Aufgaben:Aufgabe 4.3: Algebraische und Modulo-Summe: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID253__Sto_A_4_3.png|right|frame|Algebraische Summe und Modulo-2-Summe]]
 
[[Datei:P_ID253__Sto_A_4_3.png|right|frame|Algebraische Summe und Modulo-2-Summe]]
Ein „getakteter” Zufallsgenerator liefert eine Folge  $\langle x_\nu \rangle$  von binären Zufallszahlen.  
+
[[Datei:P_ID254__Sto_A_4_3Tab.png|right|frame|Tabelle zur Momentenberechnung]]
*Es wird vorausgesetzt, dass die Binärzahlen  $0$  und  $1$  mit gleichen Wahrscheinlichkeiten auftreten und dass die einzelnen Zufallszahlen nicht voneinander abhängen.  
+
Ein getakteter Zufallsgenerator liefert eine Folge  $\langle x_\nu \rangle$  von binären Zufallszahlen.  
 +
*Es wird vorausgesetzt,  dass die Binärzahlen  $0$  und  $1$  mit gleichen Wahrscheinlichkeiten auftreten und dass die einzelnen Zufallszahlen nicht voneinander abhängen.  
 
*Die Zufallszahlen  $ x_\nu \in \{0, 1\}$  werden in die erste Speicherstelle eines Schieberegisters eingetragen und mit jeden Takt um eine Stelle nach unten verschoben.
 
*Die Zufallszahlen  $ x_\nu \in \{0, 1\}$  werden in die erste Speicherstelle eines Schieberegisters eingetragen und mit jeden Takt um eine Stelle nach unten verschoben.
  
  
Aus den Inhalten des dreistelligen Schieberegisters werden zwei neue Zufallsfolgen  $\langle a_\nu \rangle$  und  $\langle m_\nu \rangle$  gebildet. Hierbei bezeichnet:
+
Aus den Inhalten des dreistelligen Schieberegisters werden zwei neue Zufallsfolgen  $\langle a_\nu \rangle$  und  $\langle m_\nu \rangle$  gebildet:
  
*  $a_\nu$&nbsp; die <i>algebraische Summe</i>:
+
die&nbsp; "algebraische Summe"&nbsp; $a_\nu$:
 
:$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
 
:$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
  
*$m_\nu$&nbsp; die <i>Modulo-2-Summe</i>:
+
*die&nbsp; "Modulo-2-Summe"&nbsp; $m_\nu$:
 
:$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$
 
:$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$
  
Dieser Sachverhalt ist in der nachfolgenden Tabelle nochmals dargestellt:
+
<br><br><br><br><br><br><br>
[[Datei:P_ID254__Sto_A_4_3Tab.png|left|frame|Tabelle zur Momentenberechnung]]
+
Hinweise: &nbsp;  
 
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
<br><br><br><br><br><br>
+
*Nebenstehende Tabelle kann zur Momentenberechnung herangezogen werden.
''Hinweis:'' &nbsp; Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
 
 
<br clear=all>  
 
<br clear=all>  
 
===Fragebogen===
 
===Fragebogen===
Zeile 64: Zeile 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der Tabelle auf der Angabenseite ist ersichtlich, dass bei der Modulo-2-Summe die beiden Werte&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; mit gleicher Wahrscheinlichkeit auftreten:  
+
'''(1)'''&nbsp; Aus der Tabelle auf der Angabenseite ist ersichtlich,&nbsp; dass bei der Modulo-2-Summe die beiden Werte&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; mit gleicher Wahrscheinlichkeit auftreten:  
 
:$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$
 
:$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$
  
  
  
'''(2)'''&nbsp; Die Tabelle zeigt, dass bei jeder Vorbelegung &nbsp; &rArr; &nbsp;  $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$  &nbsp; die Werte&nbsp; $m_\nu = 0$&nbsp; bzw.&nbsp; $m_\nu = 1$&nbsp;  gleichwahrscheinlich sind.  
+
'''(2)'''&nbsp; Die Tabelle zeigt,&nbsp; dass bei jeder Vorbelegung &nbsp; &rArr; &nbsp;  $( x_{\nu-1},&nbsp; x_{\nu-2}) = (0,0),&nbsp; (0,1),&nbsp; (1,0),&nbsp; (1,1)$  &nbsp; die Werte&nbsp; $m_\nu = 0$&nbsp; bzw.&nbsp; $m_\nu = 1$&nbsp;  gleichwahrscheinlich sind.  
 
*Anders ausgedr&uuml;ckt: &nbsp; ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
 
*Anders ausgedr&uuml;ckt: &nbsp; ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
 
*Dies entspricht genau der Definition der &bdquo;statistischen Unabh&auml;ngigkeit&rdquo; &nbsp; &rArr; &nbsp; <u>Antwort 1</u>.
 
*Dies entspricht genau der Definition der &bdquo;statistischen Unabh&auml;ngigkeit&rdquo; &nbsp; &rArr; &nbsp; <u>Antwort 1</u>.
Zeile 76: Zeile 76:
  
 
[[Datei:P_ID224__Sto_A_4_3_c.png|right|frame|2D-WDF von&nbsp; $x$&nbsp; und&nbsp; $m$]]
 
[[Datei:P_ID224__Sto_A_4_3_c.png|right|frame|2D-WDF von&nbsp; $x$&nbsp; und&nbsp; $m$]]
'''(3)'''&nbsp; Richtig sind <u>der zweite und der letzte Lösungsvorschlag</u>.
+
'''(3)'''&nbsp; Richtig sind&nbsp; <u>der zweite und der letzte Lösungsvorschlag</u>.
*Die 2D&ndash;WDF besteht aus vier Diracfunktionen, jeweils mit dem Gewicht&nbsp; $1/4$.  
+
*Die 2D&ndash;WDF besteht aus vier Diracfunktionen,&nbsp; jeweils mit dem Gewicht&nbsp; $1/4$.  
 
*Man erh&auml;lt dieses Ergebnis beispielsweise durch Auswertung der Tabelle auf der Angabenseite.
 
*Man erh&auml;lt dieses Ergebnis beispielsweise durch Auswertung der Tabelle auf der Angabenseite.
*Da $f_{xm}(x_\nu, m_\nu)$&nbsp; gleich dem Produkt $f_{x}(x_\nu) \cdot f_{m}(m_\nu)$&nbsp;  ist, sind die Gr&ouml;&szlig;en&nbsp; $x_\nu$&nbsp;  und&nbsp; $m_\nu$&nbsp; statistisch unabh&auml;ngig.  
+
*Da&nbsp; $f_{xm}(x_\nu, m_\nu)=f_{x}(x_\nu) \cdot f_{m}(m_\nu)$&nbsp;  ist,&nbsp; sind die Gr&ouml;&szlig;en&nbsp; $x_\nu$&nbsp;  und&nbsp; $m_\nu$&nbsp; statistisch unabh&auml;ngig.  
*Statistisch unabh&auml;ngige Zufallsgr&ouml;&szlig;en sind aber  auch linear statistisch unabh&auml;ngig, also mit Sicherheit unkorreliert.
+
*Statistisch unabh&auml;ngige Zufallsgr&ouml;&szlig;en sind aber  auch linear statistisch unabh&auml;ngig,&nbsp; also mit Sicherheit unkorreliert.
 
   
 
   
  
Zeile 86: Zeile 86:
  
 
'''(4)'''&nbsp; Innerhalb der Folge&nbsp; $\langle a_\nu \rangle$&nbsp; der algebraischen Summe gibt es statistische Bindungen &nbsp; &#8658; &nbsp; <u>Antwort 2</u>.  
 
'''(4)'''&nbsp; Innerhalb der Folge&nbsp; $\langle a_\nu \rangle$&nbsp; der algebraischen Summe gibt es statistische Bindungen &nbsp; &#8658; &nbsp; <u>Antwort 2</u>.  
*Man erkennt dies daran, dass die unbedingte Wahrscheinlichkeit&nbsp; $ {\rm Pr}( a_{\nu} = 0) =1/8$&nbsp; ist,  
+
*Man erkennt dies daran,&nbsp; dass die unbedingte Wahrscheinlichkeit&nbsp; $ {\rm Pr}( a_{\nu} = 0) =1/8$&nbsp; ist,  
 
*w&auml;hrend zum Beispiel&nbsp; ${\rm Pr}(a_{\nu} =  0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$&nbsp;  gilt.
 
*w&auml;hrend zum Beispiel&nbsp; ${\rm Pr}(a_{\nu} =  0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$&nbsp;  gilt.
  
Zeile 93: Zeile 93:
 
[[Datei:P_ID225__Sto_A_4_3_e.png|right|frame|2D-WDF von&nbsp; $a$&nbsp; und&nbsp; $m$]]
 
[[Datei:P_ID225__Sto_A_4_3_e.png|right|frame|2D-WDF von&nbsp; $a$&nbsp; und&nbsp; $m$]]
 
'''(5)'''&nbsp; Richtig sind <u>der erste und der letzte Lösungsvorschlag</u>:
 
'''(5)'''&nbsp; Richtig sind <u>der erste und der letzte Lösungsvorschlag</u>:
*Wie bei der Teilaufgabe&nbsp; '''(3)'''&nbsp; gibt es wieder vier Diracfunktionen, diesmal aber nicht mit gleichen Impulsgewichten&nbsp; $1/4$.
+
*Wie bei der Teilaufgabe&nbsp; '''(3)'''&nbsp; gibt es wieder vier Diracfunktionen,&nbsp; diesmal aber nicht mit gleichen Impulsgewichten&nbsp; $1/4$.
*Die zweidimensionale WDF l&auml;sst sich somit nicht als Produkt der zwei Randwahrscheinlichkeitsdichten schreiben.  
+
*Die zweidimensionale WDF l&auml;sst sich auch nicht als Produkt der zwei Randwahrscheinlichkeitsdichten schreiben.  
*Das bedeutet aber, dass statistische Bindungen zwischen&nbsp; $a_\nu$&nbsp;  und&nbsp; $m_\nu$&nbsp; bestehen m&uuml;ssen.
+
*Das bedeutet aber,&nbsp; dass statistische Bindungen zwischen&nbsp; $a_\nu$&nbsp;  und&nbsp; $m_\nu$&nbsp; bestehen m&uuml;ssen.
 
*F&uuml;r den gemeinsamen Erwartungswert erh&auml;lt man:
 
*F&uuml;r den gemeinsamen Erwartungswert erh&auml;lt man:
 
:$${\rm E}\big[a\cdot m \big] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
 
:$${\rm E}\big[a\cdot m \big] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
 
*Mit den linearen Mittelwerten&nbsp; ${\rm E}\big[a \big] = 1.5$ &nbsp;und&nbsp; ${\rm E}[m] = 0.5$&nbsp; folgt damit f&uuml;r die Kovarianz:
 
*Mit den linearen Mittelwerten&nbsp; ${\rm E}\big[a \big] = 1.5$ &nbsp;und&nbsp; ${\rm E}[m] = 0.5$&nbsp; folgt damit f&uuml;r die Kovarianz:
 
:$$\mu_{am}= {\rm E}\big[ a\cdot m \big] - {\rm E}\big[ a \big]\cdot {\rm E} \big[ m \big] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
 
:$$\mu_{am}= {\rm E}\big[ a\cdot m \big] - {\rm E}\big[ a \big]\cdot {\rm E} \big[ m \big] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
*Damit ist auch der Korrelationskoeffizient&nbsp; $\rho_{am}= 0$.&nbsp; Das heißt: &nbsp; Die vorhandenen Abh&auml;ngigkeiten sind nichtlinear.
+
*Damit ist auch der Korrelationskoeffizient&nbsp; $\rho_{am}= 0$.&nbsp; Das heißt: &nbsp; Die vorhandenen Abh&auml;ngigkeiten müssen demnach nichtlinear sein &nbsp; &rArr; &nbsp;  Die Größen&nbsp; $a_\nu$&nbsp; und&nbsp; $m_\nu$&nbsp; sind zwar statistisch abhängig, trotzdem aber unkorreliert.  
*Die Größen&nbsp; $a_\nu$&nbsp; und&nbsp; $m_\nu$&nbsp; sind zwar statistisch abhängig, trotzdem aber unkorreliert.  
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 7. Februar 2022, 15:55 Uhr

Algebraische Summe und Modulo-2-Summe
Tabelle zur Momentenberechnung

Ein getakteter Zufallsgenerator liefert eine Folge  $\langle x_\nu \rangle$  von binären Zufallszahlen.

  • Es wird vorausgesetzt,  dass die Binärzahlen  $0$  und  $1$  mit gleichen Wahrscheinlichkeiten auftreten und dass die einzelnen Zufallszahlen nicht voneinander abhängen.
  • Die Zufallszahlen  $ x_\nu \in \{0, 1\}$  werden in die erste Speicherstelle eines Schieberegisters eingetragen und mit jeden Takt um eine Stelle nach unten verschoben.


Aus den Inhalten des dreistelligen Schieberegisters werden zwei neue Zufallsfolgen  $\langle a_\nu \rangle$  und  $\langle m_\nu \rangle$  gebildet:

  • die  "algebraische Summe"  $a_\nu$:
$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
  • die  "Modulo-2-Summe"  $m_\nu$:
$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$








Hinweise:  


Fragebogen

1

Berechnen Sie die Wahrscheinlichkeiten der Zufallsgröße  $m_\nu$.  Wie groß ist die Wahrscheinlichkeit, dass die Modulo-2-Summe gleich  $0$  ist?

${\rm Pr}(m_\nu = 0) \ = \ $

2

Bestehen statistische Abhängigkeiten innerhalb der Folge  $\langle m_\nu \rangle$?

Die Folgenelemente  $m_\nu$  sind statistisch unabhängig.
Es bestehen statistische Bindungen innerhalb der Folge  $\langle m_\nu \rangle$.

3

Ermitteln Sie die Verbund-WDF  $f_{xm}(x_\nu, m_\nu)$.  Bewerten Sie aufgrund des Resultats die folgenden Aussagen (zutreffend oder nicht).

Die Zufallsgrößen  $x_\nu$  und  $m_\nu$  sind statistisch abhängig.
Die Zufallsgrößen  $x_\nu$  und  $m_\nu$  sind statistisch unabhängig.
Die Zufallsgrößen  $x_\nu$  und  $m_\nu$  sind korreliert.
Die Zufallsgrößen  $x_\nu$  und  $m_\nu$  sind unkorreliert.

4

Bestehen innerhalb der Folge  $\langle a_\nu \rangle$  statistische Abhängigkeiten?

Die Folgenelemente  $a_\nu$  sind statistisch unabhängig.
Es bestehen statistische Bindungen innerhalb der Folge  $\langle a_\nu \rangle$.

5

Ermitteln Sie die 2D-WDF $f_{am}(a_\nu, m_\nu)$  und den Korrelationskoeffizienten  $\rho_{am}$.  Welche der folgenden Aussagen treffen zu?

Die Zufallsgrößen  $a_\nu$  und  $m_\nu$  sind statistisch abhängig.
Die Zufallsgrößen  $a_\nu$  und  $m_\nu$  sind statistisch unabhängig.
Die Zufallsgrößen  $a_\nu$  und  $m_\nu$  sind korreliert.
Die Zufallsgrößen  $a_\nu$  und  $m_\nu$  sind unkorreliert.


Musterlösung

(1)  Aus der Tabelle auf der Angabenseite ist ersichtlich,  dass bei der Modulo-2-Summe die beiden Werte  $0$  und  $1$  mit gleicher Wahrscheinlichkeit auftreten:

$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$


(2)  Die Tabelle zeigt,  dass bei jeder Vorbelegung   ⇒   $( x_{\nu-1},  x_{\nu-2}) = (0,0),  (0,1),  (1,0),  (1,1)$   die Werte  $m_\nu = 0$  bzw.  $m_\nu = 1$  gleichwahrscheinlich sind.

  • Anders ausgedrückt:   ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
  • Dies entspricht genau der Definition der „statistischen Unabhängigkeit”   ⇒   Antwort 1.


2D-WDF von  $x$  und  $m$

(3)  Richtig sind  der zweite und der letzte Lösungsvorschlag.

  • Die 2D–WDF besteht aus vier Diracfunktionen,  jeweils mit dem Gewicht  $1/4$.
  • Man erhält dieses Ergebnis beispielsweise durch Auswertung der Tabelle auf der Angabenseite.
  • Da  $f_{xm}(x_\nu, m_\nu)=f_{x}(x_\nu) \cdot f_{m}(m_\nu)$  ist,  sind die Größen  $x_\nu$  und  $m_\nu$  statistisch unabhängig.
  • Statistisch unabhängige Zufallsgrößen sind aber auch linear statistisch unabhängig,  also mit Sicherheit unkorreliert.



(4)  Innerhalb der Folge  $\langle a_\nu \rangle$  der algebraischen Summe gibt es statistische Bindungen   ⇒   Antwort 2.

  • Man erkennt dies daran,  dass die unbedingte Wahrscheinlichkeit  $ {\rm Pr}( a_{\nu} = 0) =1/8$  ist,
  • während zum Beispiel  ${\rm Pr}(a_{\nu} = 0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$  gilt.


2D-WDF von  $a$  und  $m$

(5)  Richtig sind der erste und der letzte Lösungsvorschlag:

  • Wie bei der Teilaufgabe  (3)  gibt es wieder vier Diracfunktionen,  diesmal aber nicht mit gleichen Impulsgewichten  $1/4$.
  • Die zweidimensionale WDF lässt sich auch nicht als Produkt der zwei Randwahrscheinlichkeitsdichten schreiben.
  • Das bedeutet aber,  dass statistische Bindungen zwischen  $a_\nu$  und  $m_\nu$  bestehen müssen.
  • Für den gemeinsamen Erwartungswert erhält man:
$${\rm E}\big[a\cdot m \big] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
  • Mit den linearen Mittelwerten  ${\rm E}\big[a \big] = 1.5$  und  ${\rm E}[m] = 0.5$  folgt damit für die Kovarianz:
$$\mu_{am}= {\rm E}\big[ a\cdot m \big] - {\rm E}\big[ a \big]\cdot {\rm E} \big[ m \big] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
  • Damit ist auch der Korrelationskoeffizient  $\rho_{am}= 0$.  Das heißt:   Die vorhandenen Abhängigkeiten müssen demnach nichtlinear sein   ⇒   Die Größen  $a_\nu$  und  $m_\nu$  sind zwar statistisch abhängig, trotzdem aber unkorreliert.