Stochastische Signaltheorie/Momente einer diskreten Zufallsgröße: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(19 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
 
==Berechnung als Schar- bzw. Zeitmittelwert==
 
==Berechnung als Schar- bzw. Zeitmittelwert==
Die Wahrscheinlichkeiten bzw. die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße. Reduzierte Informationen erhält man durch die so genannten Momente $m_k$, wobei $k$ eine natürliche Zahl darstellt.  
+
<br>
 +
Die Wahrscheinlichkeiten und die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße.
  
Unter der hier stillschweigend vorausgesetzten Ergodizität  gibt es für das Moment $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:
+
Reduzierte Informationen erhält man durch die so genannten Momente&nbsp; $m_k$, wobei&nbsp; $k$&nbsp; eine natürliche Zahl darstellt.  
*die Scharmittelung bzw. ''Erwartungswertbildung'' (Mittelung über alle möglichen Werte):
 
$$m_k = \rm E \it [z^k] = \sum_{\mu = \rm 1}^{\it M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E[...]:} \hspace{0.1cm} \rm Erwartungswert ,$$
 
*die Zeitmittelung über die Zufallsfolge 〈 $z_ν$〉 mit der Laufvariablen $ν =$ 1 , ... , $N$:
 
$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie:\hspace{0.1cm}Zeitmittelwert.$$
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Zwei alternative Berechnungsmöglichkeiten:}$&nbsp;
  
Beide Berechnungsarten führen für genügend große Werte von $N$ zum gleichen asymptotischen Ergebnis. Bei endlichem $N$ ergibt sich ein vergleichbarer Fehler, als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.  
+
Unter der hier stillschweigend vorausgesetzten Bedingung&nbsp; [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Ergodische_Zufallsprozesse|"Ergodizität"]]&nbsp;  gibt es für das Moment&nbsp; $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:
 +
*die&nbsp; '''Scharmittelung'''&nbsp; bzw.&nbsp; "Erwartungswertbildung" &nbsp; &rArr; &nbsp; Mittelung über alle möglichen Werte&nbsp;  $\{ z_\mu\}$&nbsp; mit der Laufvariablen&nbsp; $\mu = 1 ,  \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , M$:
 +
:$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm Erwartungswert ;$$
 +
*die&nbsp; '''Zeitmittelung'''&nbsp; über die Zufallsfolge&nbsp;  $\langle z_ν\rangle$&nbsp; mit der Laufvariablen&nbsp; $ν = 1 ,  \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , N$:
 +
:$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie\hspace{-0.1cm}:\hspace{0.1cm}Zeitmittelwert.$$}}
  
==Linearer Mittelwert - Gleichanteil==
 
Mit $k =$ 1 erhält man aus der allgemeinen Gleichung für die Momente den linearen Mittelwert:
 
$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
 
Der linke Teil dieser Gleichung beschreibt die Scharmittelung (über alle möglichen Werte), während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt. In Zusammenhang mit Signalen wird diese Größe auch als der Gleichanteil bezeichnet.
 
  
{{Beispiel}}
+
Anzumerken ist:
Ein Binärsignal mit den beiden Amplitudenwerten 1V (für das Symbol '''L''') und 3V (für das Symbol '''H''') sowie den Auftrittswahrscheinlichkeiten $p_{\rm L} =$ 0.2 bzw. $p_{\rm H} =$ 0.8 besitzt den linearen Mittelwert
+
*Beide Berechnungsarten führen bei genügend großen Werten von&nbsp; $N$&nbsp; zum gleichen asymptotischen Ergebnis.  
$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$
+
*Bei endlichem&nbsp; $N$&nbsp; ergibt sich ein vergleichbarer Fehler,&nbsp; als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.  
Dieser Gleichanteil ist in der Grafik als rote Linie eingezeichnet.
 
  
[[Datei:P_ID49__Sto_T_2_2_S2_neu.png | Gleichanteil eines Binärsignals]]
+
==Moment erster Ordnung &ndash; Linearer Mittelwert &ndash; Gleichanteil==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Mit&nbsp; $k = 1$&nbsp; erhält man aus der allgemeinen Gleichung das Moment erster Ordnung &nbsp; &rArr; &nbsp; den&nbsp; '''linearen Mittelwert'''&nbsp; (englisch:&nbsp; "mean"):
 +
:$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
 +
*Der linke Teil dieser Gleichung beschreibt die Scharmittelung&nbsp; (über alle möglichen Werte),
 +
:während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt.
 +
*In Zusammenhang mit Signalen wird diese Größe auch als der&nbsp; [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|Gleichanteil]]&nbsp; bezeichnet.}}
  
Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten $N =$ 12 Signalwerte, so wird man einen etwas kleineren Wert erhalten:
 
$$m_1' = 1/3 \cdot 1\,{\rm V}+ 2/3 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$
 
Hier wurden die Auftrittswahrscheinlichkeiten $p_{\rm L} =$ 0.2 bzw. $p_{\rm H} =$ 0.8 durch die entsprechenden Häufigkeiten $h_{\rm L} =$ 4/12 und $h_{\rm H} =$ 8/12 ersetzt. Der relative Fehler aufgrund der unzureichenden Folgenlänge $N$ ist im Beispiel größer als 10%.
 
{{end}}
 
  
==Quadratischer Mittelwert – Varianz – Streuung==
+
[[Datei:P_ID49__Sto_T_2_2_S2_neu.png|right|frame|Gleichanteil&nbsp; $m_1$&nbsp; eines Binärsignals]]
Analog zum linearen Mittelwert erhält man mit $k =$ 2 für den quadratischen Mittelwert:
+
{{GraueBox|TEXT=
 +
$\text{Beispiel 1:}$&nbsp; Ein Binärsignal&nbsp; $x(t)$&nbsp; mit den beiden möglichen Amplitudenwerten
 +
*$1\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm L)$,
 +
*$3\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm H)$
  
  
 +
sowie den Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; bzw.&nbsp; $p_{\rm H} = 0.8$&nbsp; besitzt den linearen Mittelwert (Gleichanteil )
 +
:$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$
 +
Dieser ist in der Grafik als rote Linie eingezeichnet.
  
 +
Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten&nbsp; $N = 12$&nbsp; Signalwerte,&nbsp; so erhält man einen etwas kleineren Wert:
 +
:$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$
 +
Hier wurden die Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; bzw.&nbsp; $p_{\rm H} = 0.8$&nbsp; durch die entsprechenden Häufigkeiten&nbsp; $h_{\rm L} = 4/12$&nbsp; und&nbsp; $h_{\rm H} = 8/12$&nbsp; ersetzt.&nbsp; Der relative Fehler aufgrund der unzureichenden Folgenlänge&nbsp; $N$&nbsp; ist im Beispiel größer als&nbsp; $10\%$.
  
 +
$\text{Hinweis zu unserer (zugegebenermaßen etwas ungewöhnlicher)  Nomenklatur:}$
  
 +
Wir bezeichnen hier Binärsymbole wie in der Schaltungstechnik  mit&nbsp; $\rm L$&nbsp; ("Low") und&nbsp; $\rm H$&nbsp; ("High"),&nbsp; um Verwechslungen zu vermeiden.
 +
*In der Codierungstheorie wird sinnvollerweise&nbsp; $\{ \text{L, H}\}$&nbsp; auf&nbsp; $\{0, 1\}$&nbsp; abgebildet,&nbsp; um die Möglichkeiten der Modulo-Algebra nutzen zu können.
 +
*Zur Beschreibung der Modulation mit bipolaren&nbsp; (antipodalen)&nbsp; Signalen wählt man dagegen besser die Zuordnung&nbsp; $\{ \text{L, H}\}$  ⇔ $ \{-1, +1\}$.
 +
}}
 +
 +
==Moment zweiter Ordnung &ndash; Leistung &ndash; Varianz &ndash; Streuung==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definitionen:}$&nbsp;
 +
 +
*Analog zum linearen Mittelwert erhält man mit&nbsp; $k = 2$&nbsp; das&nbsp; '''Moment zweiter Ordnung'''&nbsp; (englisch:&nbsp; "second order moment"):
 +
:$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$
 +
 +
*Zusammen mit dem Gleichanteil&nbsp; $m_1$&nbsp; kann daraus als weitere Kenngröße die&nbsp; '''Varianz'''&nbsp; (englisch:&nbsp; "variance")&nbsp; $σ^2$&nbsp; bestimmt werden&nbsp; ("Satz von Steiner"):
 +
:$$\sigma^2=m_2-m_1^2.$$
 +
*Die&nbsp; '''Streuung'''&nbsp; $σ$&nbsp; ist die Quadratwurzel der Varianz;&nbsp; manchmal wird diese Größe auch&nbsp; "Standardabweichung"&nbsp; (englisch:&nbsp; "standard deviation")&nbsp; genannt:
 +
:$$\sigma=\sqrt{m_2-m_1^2}.$$}}
 +
 +
 +
$\text{Hinweise zu den Einheiten:}$
 +
 +
#Bei einem Zufallssignal&nbsp; $x(t)$&nbsp; gibt&nbsp; $m_2$&nbsp; die gesamte Leistung&nbsp; (Gleichleistung plus Wechselleitung)&nbsp; an,&nbsp; bezogen auf den Widerstand&nbsp; $1 \hspace{0.03cm} Ω$.
 +
#Beschreibt&nbsp; $x(t)$&nbsp; einen Spannungsverlauf,&nbsp; so besitzt dementsprechend&nbsp; $m_2$&nbsp; die Einheit&nbsp; ${\rm V}^2$&nbsp; und der Effektivwert&nbsp; (englisch:&nbsp; "root mean square")&nbsp; $x_{\rm eff}=\sqrt{m_2}$&nbsp; die Einheit&nbsp; ${\rm V}$.&nbsp; Die Gesamtleistung für beliebigen Bezugswiderstand&nbsp; $R$&nbsp; berechnet sich zu &nbsp; $P=m_2/R$&nbsp; und besitzt dementsprechend&nbsp; die Einheit&nbsp; $\rm V^2/(V/A) = W$.
 +
#Beschreibt&nbsp; $x(t)$&nbsp; einen Stromverlauf,&nbsp; so hat&nbsp; $m_2$&nbsp; die Einheit&nbsp; ${\rm A}^2$&nbsp; und der Effektivwert&nbsp; $x_{\rm eff}=\sqrt{m_2}$&nbsp; die Einheit&nbsp; ${\rm A}$.&nbsp; Die Gesamtleistung für beliebigen Bezugswiderstand&nbsp; $R$&nbsp; berechnet sich zu &nbsp; $P=m_2\cdot R$&nbsp; und besitzt dementsprechend&nbsp; die Einheit&nbsp; $\rm A^2 \cdot(V/A) = W$.
 +
#Nur im Sonderfall&nbsp; $m_1=0$&nbsp; ist die Varianz&nbsp; $σ^2=m_2$.&nbsp;  Dann stimmt auch die Standardabweichung &nbsp; $σ$&nbsp; mit dem Effektivwert&nbsp; $x_{\rm eff}$&nbsp; überein.
 +
 +
 +
Das Lernvideo &nbsp; [[Momentenberechnung bei diskreten Zufallsgrößen (Lernvideo)|Momentenberechnung bei diskreten Zufallsgrößen]] &nbsp; verdeutlicht die definierten Größen am Beispiel eines Digitalsignals.
 +
 +
[[Datei:P_ID456__Sto_T_2_2_S3_neu.png | right|frame|Standardabweichung eines Binärsignals]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;
 +
Bei einem Binärsignal&nbsp; $x(t)$&nbsp; mit den Amplitudenwerten
 +
*$1\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm L)$,
 +
*$3\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm H)$
 +
 +
 +
sowie den Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; bzw.&nbsp; $p_{\rm H} = 0.8$&nbsp; ergibt sich für das zweite Moment: 
 +
:$$m_2  = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.1cm}{\rm V}^2,$$
 +
 +
Der Effektivwert&nbsp; $x_{\rm eff}=\sqrt{m_2}=2.72\,{\rm V}$&nbsp; ist unabhängig vom Bezugswiderstand&nbsp; $R$&nbsp; im Gegensatz zur Gesamtleistung. Für diese ergibt sich mit&nbsp; $R=1 \hspace{0.1cm} Ω$&nbsp; der Wert&nbsp; $P=7.4 \hspace{0.1cm}{\rm W}$,&nbsp; mit&nbsp; $R=50 \hspace{0.1cm} Ω$&nbsp; dagegen nur&nbsp; $P=0.148 \hspace{0.1cm}{\rm W}$.
 +
   
 +
Mit dem Gleichanteil&nbsp; $m_1 = 2.6 \hspace{0.05cm}\rm V$&nbsp; $($siehe&nbsp; [[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße#Linearer_Mittelwert_-_Gleichanteil|$\text{Beispiel 1})$]]&nbsp; folgt daraus für
 +
*die Varianz&nbsp;  $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm}  {\rm V}^2$,
 +
*die Standardabweichung (Streuung)&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$.
 +
 +
 +
Die gleiche Varianz&nbsp;  $ σ^2 =  0.64\hspace{0.05cm}  {\rm V}^2$ und die gleiche Standardabweichung&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$&nbsp; ergeben sich für die Amplituden&nbsp; $0\hspace{0.05cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm L)$&nbsp; und $2\hspace{0.05cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm H)$,&nbsp; vorausgesetzt, die Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; und&nbsp; $p_{\rm H} = 0.8$&nbsp; bleiben gleich.&nbsp; Nur der Gleichanteil und die Gesamtleistung ändern sich:
 +
:$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, $$
 +
:$$P = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$}}
 +
 +
==Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:2.2 Mehrstufensignale|Aufgabe 2.2: Mehrstufensignale]]
 +
 +
[[Aufgaben:2.2Z_Diskrete_Zufallsgrößen|Aufgabe 2.2Z: Diskrete Zufallsgrößen]]
  
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 18. Februar 2022, 14:26 Uhr

Berechnung als Schar- bzw. Zeitmittelwert


Die Wahrscheinlichkeiten und die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße.

Reduzierte Informationen erhält man durch die so genannten Momente  $m_k$, wobei  $k$  eine natürliche Zahl darstellt.

$\text{Zwei alternative Berechnungsmöglichkeiten:}$ 

Unter der hier stillschweigend vorausgesetzten Bedingung  "Ergodizität"  gibt es für das Moment  $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:

  • die  Scharmittelung  bzw.  "Erwartungswertbildung"   ⇒   Mittelung über alle möglichen Werte  $\{ z_\mu\}$  mit der Laufvariablen  $\mu = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , M$:
$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm Erwartungswert ;$$
  • die  Zeitmittelung  über die Zufallsfolge  $\langle z_ν\rangle$  mit der Laufvariablen  $ν = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , N$:
$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie\hspace{-0.1cm}:\hspace{0.1cm}Zeitmittelwert.$$


Anzumerken ist:

  • Beide Berechnungsarten führen bei genügend großen Werten von  $N$  zum gleichen asymptotischen Ergebnis.
  • Bei endlichem  $N$  ergibt sich ein vergleichbarer Fehler,  als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.

Moment erster Ordnung – Linearer Mittelwert – Gleichanteil


$\text{Definition:}$  Mit  $k = 1$  erhält man aus der allgemeinen Gleichung das Moment erster Ordnung   ⇒   den  linearen Mittelwert  (englisch:  "mean"):

$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
  • Der linke Teil dieser Gleichung beschreibt die Scharmittelung  (über alle möglichen Werte),
während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt.
  • In Zusammenhang mit Signalen wird diese Größe auch als der  Gleichanteil  bezeichnet.


Gleichanteil  $m_1$  eines Binärsignals

$\text{Beispiel 1:}$  Ein Binärsignal  $x(t)$  mit den beiden möglichen Amplitudenwerten

  • $1\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm H)$


sowie den Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  besitzt den linearen Mittelwert (Gleichanteil )

$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$

Dieser ist in der Grafik als rote Linie eingezeichnet.

Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten  $N = 12$  Signalwerte,  so erhält man einen etwas kleineren Wert:

$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$

Hier wurden die Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  durch die entsprechenden Häufigkeiten  $h_{\rm L} = 4/12$  und  $h_{\rm H} = 8/12$  ersetzt.  Der relative Fehler aufgrund der unzureichenden Folgenlänge  $N$  ist im Beispiel größer als  $10\%$.

$\text{Hinweis zu unserer (zugegebenermaßen etwas ungewöhnlicher) Nomenklatur:}$

Wir bezeichnen hier Binärsymbole wie in der Schaltungstechnik mit  $\rm L$  ("Low") und  $\rm H$  ("High"),  um Verwechslungen zu vermeiden.

  • In der Codierungstheorie wird sinnvollerweise  $\{ \text{L, H}\}$  auf  $\{0, 1\}$  abgebildet,  um die Möglichkeiten der Modulo-Algebra nutzen zu können.
  • Zur Beschreibung der Modulation mit bipolaren  (antipodalen)  Signalen wählt man dagegen besser die Zuordnung  $\{ \text{L, H}\}$ ⇔ $ \{-1, +1\}$.

Moment zweiter Ordnung – Leistung – Varianz – Streuung


$\text{Definitionen:}$ 

  • Analog zum linearen Mittelwert erhält man mit  $k = 2$  das  Moment zweiter Ordnung  (englisch:  "second order moment"):
$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$
  • Zusammen mit dem Gleichanteil  $m_1$  kann daraus als weitere Kenngröße die  Varianz  (englisch:  "variance")  $σ^2$  bestimmt werden  ("Satz von Steiner"):
$$\sigma^2=m_2-m_1^2.$$
  • Die  Streuung  $σ$  ist die Quadratwurzel der Varianz;  manchmal wird diese Größe auch  "Standardabweichung"  (englisch:  "standard deviation")  genannt:
$$\sigma=\sqrt{m_2-m_1^2}.$$


$\text{Hinweise zu den Einheiten:}$

  1. Bei einem Zufallssignal  $x(t)$  gibt  $m_2$  die gesamte Leistung  (Gleichleistung plus Wechselleitung)  an,  bezogen auf den Widerstand  $1 \hspace{0.03cm} Ω$.
  2. Beschreibt  $x(t)$  einen Spannungsverlauf,  so besitzt dementsprechend  $m_2$  die Einheit  ${\rm V}^2$  und der Effektivwert  (englisch:  "root mean square")  $x_{\rm eff}=\sqrt{m_2}$  die Einheit  ${\rm V}$.  Die Gesamtleistung für beliebigen Bezugswiderstand  $R$  berechnet sich zu   $P=m_2/R$  und besitzt dementsprechend  die Einheit  $\rm V^2/(V/A) = W$.
  3. Beschreibt  $x(t)$  einen Stromverlauf,  so hat  $m_2$  die Einheit  ${\rm A}^2$  und der Effektivwert  $x_{\rm eff}=\sqrt{m_2}$  die Einheit  ${\rm A}$.  Die Gesamtleistung für beliebigen Bezugswiderstand  $R$  berechnet sich zu   $P=m_2\cdot R$  und besitzt dementsprechend  die Einheit  $\rm A^2 \cdot(V/A) = W$.
  4. Nur im Sonderfall  $m_1=0$  ist die Varianz  $σ^2=m_2$.  Dann stimmt auch die Standardabweichung   $σ$  mit dem Effektivwert  $x_{\rm eff}$  überein.


Das Lernvideo   Momentenberechnung bei diskreten Zufallsgrößen   verdeutlicht die definierten Größen am Beispiel eines Digitalsignals.

Standardabweichung eines Binärsignals

$\text{Beispiel 2:}$  Bei einem Binärsignal  $x(t)$  mit den Amplitudenwerten

  • $1\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm H)$


sowie den Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  ergibt sich für das zweite Moment:

$$m_2 = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.1cm}{\rm V}^2,$$

Der Effektivwert  $x_{\rm eff}=\sqrt{m_2}=2.72\,{\rm V}$  ist unabhängig vom Bezugswiderstand  $R$  im Gegensatz zur Gesamtleistung. Für diese ergibt sich mit  $R=1 \hspace{0.1cm} Ω$  der Wert  $P=7.4 \hspace{0.1cm}{\rm W}$,  mit  $R=50 \hspace{0.1cm} Ω$  dagegen nur  $P=0.148 \hspace{0.1cm}{\rm W}$.

Mit dem Gleichanteil  $m_1 = 2.6 \hspace{0.05cm}\rm V$  $($siehe  $\text{Beispiel 1})$  folgt daraus für

  • die Varianz  $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm} {\rm V}^2$,
  • die Standardabweichung (Streuung)  $σ = 0.8 \hspace{0.05cm} \rm V$.


Die gleiche Varianz  $ σ^2 = 0.64\hspace{0.05cm} {\rm V}^2$ und die gleiche Standardabweichung  $σ = 0.8 \hspace{0.05cm} \rm V$  ergeben sich für die Amplituden  $0\hspace{0.05cm}\rm V$  $($für das Symbol  $\rm L)$  und $2\hspace{0.05cm}\rm V$  $($für das Symbol  $\rm H)$,  vorausgesetzt, die Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  und  $p_{\rm H} = 0.8$  bleiben gleich.  Nur der Gleichanteil und die Gesamtleistung ändern sich:

$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, $$
$$P = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$

Aufgaben zum Kapitel


Aufgabe 2.2: Mehrstufensignale

Aufgabe 2.2Z: Diskrete Zufallsgrößen