Aufgaben:Aufgabe 3.11: Tschebyscheffsche Ungleichung: Unterschied zwischen den Versionen
Aus LNTwww
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID139__Sto_A_3_11.png|right|frame|Beispielhafte Tschebyscheffsch–Schranke]] | [[Datei:P_ID139__Sto_A_3_11.png|right|frame|Beispielhafte Tschebyscheffsch–Schranke]] | ||
+ | |||
+ | [[Datei:P_ID921__Sto_A_3_11_b.png|frame|Werte der komplementären Gaußschen Fehlerfunktion]] | ||
+ | |||
Ist über eine Zufallsgröße $x$ nichts weiter bekannt als nur | Ist über eine Zufallsgröße $x$ nichts weiter bekannt als nur | ||
*der Mittelwert $m_x$ und | *der Mittelwert $m_x$ und | ||
Zeile 9: | Zeile 12: | ||
− | so gibt die | + | so gibt die "Tschebyscheffsche Ungleichung" eine obere Schranke für die Wahrscheinlichkeit an, dass $x$ betragsmäßig mehr als einen Wert $\varepsilon$ von seinem Mittelwert $m_x$ abweicht. |
Diese Schranke lautet: | Diese Schranke lautet: | ||
Zeile 16: | Zeile 19: | ||
Zur Erläuterung: | Zur Erläuterung: | ||
*In der Grafik ist diese obere Schranke rot eingezeichnet. | *In der Grafik ist diese obere Schranke rot eingezeichnet. | ||
− | *Der grüne Kurvenverlauf zeigt die tatsächliche Wahrscheinlichkeit | + | *Der grüne Kurvenverlauf zeigt die tatsächliche Wahrscheinlichkeit für die Gleichverteilung. |
*Die blauen Punkte gelten für die Exponentialverteilung. | *Die blauen Punkte gelten für die Exponentialverteilung. | ||
− | Aus dieser Darstellung ist zu erkennen, dass die | + | Aus dieser Darstellung ist zu erkennen, dass die "Tschebyscheffsche Ungleichung" nur eine sehr grobe Schranke darstellt. |
+ | |||
+ | Sie sollte nur dann verwendet werden, wenn von der Zufallsgröße wirklich nur der Mittelwert und die Streuung bekannt sind. | ||
+ | |||
− | |||
<br> | <br> | ||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]]. | ||
− | *Insbesondere wird auf die Seite | + | *Insbesondere wird auf die Seite [[Stochastische_Signaltheorie/Weitere_Verteilungen#Tschebyscheffsche_Ungleichung|Tschebyscheffsche Ungleichung]] Bezug genommen. |
− | + | *Rechts sind Werte der komplementären Gaußschen Fehlerfunktion ${\rm Q}(x)$ angegeben. | |
− | *Rechts sind Werte der komplementären Gaußschen Fehlerfunktion ${\rm Q} | ||
Zeile 39: | Zeile 43: | ||
{Welche der folgenden Aussagen sind zutreffend? | {Welche der folgenden Aussagen sind zutreffend? | ||
|type="[]"} | |type="[]"} | ||
− | - Vorstellbar ist eine Zufallsgröße mit ${\rm Pr}(|x -m_x | + | - Vorstellbar ist eine Zufallsgröße mit ${\rm Pr}(|x -m_x | \ge 3\sigma_x) = 1/4$. |
− | + | + | + "Tschebyscheff" liefert für $\varepsilon < \sigma_x$ keine Information. |
− | + ${\rm Pr}(|x -m_x | + | + ${\rm Pr}(|x -m_x | \ge \sigma_x)$ ist für große $\varepsilon$ identisch Null, wenn $x$ begrenzt ist. |
− | {Es gelte $k = 1, \ 2, \ 3, \ 4$. Geben Sie die Überschreitungswahrscheinlichkeit $p_k = {\rm Pr}(|x -m_x | \ge k \cdot \sigma_x)$ für die <u>Gaußverteilung</u> an. Wie groß ist $p_3$? | + | {Es gelte $k = 1, \ 2, \ 3, \ 4$. Geben Sie die Überschreitungswahrscheinlichkeit $p_k = {\rm Pr}(|x -m_x | \ge k \cdot \sigma_x)$ für die <u>Gaußverteilung</u> an. Wie groß ist $p_3$? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 0.26 3% } $\ \%$ | ${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 0.26 3% } $\ \%$ | ||
− | {Welche Überschreitungswahrscheinlichkeiten $p_k$ ergeben sich bei der <u>Exponentialverteilung</u>. Hier gilt $m_x = \sigma_x = 1/\lambda$. Wie groß ist $p_3$? | + | {Welche Überschreitungswahrscheinlichkeiten $p_k$ ergeben sich bei der <u>Exponentialverteilung</u>. Hier gilt $m_x = \sigma_x = 1/\lambda$. Wie groß ist $p_3$? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 1.83 3% } $\ \%$ | ${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 1.83 3% } $\ \%$ | ||
Zeile 59: | Zeile 63: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Richtig sind <u>die Lösungsvorschläge 2 und 3</u>: | + | '''(1)''' Richtig sind <u>die Lösungsvorschläge 2 und 3</u>: |
− | *Die erste Aussage ist falsch. Die Tschebyscheffsche Ungleichung liefert hier die Schranke $1/9$. | + | *Die erste Aussage ist falsch. Die Tschebyscheffsche Ungleichung liefert hier die Schranke $1/9$. |
− | *Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich $1/4$ sein. | + | *Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich $1/4$ sein. |
− | *Für $\varepsilon < \sigma_x$ liefert Tschebyscheff eine Wahrscheinlichkeit größer als $1$. Diese Information ist nutzlos. | + | *Für $\varepsilon < \sigma_x$ liefert Tschebyscheff eine Wahrscheinlichkeit größer als $1$. Diese Information ist nutzlos. |
− | *Die letzte Aussage ist zutreffend. Beispielsweise gilt bei der Gleichverteilung: | + | *Die letzte Aussage ist zutreffend. Beispielsweise gilt bei der Gleichverteilung: |
:$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$ | :$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$ | ||
Zeile 70: | Zeile 74: | ||
:$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$ | :$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$ | ||
− | Daraus ergeben sich folgende Zahlenwerte (in Klammern: Schranke nach Tschebyscheff): | + | *Daraus ergeben sich folgende Zahlenwerte $($in Klammern: Schranke nach Tschebyscheff$)$: |
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$ | :$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$ | ||
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$ | :$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$ | ||
Zeile 77: | Zeile 81: | ||
− | '''(3)''' Ohne Einschränkung der Allgemeingültigkeit setzen wir $\lambda | + | '''(3)''' Ohne Einschränkung der Allgemeingültigkeit setzen wir $\lambda = 1$ |
− | ⇒ $m_x = \sigma_x = 1$. Dann gilt: | + | ⇒ $m_x = \sigma_x = 1$. Dann gilt: |
:$${\rm Pr}(|x - m_x| \ge k\cdot\sigma_{x}) = {\rm Pr}(| x-1| \ge k).$$ | :$${\rm Pr}(|x - m_x| \ge k\cdot\sigma_{x}) = {\rm Pr}(| x-1| \ge k).$$ | ||
− | Da in diesem Sonderfall die Zufallsgröße stets $x >0$ ist, gilt weiter: | + | *Da in diesem Sonderfall die Zufallsgröße stets $x >0$ ist, gilt weiter: |
:$$p_k= {\rm Pr}( x \ge k+1)=\int_{k+\rm 1}^{\infty}\hspace{-0.15cm} | :$$p_k= {\rm Pr}( x \ge k+1)=\int_{k+\rm 1}^{\infty}\hspace{-0.15cm} | ||
{\rm e}^{-x}\, {\rm d} x={\rm e}^{-( k + 1)}.$$ | {\rm e}^{-x}\, {\rm d} x={\rm e}^{-( k + 1)}.$$ | ||
− | Daraus ergeben sich | + | *Daraus ergeben sich für die Exponentialverteilung folgende Zahlenwerte: |
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) \rm e^{-2}= \rm 13.53\%,$$ | :$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) \rm e^{-2}= \rm 13.53\%,$$ | ||
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x})= \rm \rm e^{-3}=\rm 4.97\% ,$$ | :$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x})= \rm \rm e^{-3}=\rm 4.97\% ,$$ | ||
− | :$$k= 3 | + | :$$k= 3\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})= \rm \rm e^{-4}\hspace{0.15cm}\underline{ =\rm 1.83\% },$$ |
:$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = \rm e^{-5}= \rm 0.67\%.$$ | :$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = \rm e^{-5}= \rm 0.67\%.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Aktuelle Version vom 3. Februar 2022, 13:00 Uhr
Ist über eine Zufallsgröße $x$ nichts weiter bekannt als nur
- der Mittelwert $m_x$ und
- die Streuung $\sigma_x$,
so gibt die "Tschebyscheffsche Ungleichung" eine obere Schranke für die Wahrscheinlichkeit an, dass $x$ betragsmäßig mehr als einen Wert $\varepsilon$ von seinem Mittelwert $m_x$ abweicht.
Diese Schranke lautet:
- $${\rm Pr}(|x-m_x|\ge \varepsilon) \le {\sigma_x^{\rm 2}}/{\varepsilon^{\rm 2}}.$$
Zur Erläuterung:
- In der Grafik ist diese obere Schranke rot eingezeichnet.
- Der grüne Kurvenverlauf zeigt die tatsächliche Wahrscheinlichkeit für die Gleichverteilung.
- Die blauen Punkte gelten für die Exponentialverteilung.
Aus dieser Darstellung ist zu erkennen, dass die "Tschebyscheffsche Ungleichung" nur eine sehr grobe Schranke darstellt.
Sie sollte nur dann verwendet werden, wenn von der Zufallsgröße wirklich nur der Mittelwert und die Streuung bekannt sind.
Hinweise:
- Die Aufgabe gehört zum Kapitel Weitere Verteilungen.
- Insbesondere wird auf die Seite Tschebyscheffsche Ungleichung Bezug genommen.
- Rechts sind Werte der komplementären Gaußschen Fehlerfunktion ${\rm Q}(x)$ angegeben.
Fragebogen
Musterlösung
(1) Richtig sind die Lösungsvorschläge 2 und 3:
- Die erste Aussage ist falsch. Die Tschebyscheffsche Ungleichung liefert hier die Schranke $1/9$.
- Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich $1/4$ sein.
- Für $\varepsilon < \sigma_x$ liefert Tschebyscheff eine Wahrscheinlichkeit größer als $1$. Diese Information ist nutzlos.
- Die letzte Aussage ist zutreffend. Beispielsweise gilt bei der Gleichverteilung:
- $${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$
(2) Bei der Gaußverteilung gilt:
- $$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$
- Daraus ergeben sich folgende Zahlenwerte $($in Klammern: Schranke nach Tschebyscheff$)$:
- $$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$
- $$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$
- $$k= 3\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})\hspace{0.15cm}\underline{ = 0.26 \%} \hspace{0.3cm}(11.1 \%),$$
- $$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = 0.0064 \% \hspace{0.3cm}(6.25 \%).$$
(3) Ohne Einschränkung der Allgemeingültigkeit setzen wir $\lambda = 1$
⇒ $m_x = \sigma_x = 1$. Dann gilt:
- $${\rm Pr}(|x - m_x| \ge k\cdot\sigma_{x}) = {\rm Pr}(| x-1| \ge k).$$
- Da in diesem Sonderfall die Zufallsgröße stets $x >0$ ist, gilt weiter:
- $$p_k= {\rm Pr}( x \ge k+1)=\int_{k+\rm 1}^{\infty}\hspace{-0.15cm} {\rm e}^{-x}\, {\rm d} x={\rm e}^{-( k + 1)}.$$
- Daraus ergeben sich für die Exponentialverteilung folgende Zahlenwerte:
- $$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) \rm e^{-2}= \rm 13.53\%,$$
- $$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x})= \rm \rm e^{-3}=\rm 4.97\% ,$$
- $$k= 3\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})= \rm \rm e^{-4}\hspace{0.15cm}\underline{ =\rm 1.83\% },$$
- $$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = \rm e^{-5}= \rm 0.67\%.$$