Aufgaben:Aufgabe 2.9: Symmetrische Verzerrungen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
}}
 
}}
  
[[Datei:P_ID1040__Mod_Z_2_8.png|right|frame|Sende– und Empfangsspektrum im äquivalenten TP-Bereich]]
+
[[Datei:P_ID1040__Mod_Z_2_8.png|right|frame|Sende– und Empfangsspektrum im äquivalenten Tiefpass-Bereich]]
 
Das aus zwei Anteilen zusammengesetzte Quellensignal
 
Das aus zwei Anteilen zusammengesetzte Quellensignal
 
:$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$
 
:$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$
wird amplitudenmoduliert und über einen linear verzerrenden Übertragungskanal übertragen. Die Trägerfrequenz ist $f_{\rm T}$ und der zugesetzte Gleichanteil $A_{\rm T}$. Es liegt also eine  ''Zweiseitenband-Amplitudenmoduluation'' (ZSB–AM) ''mit Träger''  vor.
+
wird amplitudenmoduliert und über einen linear verzerrenden Übertragungskanal übertragen. 
 +
*Die Trägerfrequenz ist  $f_{\rm T}$  und der zugesetzte Gleichanteil  $A_{\rm T}$. 
 +
*Es liegt also eine  "Zweiseitenband-Amplitudenmoduluation  $\rm (ZSB–AM)$  mit Träger"  vor.
  
Die obere Grafik zeigt das Spektrum $S_{\rm TP}(f)$ des äquivalenten TP–Signals in schematischer Form. Das bedeutet, dass die Längen der gezeichneten Diraclinien nicht den tatsächlichen Werten von $A_{\rm T}$, $A_1/2$ und $A_2/2$ entsprechen.
 
  
 +
Die obere Grafik zeigt das Spektrum  $S_{\rm TP}(f)$  des äquivalenten Tiefpass–Signals in schematischer Form.  Das bedeutet,  dass die Längen der gezeichneten Diraclinien nicht den tatsächlichen Werten von  $A_{\rm T}$,  $A_1/2$  und  $A_2/2$  entsprechen.
  
Messtechnisch erfasst wurde die Spektralfunktion $R(f)$ des Empfangssignals. In der unteren Grafik sehen Sie das daraus berechnete äquivalente Tiefpass–Spektrum $R_{\rm TP}(f)$.
+
 
 +
Messtechnisch erfasst wurde die Spektralfunktion  $R(f)$  des Empfangssignals.  In der unteren Grafik sehen Sie das daraus berechnete äquivalente Tiefpass–Spektrum  $R_{\rm TP}(f)$.
  
 
Der Kanalfrequenzgang ist durch einige Stützwerte ausreichend genau beschrieben:
 
Der Kanalfrequenzgang ist durch einige Stützwerte ausreichend genau beschrieben:
:$$ H_{\rm K}(f = f_{\rm T}) = 0.5,\hspace{0.3cm}H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,\hspace{0.3cm} H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$
+
:$$ H_{\rm K}(f = f_{\rm T}) = 0.5,$$
 +
:$$H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,$$
 +
:$$ H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
  
  
''Hinweise:''
+
Hinweise:  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Hüllkurvendemodulation|Hüllkurvendemodulation]].
+
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Hüllkurvendemodulation|Hüllkurvendemodulation]].
*Bezug genommen wird insbesondere auf das Kapitel  [[Modulationsverfahren/Hüllkurvendemodulation#Beschreibung_mit_Hilfe_des_.C3.A4quivalenten_TP.E2.80.93Signals|Beschreibung mit Hilfe des äquivalenten Tiefpass-Signals]].
+
*Bezug genommen wird insbesondere auf das Kapitel    [[Modulationsverfahren/Hüllkurvendemodulation#Beschreibung_mit_Hilfe_des_.C3.A4quivalenten_Tiefpass.E2.80.93Signals|Beschreibung mit Hilfe des äquivalenten Tiefpass-Signals]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  
Zeile 28: Zeile 36:
 
{ Ermitteln Sie die Amplituden von Träger– und Quellensignal.
 
{ Ermitteln Sie die Amplituden von Träger– und Quellensignal.
 
|type="{}"}
 
|type="{}"}
$A_{\rm T} \ = \ $  { 4 3% } $\ \rm V$  
+
$A_{\rm T} \ = \hspace{0.17cm} $  { 4 3% } $\ \rm V$  
 
$A_1 \ = \ $ { 3 3% } $\ \rm V$  
 
$A_1 \ = \ $ { 3 3% } $\ \rm V$  
 
$A_2 \ = \ $ { 4 3% } $\ \rm V$  
 
$A_2 \ = \ $ { 4 3% } $\ \rm V$  
  
{Zu welcher Art von Verzerrung hätte der Einsatz eines Hüllkurvendemodulators bei idealem Kanal   ⇒   $H_{\rm K}(f) = 1$ geführt?
+
{Zu welcher Art von Verzerrung hätte der Einsatz eines Hüllkurvendemodulators bei idealem Kanal   ⇒   $H_{\rm K}(f) = 1$  geführt?
|type="[]"}
+
|type="()"}
 
- Keine Verzerrungen.
 
- Keine Verzerrungen.
 
- Lineare Verzerrungen.
 
- Lineare Verzerrungen.
 
+ Nichtlineare Verzerrungen.
 
+ Nichtlineare Verzerrungen.
  
{Berechnen Sie das äquivalente Tiefpass–Signal und beantworten Sie folgende Fragen. Ist es zutreffend, dass
+
{Berechnen Sie das äquivalente Tiefpass–Signal und beantworten Sie folgende Fragen.  Ist es zutreffend,  dass
 
|type="[]"}
 
|type="[]"}
+ $r_{\rm TP}(t)$ stets reell ist,
+
+ $r_{\rm TP}(t)$  stets reell ist,
+ $r_{\rm TP}(t)$ stets größer oder gleich 0 ist,
+
+ $r_{\rm TP}(t)$  stets größer oder gleich Null ist,
- die Phasenfunktion $ϕ(t)$ die Werte $0^\circ$ und $180^\circ$ annehmen kann.
+
- die Phasenfunktion  $ϕ(t)$  die Werte  $0^\circ$  und  $180^\circ$  annehmen kann?
  
 
{Zu welchen Verzerrungen führt der Hüllkurvendemodulator beim betrachteten Übertragungskanal?
 
{Zu welchen Verzerrungen führt der Hüllkurvendemodulator beim betrachteten Übertragungskanal?
|type="[]"}
+
|type="()"}
 
- Keine Verzerrungen.
 
- Keine Verzerrungen.
 
+ Lineare Verzerrungen.
 
+ Lineare Verzerrungen.
Zeile 54: Zeile 62:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''Anhand der Grafiken auf der Angabenseite sind folgende Aussagen möglich:
+
'''(1)'''  Anhand der Grafiken auf der Angabenseite sind folgende Aussagen möglich:
$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$  
+
:$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$  
$$\frac{A_{\rm 1}}{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
+
:$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
$$\frac{A_{\rm 2}}{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$
+
:$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Richtig ist der&nbsp; <u>Lösungsvorschlag 3</u>:
 +
*Der Modulationsgrad ergibt sich zu&nbsp; $m = (A_1 + A_2)/A_T = 1.75$.
 +
*Damit ergeben sich bei Verwendung eines Hüllkurvendemodulators starke nichtlineare Verzerrungen.
 +
*Ein Klirrfaktor kann aber nicht angegeben werden,&nbsp; da das Quellensignal zwei Frequenzanteile beinhaltet.
 +
 
 +
 
 +
 
  
'''2.'''Der Modulationsgrad ergibt sich zu $m = (A_1 + A_2)/A_T = 1.75$. Damit ergeben sich bei Verwendung eines Hüllkurvendemodulators starke nichtlineare Verzerrungen. Ein Klirrfaktor kann nicht angegeben werden, da das Quellensignal zwei Frequenzanteile beinhaltet.
+
'''(3)'''&nbsp; Richtig sind&nbsp; <u>die Aussagen 1 und 2</u>:
 +
*Die Fourierrücktransformation von&nbsp; $R_{\rm TP}(f)$&nbsp; führt zum Ergebnis:
 +
:$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
 +
*Diese Funktion ist stets reell und nicht–negativ.  
 +
*Damit gilt gleichzeitig&nbsp; $ϕ(t) = 0$.&nbsp; Dagegen ist&nbsp; $ϕ(t) = 180^\circ$&nbsp; nicht möglich.  
  
  
'''3.''' Die Fourierrücktransformation von $R_{TP}(f)$ führt zum Ergebnis:
 
$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
 
Diese Funktion ist stets reell und nicht–negativ. Damit gilt gleichzeitig $ϕ(t) = 0$. Dagegen ist $ϕ(t) = 180°$ nicht möglich. Richtig sind also die Aussagen 1 und 2.
 
  
'''4.'''Ein Vergleich der beiden Signale
 
$$q(t)  =  3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
 
$$ v(t)  =  0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
 
zeigt, dass nun lineare Verzerrungen – genauer gesagt Dämpfungsverzerrungen – auftreten.
 
  
 +
'''(4)'''&nbsp; Ein Vergleich der beiden Signale
 +
:$$q(t)  =  3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
 +
:$$ v(t)  =  0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
 +
:zeigt, dass nun lineare Verzerrungen – genauer gesagt:&nbsp; Dämpfungsverzerrungen – auftreten &nbsp; &rArr; &nbsp;  <u>Lösungsvorschlag 2</u>.
  
Der Kanal $H_K(f)$ hat hier den positiven Effekt, dass anstelle von irreversiblen nichtlinearen Verzerrungen nun nichtlineare Verzerrungen entstehen, die durch ein nachgeschaltetes Filter eliminiert werden können. Dies ist darauf zurückzuführen, dass durch die stärkere Dämpfung des Quellensignals $q(t)$ im Vergleich zum Trägersignal $z(t)$ der Modulationsgrad von $m = 1.75$ auf $m = (0.4 · 3 V + 0.2 · 4 V)/(0.5 · 4 V) = 1$ vermindert wird.
+
*Der Kanal&nbsp; $H_{\rm K}(f)$&nbsp; hat hier den positiven Effekt,&nbsp; dass anstelle von irreversiblen nichtlinearen Verzerrungen nun lineare Verzerrungen entstehen,&nbsp; die durch ein nachgeschaltetes Filter eliminiert werden können.  
 +
*Dies ist darauf zurückzuführen,&nbsp; dass durch die stärkere Dämpfung des Quellensignals&nbsp; $q(t)$&nbsp; im Vergleich zum Trägersignal&nbsp; $z(t)$&nbsp; der Modulationsgrad herabgesetzt wird von&nbsp; $m = 1.75$&nbsp; auf&nbsp;
 +
:$$m = (0.4 · 3 \ \rm  V + 0.2 · 4 \ \rm  V)/(0.5 · 4 \ \rm  V) = 1.$$  
  
  

Aktuelle Version vom 16. Februar 2022, 16:34 Uhr

Sende– und Empfangsspektrum im äquivalenten Tiefpass-Bereich

Das aus zwei Anteilen zusammengesetzte Quellensignal

$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$

wird amplitudenmoduliert und über einen linear verzerrenden Übertragungskanal übertragen. 

  • Die Trägerfrequenz ist  $f_{\rm T}$  und der zugesetzte Gleichanteil  $A_{\rm T}$. 
  • Es liegt also eine  "Zweiseitenband-Amplitudenmoduluation  $\rm (ZSB–AM)$  mit Träger"  vor.


Die obere Grafik zeigt das Spektrum  $S_{\rm TP}(f)$  des äquivalenten Tiefpass–Signals in schematischer Form.  Das bedeutet,  dass die Längen der gezeichneten Diraclinien nicht den tatsächlichen Werten von  $A_{\rm T}$,  $A_1/2$  und  $A_2/2$  entsprechen.


Messtechnisch erfasst wurde die Spektralfunktion  $R(f)$  des Empfangssignals.  In der unteren Grafik sehen Sie das daraus berechnete äquivalente Tiefpass–Spektrum  $R_{\rm TP}(f)$.

Der Kanalfrequenzgang ist durch einige Stützwerte ausreichend genau beschrieben:

$$ H_{\rm K}(f = f_{\rm T}) = 0.5,$$
$$H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,$$
$$ H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$



Hinweise:


Fragebogen

1

Ermitteln Sie die Amplituden von Träger– und Quellensignal.

$A_{\rm T} \ = \hspace{0.17cm} $

$\ \rm V$
$A_1 \ = \ $

$\ \rm V$
$A_2 \ = \ $

$\ \rm V$

2

Zu welcher Art von Verzerrung hätte der Einsatz eines Hüllkurvendemodulators bei idealem Kanal   ⇒   $H_{\rm K}(f) = 1$  geführt?

Keine Verzerrungen.
Lineare Verzerrungen.
Nichtlineare Verzerrungen.

3

Berechnen Sie das äquivalente Tiefpass–Signal und beantworten Sie folgende Fragen.  Ist es zutreffend,  dass

$r_{\rm TP}(t)$  stets reell ist,
$r_{\rm TP}(t)$  stets größer oder gleich Null ist,
die Phasenfunktion  $ϕ(t)$  die Werte  $0^\circ$  und  $180^\circ$  annehmen kann?

4

Zu welchen Verzerrungen führt der Hüllkurvendemodulator beim betrachteten Übertragungskanal?

Keine Verzerrungen.
Lineare Verzerrungen.
Nichtlineare Verzerrungen.


Musterlösung

(1)  Anhand der Grafiken auf der Angabenseite sind folgende Aussagen möglich:

$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$
$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$


(2)  Richtig ist der  Lösungsvorschlag 3:

  • Der Modulationsgrad ergibt sich zu  $m = (A_1 + A_2)/A_T = 1.75$.
  • Damit ergeben sich bei Verwendung eines Hüllkurvendemodulators starke nichtlineare Verzerrungen.
  • Ein Klirrfaktor kann aber nicht angegeben werden,  da das Quellensignal zwei Frequenzanteile beinhaltet.



(3)  Richtig sind  die Aussagen 1 und 2:

  • Die Fourierrücktransformation von  $R_{\rm TP}(f)$  führt zum Ergebnis:
$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
  • Diese Funktion ist stets reell und nicht–negativ.
  • Damit gilt gleichzeitig  $ϕ(t) = 0$.  Dagegen ist  $ϕ(t) = 180^\circ$  nicht möglich.



(4)  Ein Vergleich der beiden Signale

$$q(t) = 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
$$ v(t) = 0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
zeigt, dass nun lineare Verzerrungen – genauer gesagt:  Dämpfungsverzerrungen – auftreten   ⇒   Lösungsvorschlag 2.
  • Der Kanal  $H_{\rm K}(f)$  hat hier den positiven Effekt,  dass anstelle von irreversiblen nichtlinearen Verzerrungen nun lineare Verzerrungen entstehen,  die durch ein nachgeschaltetes Filter eliminiert werden können.
  • Dies ist darauf zurückzuführen,  dass durch die stärkere Dämpfung des Quellensignals  $q(t)$  im Vergleich zum Trägersignal  $z(t)$  der Modulationsgrad herabgesetzt wird von  $m = 1.75$  auf 
$$m = (0.4 · 3 \ \rm V + 0.2 · 4 \ \rm V)/(0.5 · 4 \ \rm V) = 1.$$