Aufgaben:Aufgabe 3.9: Kennlinie für Cosinus-WDF: Unterschied zwischen den Versionen
Aus LNTwww
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID136__Sto_A_3_9.png|right|frame|Rechteck– und Cosinus–WDF]] | [[Datei:P_ID136__Sto_A_3_9.png|right|frame|Rechteck– und Cosinus–WDF]] | ||
− | Gesucht ist eine stetige, monoton steigende nichtlineare Kennlinie $y =g(x)$, die aus einer zwischen $-1$ und $+1$ gleichverteilten Zufallsgröße $x$ eine neue Zufallsgröße $y$ mit „cosinusförmiger” WDF generiert: | + | Gesucht ist eine stetige, monoton steigende nichtlineare Kennlinie $y =g(x)$, die aus einer zwischen $-1$ und $+1$ gleichverteilten Zufallsgröße $x$ eine neue Zufallsgröße $y$ mit „cosinusförmiger” WDF generiert: |
:$$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$ | :$$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$ | ||
Zeile 14: | Zeile 14: | ||
− | + | Hinweise: | |
− | |||
− | |||
− | |||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen|Exponentialverteilte Zufallsgrößen]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen|Exponentialverteilte Zufallsgrößen]]. | ||
*Insbesondere wird Bezug genommen auf die Seite [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen|Transformation von Zufallsgrößen]]. | *Insbesondere wird Bezug genommen auf die Seite [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen|Transformation von Zufallsgrößen]]. | ||
Zeile 39: | Zeile 36: | ||
− | {Bestimmen Sie die Steigung $h\hspace{0.05cm}'(y)$ der Umkehrfunktion $x = h(y)$, wobei für $|y| \le 1$ stets $h\hspace{0.05cm}'(y) > 0$ gelten soll? Welche Steigung gilt bei $y = 0$ ? | + | {Bestimmen Sie die Steigung $h\hspace{0.05cm}'(y)$ der Umkehrfunktion $x = h(y)$, wobei für $|y| \le 1$ stets $h\hspace{0.05cm}'(y) > 0$ gelten soll? Welche Steigung gilt bei $y = 0$ ? |
|type="{}"} | |type="{}"} | ||
$h'(y = 0) \ = \ $ { 1.571 3% } | $h'(y = 0) \ = \ $ { 1.571 3% } | ||
Zeile 59: | Zeile 56: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Richtig sind <u>die Aussagen 1 und 3</u>: | + | '''(1)''' Richtig sind <u>die Aussagen 1 und 3</u>: |
− | *Da $x$ nur Werte zwischen $\pm 1$ annehmen kann, ist der Verlauf der Kennlinie außerhalb dieses Bereichs für die Zufallsgröße $y$ ohne Belang. | + | *Da $x$ nur Werte zwischen $\pm 1$ annehmen kann, ist der Verlauf der Kennlinie außerhalb dieses Bereichs für die Zufallsgröße $y$ ohne Belang. |
− | *Die Bedingung $g(-x) = g(x)$ muss nicht eingehalten werden. Es gibt beliebig viele Kennlinien, die die gewünschte WDF erzeugen können. | + | *Die Bedingung $g(-x) = g(x)$ muss nicht eingehalten werden. Es gibt beliebig viele Kennlinien, die die gewünschte WDF erzeugen können. |
*Die unter Punkt '''(5)''' berechnete Kennlinie ist beispielsweise punktsymmetrisch: $g(-x) = -g(x)$. | *Die unter Punkt '''(5)''' berechnete Kennlinie ist beispielsweise punktsymmetrisch: $g(-x) = -g(x)$. | ||
− | *Schon die grafischen Darstellungen der beiden Dichtefunktionen zeigen, dass $\sigma_y^2 < \sigma_x^2$ ist. | + | *Schon die grafischen Darstellungen der beiden Dichtefunktionen zeigen, dass $\sigma_y^2 < \sigma_x^2$ ist. |
− | '''(2)''' Das Integral über die WDF muss stets gleich $1$ sein. Daraus folgt: | + | '''(2)''' Das Integral über die WDF muss stets gleich $1$ sein. Daraus folgt: |
:$$\int_{-\rm 1}^{\rm 1}A\cdot \cos({\pi}/{\rm 2}\cdot y)\, {\rm d} y=\frac{A\cdot \rm 4}{\pi}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A=\frac{\pi}{\rm 4} \hspace{0.15cm}\underline{= \rm 0.785}.$$ | :$$\int_{-\rm 1}^{\rm 1}A\cdot \cos({\pi}/{\rm 2}\cdot y)\, {\rm d} y=\frac{A\cdot \rm 4}{\pi}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A=\frac{\pi}{\rm 4} \hspace{0.15cm}\underline{= \rm 0.785}.$$ | ||
Zeile 88: | Zeile 85: | ||
*Die Nebenbedingung $h(y= 0) = 0$ führt zur Konstanten $C = 0$ und damit zum Ergebnis: | *Die Nebenbedingung $h(y= 0) = 0$ führt zur Konstanten $C = 0$ und damit zum Ergebnis: | ||
:$$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} | :$$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} | ||
− | h(y = 1) \hspace{0.15cm}\underline{= 1}.$$ | + | h(y = 1) \hspace{0.15cm}\underline{= +1}.$$ |
− | |||
Aktuelle Version vom 2. Februar 2022, 15:45 Uhr
Gesucht ist eine stetige, monoton steigende nichtlineare Kennlinie $y =g(x)$, die aus einer zwischen $-1$ und $+1$ gleichverteilten Zufallsgröße $x$ eine neue Zufallsgröße $y$ mit „cosinusförmiger” WDF generiert:
- $$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$
- Die Zufallsgröße $y$ kann ebenfalls nur Werte zwischen $-1$ und $+1$ annehmen.
- Die beiden Dichtefunktionen $f_x(x)$ und $f_y(y)$ sind nebenstehend skizziert.
Hinweise:
- Die Aufgabe gehört zum Kapitel Exponentialverteilte Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seite Transformation von Zufallsgrößen.
Fragebogen
Musterlösung
(1) Richtig sind die Aussagen 1 und 3:
- Da $x$ nur Werte zwischen $\pm 1$ annehmen kann, ist der Verlauf der Kennlinie außerhalb dieses Bereichs für die Zufallsgröße $y$ ohne Belang.
- Die Bedingung $g(-x) = g(x)$ muss nicht eingehalten werden. Es gibt beliebig viele Kennlinien, die die gewünschte WDF erzeugen können.
- Die unter Punkt (5) berechnete Kennlinie ist beispielsweise punktsymmetrisch: $g(-x) = -g(x)$.
- Schon die grafischen Darstellungen der beiden Dichtefunktionen zeigen, dass $\sigma_y^2 < \sigma_x^2$ ist.
(2) Das Integral über die WDF muss stets gleich $1$ sein. Daraus folgt:
- $$\int_{-\rm 1}^{\rm 1}A\cdot \cos({\pi}/{\rm 2}\cdot y)\, {\rm d} y=\frac{A\cdot \rm 4}{\pi}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A=\frac{\pi}{\rm 4} \hspace{0.15cm}\underline{= \rm 0.785}.$$
(3) Die Transformationsformel kann wie folgt umgeformt werden:
- $$f_y(y)=\frac{f_x(x)}{| g'(x)|}\Big|_{\, x=h(y)}=f_x(x)\cdot |h'(y)| \Big|_{\, x=h(y)}.$$
- Die Umkehrfunktion $x = h(y)$ einer monoton ansteigenden Kennlinie $y = g(x)$ steigt ebenfalls monoton an.
- Deshalb kann auf die Betragsbildung verzichtet werden und man erhält:
- $$h\hspace{0.05cm}'(y)=\frac{f_y(y)}{f_x(x)\Big|_{\, x=h(y)}}={\pi}/{\rm 2}\cdot \cos({\pi}/{2}\cdot y).$$
- An der Stelle $y = 0$ hat die Steigung den Wert $h\hspace{0.05cm}'(y= 0)=π/2\hspace{0.15cm}\underline{\approx 1.571}$.
(4) Man erhält durch (unbestimmte) Integration:
- $$h(y)=\int h\hspace{0.05cm}'(y)\, {\rm d} y + C = \frac{\pi}{2}\cdot \frac{2}{\pi}\cdot \sin(\frac{\pi}{ 2}\cdot y) + C.$$
- Die Nebenbedingung $h(y= 0) = 0$ führt zur Konstanten $C = 0$ und damit zum Ergebnis:
- $$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \Rightarrow\hspace{0.5cm} h(y = 1) \hspace{0.15cm}\underline{= +1}.$$
(5) Die Umkehrfunktion der in der Teilaufgabe (4) ermittelten Funktion $x = h(y)$ lautet:
- $$y=g(x)={\rm 2}/{\rm \pi}\cdot \rm arcsin({\it x}).$$
- Diese Kennlinie steigt im Bereich $-1 \le x \le +1$ von $y = -1$ bis $y = +1$ monoton an.
- Der gesuchte Wert ist also $g(x= 1) \hspace{0.15cm}\underline{= +1}$.