Aufgaben:Aufgabe 4.4Z: Höhenlinien der 2D-WDF: Unterschied zwischen den Versionen
Aus LNTwww
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
|||
(5 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID297__Sto_Z_4_4.png|right| | + | [[Datei:P_ID297__Sto_Z_4_4.png|right|frame|Gaußsche 2D-WDF: Höhenlinien]] |
− | Gegeben ist eine zweidimensionale Gaußsche Zufallsgröße $(x, y)$ mit | + | Gegeben ist eine zweidimensionale Gaußsche Zufallsgröße $(x,\hspace{0.05cm} y)$ mit Mittelwert $(0,\hspace{0.05cm} 0)$ und der 2D–WDF |
− | :$$f_{xy}(x, y) = C\cdot{\rm e}^{-(x^{\rm 2} + y^{\rm 2} +\sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm} y)}.$$ | + | :$$f_{xy}(x,\hspace{0.05cm} y) = C\cdot{\rm e}^{-(x^{\rm 2} + y^{\rm 2} +\sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm} y)}.$$ |
− | Bekannt ist weiter, dass die beiden Streuungen $\sigma_x$ und $\sigma_y$ jeweils gleich $1$ | + | Bekannt ist weiter, dass die beiden Streuungen $\sigma_x$ und $\sigma_y$ jeweils gleich $1$ sind. |
− | |||
− | |||
− | |||
+ | In der Skizze eingetragen sind: | ||
+ | * Eine Höhenlinie dieser WDF für $f_{xy}(x, y) =0.2$, | ||
+ | * die (dunkelblaue) Ellipsenhauptachse $\rm (EA)$, und | ||
+ | * die (rote) Korrelationsgerade $\rm (KG)$. | ||
− | + | ||
− | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]]. | + | |
+ | |||
+ | |||
+ | Hinweise: | ||
+ | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]]. | ||
+ | *Weitere Informationen zu dieser Thematik liefert das Lernvideo [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|Gaußsche 2D-Zufallsgrößen]]: | ||
+ | ::Teil 1: Gaußsche Zufallsgrößen ohne statistische Bindungen, | ||
+ | ::Teil 2: Gaußsche Zufallsgrößen mit statistischen Bindungen. | ||
− | + | ||
− | + | ||
− | |||
Zeile 24: | Zeile 31: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie groß ist der Korrelationskoeffizient $\rho_{xy}$? | + | {Wie groß ist der Korrelationskoeffizient $\rho_{xy}$? |
|type="{}"} | |type="{}"} | ||
− | $\rho_{xy} \ =$ { -0.727--0.687 } | + | $\rho_{xy} \ = \ $ { -0.727--0.687 } |
− | {Wie groß ist der Maximalwert $C = f_{xy}(0, 0)$ der WDF? | + | {Wie groß ist der Maximalwert $C = f_{xy}(0, 0)$ der WDF? |
|type="{}"} | |type="{}"} | ||
− | $C \ =$ { 0.225 3% } | + | $C \ = \ $ { 0.225 3% } |
− | {Wie groß ist der Winkel $\alpha$ zwischen Ellipsenhauptachse (EA) und $x$ | + | {Wie groß ist der Winkel $\alpha$ zwischen Ellipsenhauptachse $\rm (EA)$ und $x$–Achse? |
|type="{}"} | |type="{}"} | ||
− | $\alpha\ =$ { -46--44 } $ \ \rm Grad$ | + | $\alpha\ = \ $ { -46--44 } $ \ \rm Grad$ |
− | {Bei welchen Werten $x_0$ bzw. $y_0$ schneidet die Höhenlinie $f_{xy}(x,y) =0.2$ die Ellipsenhauptachse? | + | {Bei welchen Werten $x_0$ bzw. $y_0$ schneidet die Höhenlinie $f_{xy}(x,y) = 0.2$ die Ellipsenhauptachse? Welcher Zusammenhang besteht zwischen $x_0$ und $y_0$? |
− | |||
|type="{}"} | |type="{}"} | ||
− | $x_0/y_0 \ =$ { -1.03--0.97 } | + | $x_0/y_0 \ = \ $ { -1.03--0.97 } |
− | {Welche Aussagen treffen hinsichtlich der Korrelationsgeraden $ | + | {Welche Aussagen treffen hinsichtlich der Korrelationsgeraden $(KG)$ zu? |
|type="[]"} | |type="[]"} | ||
- Die Korrelationsgerade ist steiler als die Ellipsenhauptachse. | - Die Korrelationsgerade ist steiler als die Ellipsenhauptachse. | ||
− | + Der Winkel | + | + Der Winkel der Korrelationsgeraden gegenüber der $x$–Achse ist etwa $-35^\circ$. |
− | + Die Korrelationsgerade schneidet alle Höhenlinien dort, wo an die Ellipse eine vertikale Tangente angelegt werden kann. | + | + Die Korrelationsgerade schneidet alle Höhenlinien dort, wo an die Ellipse eine vertikale Tangente angelegt werden kann. |
Zeile 56: | Zeile 62: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Auch ohne die Angabe $\sigma_x = \sigma_y = 1$ könnte man erkennen, dass | + | '''(1)''' Auch ohne die Angabe $\sigma_x = \sigma_y = 1$ könnte man erkennen, dass $\sigma_x=\sigma_y$ gilt, da im Exponenten von $f_{xy}(x, y)$ die Koeffizienten bei $x^2$ und $y^2$ gleich sind. |
+ | *Durch Koeffizientenvergleich erhält man somit: | ||
:$$\frac{- 2 \rho_{xy}}{\sigma_x\cdot\sigma_y} = \sqrt{2}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} | :$$\frac{- 2 \rho_{xy}}{\sigma_x\cdot\sigma_y} = \sqrt{2}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} | ||
\rho_{xy}=\frac{-1}{\sqrt{2}} \hspace{0.15cm}\underline{\approx -0.707}.$$ | \rho_{xy}=\frac{-1}{\sqrt{2}} \hspace{0.15cm}\underline{\approx -0.707}.$$ | ||
− | '''(2)''' Mit den unter Punkt (1) berechneten Zahlenwerten erhalten wir: | + | |
+ | '''(2)''' Mit den unter Punkt '''(1)''' berechneten Zahlenwerten erhalten wir zudem: | ||
:$$C=\frac{\rm 1}{\rm 2\it\pi\cdot\sigma_x\cdot\sigma_y\cdot\sqrt{\rm 1 - \rho_{xy}^{\rm 2}}} | :$$C=\frac{\rm 1}{\rm 2\it\pi\cdot\sigma_x\cdot\sigma_y\cdot\sqrt{\rm 1 - \rho_{xy}^{\rm 2}}} | ||
=\frac{\rm 1}{\rm 2\pi\cdot\rm 1\cdot 1\cdot\sqrt{0.5}}=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\hspace{0.15cm}\underline{\approx \rm 0.225}.$$ | =\frac{\rm 1}{\rm 2\pi\cdot\rm 1\cdot 1\cdot\sqrt{0.5}}=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\hspace{0.15cm}\underline{\approx \rm 0.225}.$$ | ||
+ | |||
'''(3)''' Die allgemeine Gleichung lautet: | '''(3)''' Die allgemeine Gleichung lautet: | ||
− | :$$\alpha = {\rm 1}/{\rm 2}\cdot \rm arctan(\rm 2 \cdot\it \rho_{xy}\cdot \frac{\sigma_x\cdot\sigma_y}{\sigma_x^{\rm 2} - \sigma_y^{\rm 2}}).$$ | + | :$$\alpha = {\rm 1}/{\rm 2}\cdot \rm arctan \ (\rm 2 \cdot\it \rho_{xy}\cdot \frac{\sigma_x\cdot\sigma_y}{\sigma_x^{\rm 2} - \sigma_y^{\rm 2}}{\rm )}.$$ |
+ | |||
+ | *Gilt $\sigma_x = \sigma_y$ und $\rho_{xy} \ne 0$, so ist der Winkel immer $\alpha = \pm 45^\circ$, wobei das Vorzeichen gleich dem Vorzeichen von $\rho_{xy}$ ist. | ||
+ | *Im vorliegenden Fall gilt $\alpha\hspace{0.15cm}\underline{ = -45^\circ}$. | ||
+ | |||
− | |||
'''(4)''' Für die eingezeichnete Höhenlinie gilt: | '''(4)''' Für die eingezeichnete Höhenlinie gilt: | ||
− | :$$f_{xy}(x, y)=\frac{ | + | :$$f_{xy}(x, y)=\frac{1}{\sqrt{2}\cdot \pi}\cdot {\rm e}^{(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm}y)}=0.2\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm}{\rm e}^{-(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm} \cdot \hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y)} = 0.8885 | |
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\cdot\hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y = -{\rm ln(0.8885)} \approx\rm 0.118.$$ | \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\cdot\hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y = -{\rm ln(0.8885)} \approx\rm 0.118.$$ | ||
− | Der Winkel der Ellipsenhauptachse ist $\alpha | + | *Der Winkel der Ellipsenhauptachse ist $\alpha = -45^\circ$. Deshalb muss $y_0 = - x_0$ gelten. Daraus folgt weiter: |
:$$x_{\rm 0}^{\rm 2} + (-x_{\rm 0})^{\rm 2} + \sqrt{\rm 2}\cdot x_{\rm 0}(-x_{\rm 0}) = 0.118$$ | :$$x_{\rm 0}^{\rm 2} + (-x_{\rm 0})^{\rm 2} + \sqrt{\rm 2}\cdot x_{\rm 0}(-x_{\rm 0}) = 0.118$$ | ||
− | :$$\Rightarrow (\rm 2 - \sqrt{\rm 2})\cdot \it x_{\rm 0}^{\rm 2} = {\rm 0.118} | + | :$$\Rightarrow \hspace{0.3cm}(\rm 2 - \sqrt{\rm 2})\cdot \it x_{\rm 0}^{\rm 2} = {\rm 0.118} |
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_{\rm 0}^{\rm 2} \approx \frac{\rm0.118}{\rm0.585}\approx\rm 0.202; \hspace{0.5cm} {\it x}_{\rm 0}\approx\pm\rm 0.450.$$ | \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_{\rm 0}^{\rm 2} \approx \frac{\rm0.118}{\rm0.585}\approx\rm 0.202; \hspace{0.5cm} {\it x}_{\rm 0}\approx\pm\rm 0.450.$$ | ||
− | Die beiden Schnittpunkte der eingezeichneten Höhenlinien mit der Ellipsenhauptachse liegen somit bei $(+0.45, -0.45)$ und $(-0.45, +0.45)$. Der Quotient ist in beiden Fällen $x_0/y_0 \hspace{0.15cm}\underline{ = -1}$. | + | *Die beiden Schnittpunkte der eingezeichneten Höhenlinien mit der Ellipsenhauptachse liegen somit bei $(+0.45, -0.45)$ und $(-0.45, +0.45)$. |
+ | *Der Quotient ist in beiden Fällen $x_0/y_0 \hspace{0.15cm}\underline{ = -1}$. | ||
+ | |||
+ | |||
'''(5)''' Richtig sind <u>die Lösungsvorschläge 2 und 3</u>: | '''(5)''' Richtig sind <u>die Lösungsvorschläge 2 und 3</u>: | ||
− | *Mit $\sigma_x = \sigma_y$ und dem Ergebnis der Teilaufgabe (1) gilt für den Winkel der Korrelationsgeraden: | + | *Mit $\sigma_x = \sigma_y$ und dem Ergebnis der Teilaufgabe '''(1)''' gilt für den Winkel der Korrelationsgeraden: |
− | :$$\theta_{y\rightarrow x} = \arctan (\rho_{\it xy})=\arctan(-{\rm 1}/{\sqrt{\rm 2}})\approx -\rm 35.3^{\circ}.$$ | + | :$$\theta_{y\hspace{0.05cm}\rightarrow \hspace{0.05cm}x} = \arctan (\rho_{\it xy})=\arctan(-{\rm 1}/{\sqrt{\rm 2}})\approx -\rm 35.3^{\circ}.$$ |
− | + | *Das bedeutet: Die erste Aussage ist falsch und die zweite richtig. | |
− | + | ||
+ | |||
+ | Nachfolgend der <u>Beweis für die Richtigkeit der letzten Aussage</u>: | ||
+ | *Löst man die Ellipsengleichung $($mit $z = 0.118)$, also | ||
+ | :$$x^{\rm 2}+ y^{\rm 2} +\sqrt{\rm 2}\cdot \it x\cdot \it y - \it z = \rm 0,$$ | ||
+ | :nach $y$ auf, so erhält man nach Lösung einer quadratischen Gleichung: | ||
:$$y_{\rm 1, \ 2}={\sqrt{\rm 2}}/ {\rm 2} \cdot x\pm\sqrt{{x^{\rm 2}}/{\rm 2}-x^{\rm 2}+{\it z}} | :$$y_{\rm 1, \ 2}={\sqrt{\rm 2}}/ {\rm 2} \cdot x\pm\sqrt{{x^{\rm 2}}/{\rm 2}-x^{\rm 2}+{\it z}} | ||
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm 1, \ 2}={\it x}/{\sqrt{\rm 2}}\pm \sqrt{z-{x^{\rm 2}}/{\rm 2}}.$$ | \hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm 1, \ 2}={\it x}/{\sqrt{\rm 2}}\pm \sqrt{z-{x^{\rm 2}}/{\rm 2}}.$$ | ||
− | *Die vertikale Tangente ergibt sich für den Fall, dass die beiden Lösungen $y_{\rm 1, \ 2}$ identisch sind. Das heißt: | + | *Die vertikale Tangente ergibt sich für den Fall, dass die beiden Lösungen $y_{\rm 1, \ 2}$ identisch sind. Das heißt: Der Wurzelausdruck muss Null ergeben. |
− | *Eingesetzt in die Ellipsengleichung erhält man für den $y$ | + | *Die Lösung für positives $x$ lautet dann: $x_{\rm T}=\sqrt{\rm 2\cdot \it z}=\rm \rm 0.485.$ |
+ | *Eingesetzt in die Ellipsengleichung erhält man für den $y$–Wert des Tangentialpunktes: | ||
:$$x_{\rm T}^{\rm 2} + y_{\rm T}^{\rm 2} + \sqrt{2} \cdot x_{\rm T} \cdot y_{\rm T} - z = 0 | :$$x_{\rm T}^{\rm 2} + y_{\rm T}^{\rm 2} + \sqrt{2} \cdot x_{\rm T} \cdot y_{\rm T} - z = 0 | ||
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} 2 z + y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} - z = 0$$ | \hspace{0.5cm}\Rightarrow \hspace{0.5cm} 2 z + y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} - z = 0$$ | ||
− | :$$\Rightarrow y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} + z = 0 | + | :$$\Rightarrow \hspace{0.3cm}y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} + z = 0 |
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} (y_{\rm T} + \sqrt{ z}) = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm T} = -\sqrt{ z} = -0.343.$$ | \hspace{0.5cm}\Rightarrow \hspace{0.5cm} (y_{\rm T} + \sqrt{ z}) = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm T} = -\sqrt{ z} = -0.343.$$ | ||
− | *Daraus ergibt sich $y_{\rm T}=-{x_{\rm T}}/{\sqrt{\rm 2}}.$ Das bedeutet aber auch: Der Tangentialpunkt $(x_{\rm T}, y_{\rm T})$ liegt exakt auf der Korrelationsgeraden $y | + | *Daraus ergibt sich $y_{\rm T}=-{x_{\rm T}}/{\sqrt{\rm 2}}.$ Das bedeutet aber auch: Der Tangentialpunkt $(x_{\rm T}, y_{\rm T})$ liegt exakt auf der Korrelationsgeraden $y=-{ x}/{\sqrt{\rm 2}}.$ |
{{ML-Fuß}} | {{ML-Fuß}} |
Aktuelle Version vom 24. Februar 2022, 14:50 Uhr
Gegeben ist eine zweidimensionale Gaußsche Zufallsgröße $(x,\hspace{0.05cm} y)$ mit Mittelwert $(0,\hspace{0.05cm} 0)$ und der 2D–WDF
- $$f_{xy}(x,\hspace{0.05cm} y) = C\cdot{\rm e}^{-(x^{\rm 2} + y^{\rm 2} +\sqrt{\rm 2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm} y)}.$$
Bekannt ist weiter, dass die beiden Streuungen $\sigma_x$ und $\sigma_y$ jeweils gleich $1$ sind.
In der Skizze eingetragen sind:
- Eine Höhenlinie dieser WDF für $f_{xy}(x, y) =0.2$,
- die (dunkelblaue) Ellipsenhauptachse $\rm (EA)$, und
- die (rote) Korrelationsgerade $\rm (KG)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Zweidimensionale Zufallsgrößen.
- Weitere Informationen zu dieser Thematik liefert das Lernvideo Gaußsche 2D-Zufallsgrößen:
- Teil 1: Gaußsche Zufallsgrößen ohne statistische Bindungen,
- Teil 2: Gaußsche Zufallsgrößen mit statistischen Bindungen.
Fragebogen
Musterlösung
(1) Auch ohne die Angabe $\sigma_x = \sigma_y = 1$ könnte man erkennen, dass $\sigma_x=\sigma_y$ gilt, da im Exponenten von $f_{xy}(x, y)$ die Koeffizienten bei $x^2$ und $y^2$ gleich sind.
- Durch Koeffizientenvergleich erhält man somit:
- $$\frac{- 2 \rho_{xy}}{\sigma_x\cdot\sigma_y} = \sqrt{2}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \rho_{xy}=\frac{-1}{\sqrt{2}} \hspace{0.15cm}\underline{\approx -0.707}.$$
(2) Mit den unter Punkt (1) berechneten Zahlenwerten erhalten wir zudem:
- $$C=\frac{\rm 1}{\rm 2\it\pi\cdot\sigma_x\cdot\sigma_y\cdot\sqrt{\rm 1 - \rho_{xy}^{\rm 2}}} =\frac{\rm 1}{\rm 2\pi\cdot\rm 1\cdot 1\cdot\sqrt{0.5}}=\frac{\rm 1}{\sqrt{\rm 2}\cdot \pi}\hspace{0.15cm}\underline{\approx \rm 0.225}.$$
(3) Die allgemeine Gleichung lautet:
- $$\alpha = {\rm 1}/{\rm 2}\cdot \rm arctan \ (\rm 2 \cdot\it \rho_{xy}\cdot \frac{\sigma_x\cdot\sigma_y}{\sigma_x^{\rm 2} - \sigma_y^{\rm 2}}{\rm )}.$$
- Gilt $\sigma_x = \sigma_y$ und $\rho_{xy} \ne 0$, so ist der Winkel immer $\alpha = \pm 45^\circ$, wobei das Vorzeichen gleich dem Vorzeichen von $\rho_{xy}$ ist.
- Im vorliegenden Fall gilt $\alpha\hspace{0.15cm}\underline{ = -45^\circ}$.
(4) Für die eingezeichnete Höhenlinie gilt:
- $$f_{xy}(x, y)=\frac{1}{\sqrt{2}\cdot \pi}\cdot {\rm e}^{(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm}\cdot \hspace{0.05cm} x \hspace{0.05cm}\cdot \hspace{0.05cm}y)}=0.2\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm e}^{-(x^{2} + y^{2} + \sqrt{2}\hspace{0.05cm} \cdot \hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y)} = 0.8885 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x^{\rm 2} + y^{\rm 2} + \sqrt{\rm 2}\cdot\hspace{0.05cm} x \hspace{0.05cm} \cdot \hspace{0.05cm}y = -{\rm ln(0.8885)} \approx\rm 0.118.$$
- Der Winkel der Ellipsenhauptachse ist $\alpha = -45^\circ$. Deshalb muss $y_0 = - x_0$ gelten. Daraus folgt weiter:
- $$x_{\rm 0}^{\rm 2} + (-x_{\rm 0})^{\rm 2} + \sqrt{\rm 2}\cdot x_{\rm 0}(-x_{\rm 0}) = 0.118$$
- $$\Rightarrow \hspace{0.3cm}(\rm 2 - \sqrt{\rm 2})\cdot \it x_{\rm 0}^{\rm 2} = {\rm 0.118} \hspace{0.5cm}\Rightarrow \hspace{0.5cm} x_{\rm 0}^{\rm 2} \approx \frac{\rm0.118}{\rm0.585}\approx\rm 0.202; \hspace{0.5cm} {\it x}_{\rm 0}\approx\pm\rm 0.450.$$
- Die beiden Schnittpunkte der eingezeichneten Höhenlinien mit der Ellipsenhauptachse liegen somit bei $(+0.45, -0.45)$ und $(-0.45, +0.45)$.
- Der Quotient ist in beiden Fällen $x_0/y_0 \hspace{0.15cm}\underline{ = -1}$.
(5) Richtig sind die Lösungsvorschläge 2 und 3:
- Mit $\sigma_x = \sigma_y$ und dem Ergebnis der Teilaufgabe (1) gilt für den Winkel der Korrelationsgeraden:
- $$\theta_{y\hspace{0.05cm}\rightarrow \hspace{0.05cm}x} = \arctan (\rho_{\it xy})=\arctan(-{\rm 1}/{\sqrt{\rm 2}})\approx -\rm 35.3^{\circ}.$$
- Das bedeutet: Die erste Aussage ist falsch und die zweite richtig.
Nachfolgend der Beweis für die Richtigkeit der letzten Aussage:
- Löst man die Ellipsengleichung $($mit $z = 0.118)$, also
- $$x^{\rm 2}+ y^{\rm 2} +\sqrt{\rm 2}\cdot \it x\cdot \it y - \it z = \rm 0,$$
- nach $y$ auf, so erhält man nach Lösung einer quadratischen Gleichung:
- $$y_{\rm 1, \ 2}={\sqrt{\rm 2}}/ {\rm 2} \cdot x\pm\sqrt{{x^{\rm 2}}/{\rm 2}-x^{\rm 2}+{\it z}} \hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm 1, \ 2}={\it x}/{\sqrt{\rm 2}}\pm \sqrt{z-{x^{\rm 2}}/{\rm 2}}.$$
- Die vertikale Tangente ergibt sich für den Fall, dass die beiden Lösungen $y_{\rm 1, \ 2}$ identisch sind. Das heißt: Der Wurzelausdruck muss Null ergeben.
- Die Lösung für positives $x$ lautet dann: $x_{\rm T}=\sqrt{\rm 2\cdot \it z}=\rm \rm 0.485.$
- Eingesetzt in die Ellipsengleichung erhält man für den $y$–Wert des Tangentialpunktes:
- $$x_{\rm T}^{\rm 2} + y_{\rm T}^{\rm 2} + \sqrt{2} \cdot x_{\rm T} \cdot y_{\rm T} - z = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} 2 z + y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} - z = 0$$
- $$\Rightarrow \hspace{0.3cm}y_{\rm T}^{\rm 2} + 2\sqrt{ z}\cdot y_{\rm T} + z = 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} (y_{\rm T} + \sqrt{ z}) = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_{\rm T} = -\sqrt{ z} = -0.343.$$
- Daraus ergibt sich $y_{\rm T}=-{x_{\rm T}}/{\sqrt{\rm 2}}.$ Das bedeutet aber auch: Der Tangentialpunkt $(x_{\rm T}, y_{\rm T})$ liegt exakt auf der Korrelationsgeraden $y=-{ x}/{\sqrt{\rm 2}}.$