; gleichverteilte Zufallsgröße&nbsp; $v$&nbsp; (wobei&nbsp;  $v = 0$&nbsp; ausgeschlossen werden muss)&nbsp; und die Transformationskennlinie
 +
:$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$
  
Zur Verdeutlichung der hier abgeleiteten Transformation bieten wir Ihnen ein Lernvideo an:
 
Erzeugung einer Exponentialverteilung 
 
  
In einem engen Zusammenhang mit der Exponentialverteilung steht die sogenannte Laplace-  Verteilung mit der Wahrscheinlichkeitsdichtefunktion
+
''Weitere Hinweise:''
$$f_{\rm x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$
+
*Aus der&nbsp; [[Aufgaben:3.8_Verstärkung_und_Begrenzung| Aufgabe 3.8]]&nbsp; erkennt man weitere Eigenschaften der Laplaceverteilung.
  
Diese ist eine ''zweiseitige Exponentialverteilung,'' die insbesondere die Amplitudenverteilung von Sprach- und Musiksignalen ausreichend gut approximiert. Zur Generierung verwendet man eine zwischen ±1 gleichverteilte Zufallsgröße $υ$ (0 ausgeschlossen) und die Transformationskennlinie
+
*Im Lernvideo&nbsp; [[Wahrscheinlichkeit_und_WDF_(Lernvideo)|Wahrscheinlichkeit und WDF]]&nbsp; wird gezeigt, welche Bedeutung  die Laplaceverteilung für die Beschreibung von Sprach&ndash; und Musiksignalen hat.
$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$
+
*Mit dem Applet&nbsp; [[Applets:WDF,_VTF_und_Momente_spezieller_Verteilungen_(Applet)|WDF, VTF und Momente]]&nbsp; können Sie sich die Kenngrößen&nbsp; $($WDF, VTF, Momente$)$&nbsp; von Exponential- und Laplaceverteilung anzeigen lassen.
 +
*Wir weisen Sie auch auf das Applet&nbsp; [[Applets:Zweidimensionale_Laplace-Zufallsgrößen_(Applet)|Zweidimensionale Laplace-Zufallsgrößen]]&nbsp; hin.
 +
 
  
Mit dem folgenden Berechnungstool können Sie sich unter Anderem die Kenngrößen (WDF, VTF, Momente) der Exponential- und der Laplaceverteilung anzeigen lassen:
+
==Aufgaben zum Kapitel==
WDF, VTF und Momente spezieller Verteilungen 
+
<br>
 +
[[Aufgaben:3.8 Verstärkung und Begrenzung|Aufgabe 3.8: Verstärkung und Begrenzung]]
  
Im zweiten Teil des unten aufgeführten Lernvideos wird an Beispielen gezeigt, dass die Laplace-Verteilung für die Beschreibung von Sprach- und Musiksignalen eine große Bedeutung besitzt:
+
[[Aufgaben:Aufgabe_3.8Z:_Kreis(ring)fläche|Aufgabe 3.8Z: Kreis(ring)fläche]]
Wahrscheinlichkeit und Wahrscheinlichkeitsdichtefunktion  (Dauer 6:30)  
 
  
==Erzeugung einer exponentialverteilten Zufallsgröße (2)==
+
[[Aufgaben:3.9 Kennlinie für Cosinus-WDF|Aufgabe 3.9: Kennlinie für Cosinus-WDF]]
'''Ausführliche Herleitung der Transformationskennlinie''' 
 
  
Es soll eine geeignete Transformationskennlinie $x = g(u)$ ermittelt werden, die aus einer zwischen 0 und 1 gleichverteilten Zufallsgröße $u$ eine einseitig exponentialverteilte Zufallsgröße $x$ formt:  
+
[[Aufgaben:3.9Z Sinustransformation|Aufgabe 3.9Z: Sinustransformation]]
$$f_{\rm u}(u)= \left\{          \begin{array}{*{2}{c}}          1 & \rm falls\hspace{0.3cm}  0 < {\it u} < 1,\\        0.5 & \rm falls\hspace{0.3cm}  {\it u} = 0, {\it u} = 1,\\          0 & \rm sonst, \\              \end{array}    \right.$$
 
$$ f_{\rm x}(x)= \left\{          \begin{array}{*{2}{c}}        \lambda\cdot\rm e^{\it -\lambda x} & \rm falls\hspace{0.3cm}  {\it x} > 1,\\        \lambda/2 &  \rm falls\hspace{0.3cm} {\it x} = 0  ,\\          0 & \rm falls\hspace{0.3cm} {\it x} < 1. \\              \end{array}    \right.$$
 
  
Ausgehend von der allgemeinen Transformationsgleichung
 
$$f_{\rm x}(x)=\frac{f_{\rm u}(u)}{\mid g'(u) \mid }\Bigg |_{\hspace{0.1cm} u=h(x)}$$
 
erhält man durch Umstellen und Einsetzen der gegebenen WDF $f_{\rm x}(x):$
 
$$\mid g'(u)\mid\hspace{0.1cm}=\frac{f_{\rm u}(u)}{f_{\rm x}(x)}\Bigg |_{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$
 
Hierbei gibt $x = g'(u)$ die Ableitung der Kennlinie an, die wir als monoton steigend voraussetzen. Mit dieser Annahme erhält man $|g'(u)| = g'(u) = dx/du$ und die Differentialgleichung
 
$${\rm d}u =  \lambda\  \cdot {\rm e}^{-\lambda  x}\, {\rm d}x$$
 
mit der Lösung
 
$$u = K - {\rm e}^{-\lambda x}.$$
 
Aus der Bedingung, dass die Eingangsgröße $u =$ 0 zum Ausgangswert $x =$ 0 führen soll, erhält man für die Konstante $K =$ 1 und damit
 
$$u = 1- {\rm e}^{-\lambda  x}.$$
 
Löst man diese Gleichung nach $x$ auf, so ergibt sich die vorne angegebene Gleichung:
 
$$x = \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
 
Bei einer Rechnerimplementierung ist allerdings sicherzustellen, dass für die gleichverteilte Eingangsgröße $u$ der kritische Wert 1 ausgeschlossen wird. Dies wirkt sich jedoch auf das Endergebnis nicht aus.
 
  
q.e.d.
 
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 15. Januar 2022, 18:00 Uhr

Einseitige Exponentialverteilung


$\text{Definition:}$  Eine kontinuierliche Zufallsgröße  $x$  nennt man  (einseitig)  exponentialverteilt,  wenn sie nur nicht–negative Werte annehmen kann und die Wahrscheinlichkeitsdichtefunktion für  $x>0$  den folgenden Verlauf hat:

$$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$


WDF und VTF einer exponentialverteilten Zufallsgröße

Das linke Bild zeigt die  "Wahrscheinlichkeitsdichtefunktion"  $\rm (WDF)$  einer solchen exponentialverteilten Zufallsgröße  $x$.  Hervorzuheben ist:

  1. Je größer der Verteilungsparameter  $λ$  ist,  um so steiler erfolgt der Abfall.
  2. Definitionsgemäß gilt  $f_{x}(0) = λ/2$,  also der Mittelwert aus linksseitigem Grenzwert  $(0)$  und rechtsseitigem Grenzwert  $(\lambda)$.
  • Für die  "Verteilungsfunktion"  $\rm (VTF)$   ⇒   rechte Grafik)  erhält man für  $r > 0$  durch Integration über die WDF:
$$F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$
  • Die  "Momente"  der einseitigen Exponentialverteilung sind allgemein gleich  
$$m_k = k!/λ^k.$$
  • Daraus und aus dem Satz von Steiner ergibt sich für den  "Mittelwert"  und die  "Streuung":
$$m_1={1}/{\lambda},$$
$$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.$$

$\text{Beispiel 1:}$  Die Exponentialverteilung hat große Bedeutung für Zuverlässigkeitsuntersuchungen,  wobei in diesem Zusammenhang auch der Begriff „Lebensdauerverteilung” üblich ist.

  1. Bei diesen Anwendungen ist die Zufallsgröße oft die Zeit  $t$,  die bis zum Ausfall einer Komponente vergeht.
  2. Desweiteren ist anzumerken,  dass die Exponentialverteilung eng mit der  Poissonverteilung  in Zusammenhang steht.

Transformation von Zufallsgrößen


Zur Erzeugung einer solchen exponentialverteilten Zufallsgröße an einem Digitalrechner kann zum Beispiel eine  nichtlineare Transformation  verwendet werden.  Das zugrunde liegende Prinzip wird hier zunächst allgemein angegeben.

$\text{Vorgehensweise:}$  Besitzt eine kontinuierliche Zufallsgröße  $u$  die WDF  $f_{u}(u)$,  so gilt für die Wahrscheinlichkeitsdichtefunktion der an der nichtlinearen Kennlinie  $x = g(u)$  transformierten Zufallsgröße  $x$:

$$f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.$$

Hierbei bezeichnet  $g\hspace{0.05cm}'(u)$  die Ableitung der Kennlinie  $g(u)$  und  $h(x)$  gibt die Umkehrfunktion zu  $g(u)$  an.


  • Obige Gleichung gilt allerdings nur unter der Voraussetzung,  dass die Ableitung  $g\hspace{0.03cm}'(u) \ne 0$  ist.
  • Bei einer Kennlinie mit horizontalen Abschnitten  $(g\hspace{0.05cm}'(u) = 0)$  treten in der WDF zusätzliche Diracfunktionen auf,  wenn die Eingangsgröße in dem Bereich Anteile hat.
  • Die Gewichte dieser Diracfunktionen sind gleich den Wahrscheinlichkeiten,  dass die Eingangsgröße in diesen Bereichen liegt.


Zur Transformation von Zufallsgrößen

$\text{Beispiel 2:}$  Gibt man eine zwischen  $–2$  und  $+2$  dreieckverteilte Zufallsgröße  $u$  auf eine Nichtlinerität mit der Kennlinie  $x = g(u)$,

  • die im Bereich  $\vert u \vert ≤ 1$  die Eingangswerte verdreifacht,  und
  • alle Werte  $\vert u \vert > 1$  je nach Vorzeichen auf  $x = \pm 3$  abbildet,


so ergibt sich die rechts skizzierte WDF $f_{x}(x)$.


Bitte beachten Sie:

(1)   Aufgrund der Verstärkung um den Faktor  $3$  ist $f_{x}(x)$  um diesen Faktor breiter und niedriger als $f_{u}(u).$

(2)   Die beiden horizontalen Begrenzungen der Kennlinie bei  $u = ±1$  führen zu den beiden Diracfunktionen bei  $x = ±3$, jeweils mit dem Gewicht  $1/8$.

(3)   Das Gewicht  $1/8$  entspricht der grünen Flächen in der WDF $f_{u}(u).$

Erzeugung einer exponentialverteilten Zufallsgröße


$\text{Vorgehensweise:}$  Nun wird vorausgesetzt,  dass die zu transformierende Zufallsgröße  $u$  gleichverteilt zwischen  $0$  (inklusive) und  $1$  (exklusive) ist. 

  • Außerdem betrachten wir die monoton steigende Kennlinie
$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$
  • Es kann gezeigt werden,  dass durch diese Kennlinie  $x=g_1(u)$  eine einseitig exponentialverteilte Zufallsgröße  $x$  mit folgender WDF entsteht 
    (Herleitung siehe nächste Seite):
$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\it x}>0.$$
  • Für  $x = 0$  ist der WDF-Wert nur halb so groß  $(\lambda/2)$.
  • Negative  $x$-Werte treten nicht auf,  da für  $0 ≤ u < 1$  das Argument der (natürlichen) Logarithmus–Funktion nicht kleiner wird als  $1$.


Die gleiche WDF erhält man übrigens mit der monoton fallenden Kennlinie

$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$

Bitte beachten Sie:

  • Bei einer Rechnerimplementierung entsprechend der ersten Transformationskennlinie  $x=g_1(u)$  ist der Wert  $u = 1$  auszuschließen.
  • Verwendet man die zweite Transformationskennlinie  $x=g_2(u)$,  so muss dagegen der Wert  $u =0$  ausgeschlossen werden.


Das Lernvideo  "Erzeugung einer Exponentialverteilung"  soll die hier abgeleiteten Transformationen verdeutlichen.

Herleitung der zugehörigen Transformationskennlinie


$\text{Aufgabenstellung:}$ 

  1.   Nun wird die bereits auf der letzten Seite verwendete Transformationskennlinie  $x = g_1(u)= g(u)$  hergeleitet.
  2.   Diese formt aus der zwischen  $0$  und  $1$  gleichverteilten Zufallsgröße  $u$  mit WDF  $f_{u}(u)$  eine einseitig exponentialverteilte Zufallsgröße  $x$  mit WDF  $f_{x}(x)$:
$$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm falls\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm falls\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\\ 0 & \rm sonst, \\ \end{array} \right. \hspace{0.5cm}\Rightarrow \hspace{0.5cm} f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm falls\hspace{0.3cm} {\it x} > 0,\\ \lambda/2 & \rm falls\hspace{0.3cm} {\it x} = 0 ,\\ 0 & \rm falls\hspace{0.3cm} {\it x} < 0. \\ \end{array} \right.$$


$\text{Problemlösung:}$ 

(1)  Ausgehend von der allgemeinen Transformationsgleichung

$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$

erhält man durch Umstellen und Einsetzen der vorgegebenen WDF $f_{ x}(x):$

$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$

Hierbei gibt  $x = g\hspace{0.05cm}'(u)$  die Ableitung der Kennlinie an, die wir als monoton steigend voraussetzen.

(2)  Mit dieser Annahme erhält man  $\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$  und die Differentialgleichung  ${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$  mit der Lösung  $u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$

(3)  Aus der Bedingung, dass die Eingangsgröße  $u =0$  zum Ausgangswert  $x =0$  führen soll, erhält man für die Konstante  $K =1$  und damit  $u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$

(4)  Löst man diese Gleichung nach  $x$  auf, so ergibt sich die vorne angegebene Gleichung:

$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
  • Bei einer Rechnerimplementierung ist allerdings sicherzustellen, dass für die gleichverteilte Eingangsgröße  $u$  der kritische Wert  $1$  ausgeschlossen wird. 
  • Dies wirkt sich jedoch auf das Endergebnis (fast) nicht aus.


Zweiseitige Exponentialverteilung – Laplaceverteilung


In engem Zusammenhang mit der Exponentialverteilung steht die sogenannte  Laplaceverteilung  mit der Wahrscheinlichkeitsdichtefunktion

$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$

Die Laplaceverteilung ist eine  zweiseitige Exponentialverteilung, die insbesondere die Amplitudenverteilung von Sprach– und Musiksignalen ausreichend gut approximiert.

  • Die Momente  $k$–ter Ordnung   ⇒   $m_k$  der Laplaceverteilung stimmen für geradzahliges  $k$  mit denen der Exponentialverteilung überein.
  • Für ungeradzahliges  $k$  ergibt sich bei der (symmetrischen) Laplaceverteilung dagegen stets  $m_k= 0$.


Zur Generierung verwendet man eine zwischen  $±1$  gleichverteilte Zufallsgröße  $v$  (wobei  $v = 0$  ausgeschlossen werden muss)  und die Transformationskennlinie

$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$


Weitere Hinweise:

  • Aus der  Aufgabe 3.8  erkennt man weitere Eigenschaften der Laplaceverteilung.


Aufgaben zum Kapitel


Aufgabe 3.8: Verstärkung und Begrenzung

Aufgabe 3.8Z: Kreis(ring)fläche

Aufgabe 3.9: Kennlinie für Cosinus-WDF

Aufgabe 3.9Z: Sinustransformation