Aufgaben:Aufgabe 4.8Z: AWGN-Kanal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID413__Sto_Z_4_8.png|right|Modell für den AWGN-Kanal]]
+
[[Datei:P_ID413__Sto_Z_4_8.png|right|frame|Modell des AWGN–Kanals]]
Wir betrachten hier ein analoges Nachrichtensignal $s(t)$, dessen Amplitudenwerte gaußverteilt sind. Der Effektivwert $\sigma_s$ dieses mittelwertfreien Signals beträgt $1 \hspace{0.05cm} \rm V$. Diese Größe bezeichnet man auch als die ''Streuung''.
+
Wir betrachten hier ein analoges Nachrichtensignal  $s(t)$,  dessen Amplitudenwerte gaußverteilt sind.  Die Streuung dieses mittelwertfreien Signals beträgt  $\sigma_s=1 \hspace{0.05cm} \rm V$.  
  
Bei der Übertragung wird $s(t)$ von einem Störsignal $n(t)$ additiv überlagert, das ebenso wie $s(t)$ als gaußverteilt und mittelwertfrei angenommen werden kann. Der Effektivwert (die Streuung) des Störsignals sei allgemein $\sigma_n$. Es kann angenommen werden, dass zwischen Nutzsignal $s(t)$ und Störsignal $n(t)$ keine statistischen Abhängigkeiten bestehen.
+
Bei der Übertragung wird  $s(t)$  von einem Störsignal  $n(t)$  additiv überlagert,  das ebenso wie  $s(t)$  als gaußverteilt und mittelwertfrei angenommen werden kann.  
 +
*Der Effektivwert  (gleichzeitig die Streuung)  des Störsignals sei allgemein  $\sigma_n$.  
 +
*Es wird angenommen,  dass zwischen den Signalen  $n(t)$  keine statistischen Abhängigkeiten bestehen.
 +
*Man bezeichnet eine solche Konstellation als  "Additive White Gaussian Noise"  $\rm (AWGN)$.
 +
* Als Qualitätskriterium für das Empfangssignal  $r(t)=s(t)+n(t)$  verwendet man das  "Signal-zu-Stör-Leistungsverhältnis":
 +
:$${\rm SNR} =  {\sigma_s^2}/{\sigma_n^2}.$$
  
Man bezeichnet eine solche Konstellation als <i>Additive White Gaussian Noise</i> (AWGN) und verwendet als Qualitätskriterium für das Empfangssignal $r(t)$ das Signal-zu-Stör-Leistungsverhältnis (''Signal-to-Noise-Ratio''):
 
:$${\rm SNR} =  {\sigma_s^2}/{\sigma_n^2}.$$
 
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]].
+
 
*Bezug genommen wird auch auf das Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen|Zweidimensionale Gaußsche Zufallsgrößen]].
+
Hinweise:  
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]].
 +
*Bezug genommen wird auch auf das Kapitel&nbsp; [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen|Zweidimensionale Gaußsche Zufallsgrößen]].
 +
 +
 
  
  
Zeile 20: Zeile 26:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die WDF $f_r(r)$ des Empfangssignals $r(t)$ allgemein an. Wie gro&szlig; ist der Effektivwert $\sigma_r$, wenn $\sigma_n =0.75 \hspace{0.05cm} \rm V$ betr&auml;gt?
+
{Geben Sie die WDF $f_r(r)$&nbsp; des Empfangssignals&nbsp; $r(t)$&nbsp; allgemein an.&nbsp; Wie gro&szlig; ist die Streuung&nbsp; $\sigma_r$,&nbsp; wenn&nbsp; $\sigma_n =0.75 \hspace{0.05cm} \rm V$&nbsp; betr&auml;gt?
 
|type="{}"}
 
|type="{}"}
$\sigma_r \ = $  { 1.25 3% } $ \ \rm V$
+
$\sigma_r \ = \ $  { 1.25 3% } $ \ \rm V$
  
  
{Berechnen Sie den Korrelationskoeffizienten $\rho_{sr}$, der zwischen den beiden Signalen $s(t)$) und $r(t)$ besteht. Welcher Wert ergibt sich f&uuml;r $\sigma_n =0.75 \hspace{0.05cm} \rm V$?
+
{Berechnen Sie den Korrelationskoeffizienten&nbsp; $\rho_{sr}$&nbsp; zwischen den beiden Signalen&nbsp; $s(t)$&nbsp; und&nbsp; $r(t)$.&nbsp;  Welcher Wert ergibt sich f&uuml;r&nbsp; $\sigma_n =0.75 \hspace{0.05cm} \rm V$?
 
|type="{}"}
 
|type="{}"}
$\rho_{sr} \ = $ { 0.8 3% }
+
$\rho_{sr} \ = \ $ { 0.8 3% }
  
  
{Berechnen Sie den Korrelationskoeffizienten $\rho_{sr}$ abhängig vom SNR des AWGN-Kanals. Leiten Sie eine N&auml;herung f&uuml;r gro&szlig;es SNR ab.  
+
{Berechnen Sie den Korrelationskoeffizienten&nbsp; $\rho_{sr}$&nbsp; abhängig vom SNR des AWGN-Kanals.&nbsp; Leiten Sie eine N&auml;herung f&uuml;r gro&szlig;es SNR ab.  
 
<br>Welcher Koeffizient ergibt sich f&uuml;r $10 \cdot {\rm lg \ SNR = 30 \ dB}$?
 
<br>Welcher Koeffizient ergibt sich f&uuml;r $10 \cdot {\rm lg \ SNR = 30 \ dB}$?
 
|type="{}"}
 
|type="{}"}
$10 \cdot {\rm lg \ SNR = 30 \ dB}$: &nbsp; $\rho_\text{sr} \ = $ { 0.9995 3% }
+
$\rho_{sr} \ = \ $ { 0.9995 0.1% }
  
  
Zeile 41: Zeile 47:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Es gilt <i>r</i>(<i>t</i>) = <i>s</i>(<i>t</i>) + <i>n</i>(<i>t</i>). Somit kann <i>f<sub>r</sub></i>(<i>r</i>) aus der Faltung der beiden Dichtefunktionen <i>f<sub>s</sub></i>(<i>s</i>) und <i>f<sub>n</sub></i>(<i>n</i>) berechnet werden. Da beide Signale gau&szlig;verteilt sind, liefert die Faltung ebenfalls eine Gau&szlig;funktion:
+
'''(1)'''&nbsp; Es gilt&nbsp; $r(t) = s(t)+n(t)$.&nbsp; Somit kann $f_r(r)$&nbsp; aus der Faltung der beiden Dichtefunktionen $f_s(s)$&nbsp; und $f_n(n)$&nbsp; berechnet werden.  
 +
*Da beide Signale gau&szlig;verteilt sind,&nbsp; liefert die Faltung ebenfalls eine Gau&szlig;funktion:
 
:$$f_r(r)= \frac {1}{\sqrt{2 \pi} \cdot \sigma_r} \cdot {\rm e}^{-r^2/(2 \sigma_r^2)}.$$
 
:$$f_r(r)= \frac {1}{\sqrt{2 \pi} \cdot \sigma_r} \cdot {\rm e}^{-r^2/(2 \sigma_r^2)}.$$
 +
*Die Varianzen von&nbsp; $s(t)$&nbsp; und&nbsp;  $n(t)$&nbsp; addieren sich.&nbsp; Deshalb erh&auml;lt man mit&nbsp;  $\sigma_s =1 \hspace{0.05cm} \rm V$&nbsp; und&nbsp; $\sigma_n =0.75 \hspace{0.05cm} \rm V$:
 +
:$$\sigma_r = \sqrt{\sigma_s^2 + \sigma_n^2} =\sqrt{{(\rm 1\hspace{0.1cm}V)^2} + {(\rm 0.75\hspace{0.1cm}V)^2}}\hspace{0.15cm}\underline{ = {\rm 1.25\hspace{0.1cm}V}}.$$
 +
  
:Die Varianzen von <i>s</i>(<i>t</i>) und <i>n</i>(<i>t</i>) addieren sich. Deshalb erh&auml;lt man mit <i>&sigma;<sub>s</sub></i> = 1 V und <i>&sigma;<sub>n</sub></i> = 0.75 V:
 
:$$\sigma_r = \sqrt{\sigma_s^2 + \sigma_n^2} =\sqrt{{(\rm 1\hspace{0.1cm}V)^2} + {(\rm 0.75\hspace{0.1cm}V)^2}}\hspace{0.15cm}\underline{ = {\rm 1.25\hspace{0.1cm}V}}.$$
 
  
:<b>2.</b>&nbsp;&nbsp;F&uuml;r den Korrelationskoeffizienten gilt mit dem gemeinsamen Moment <i>m<sub>sr</sub></i>:
+
'''(2)'''&nbsp; F&uuml;r den Korrelationskoeffizienten gilt mit dem gemeinsamen Moment&nbsp; $m_{sr}$:
 
:$$\rho_{sr } = \frac{m_{sr }}{\sigma_s \cdot \sigma_r}.$$
 
:$$\rho_{sr } = \frac{m_{sr }}{\sigma_s \cdot \sigma_r}.$$
  
:Hierbei ist ber&uuml;cksichtigt, dass <i>s</i>(<i>t</i>) und auch <i>r</i>(<i>t</i>) mittelwertfrei sind, so dass <i>&mu;<sub>sr</sub></i> = <i>m<sub>sr</sub></i> gilt. Da <i>s</i>(<i>t</i>) und <i>n</i>(<i>t</i>) als statistisch unabhängig voneinander &ndash; und damit unkorreliert &ndash; vorausgesetzt wurden, gilt weiter:
+
*Hierbei ist ber&uuml;cksichtigt, dass&nbsp; $s(t)$&nbsp; und auch&nbsp; $r(t)$&nbsp; mittelwertfrei sind, so dass&nbsp; $\mu_{sr} =m_{sr}$&nbsp; gilt.  
:$$m_{sr} = {\rm E}[s(t) \cdot r(t)] = {\rm E}[s^2(t)] +  {\rm E}[s(t) \cdot n(t)] ={\rm E}[s^2(t)] = \sigma_s^2.$$
+
*Da&nbsp; $s(t)$&nbsp; und&nbsp;  $n(t)$&nbsp; als statistisch unabhängig voneinander und damit als unkorreliert vorausgesetzt wurden,&nbsp; gilt weiter:
 +
:$$m_{sr} = {\rm E}\big[s(t) \cdot r(t)\big] = {\rm E}\big[s^2(t)\big] +  {\rm E}\big[s(t) \cdot n(t)\big] ={\rm E}\big[s^2(t)\big] = \sigma_s^2.$$
 +
:$$\rightarrow \hspace{0.3cm} \rho_{sr } = \frac{\sigma_s}{  \sigma_r} = \sqrt{\frac{\sigma_s^2}{\sigma_s^2 + \sigma_n^2}} = \left (1+ {\sigma_n^2}/{\sigma_s^2}\right)^{-1/2}.$$
 +
 
 +
*Mit&nbsp; $\sigma_s =1 \hspace{0.05cm} \rm V$,&nbsp; $\sigma_n =0.75 \hspace{0.05cm} \rm V$&nbsp; und&nbsp; $\sigma_r =1.25 \hspace{0.05cm} \rm V$&nbsp; erhält man&nbsp; $\rho_{sr }\hspace{0.15cm}\underline{ = 0.8}$.
  
:Daraus folgt:
 
:$$\rho_{sr } = \frac{\sigma_s}{  \sigma_r} = \sqrt{\frac{\sigma_s^2}{\sigma_s^2 + \sigma_n^2}} = \left (1+ \frac{\sigma_n^2}{\sigma_s^2}\right)^{-1/2}.$$
 
  
:Mit <i>&sigma;<sub>s</sub></i> = 1 V, <i>&sigma;<sub>n</sub></i> = 0.75 V und <i>&sigma;<sub>r</sub></i> = 1.25 V erhält man <u><i>&rho;<sub>sr</sub></i> = 0.8</u>.
 
  
:<b>3.</b>&nbsp;&nbsp;Der in b) berechnete Ausdruck kann mit der Abkürzung <i>SNR</i> = <i>&sigma;<sub>s</sub></i><sup>2</sup>/<i>&sigma;<sub>n</sub></i><sup>2</sup> wie folgt dargestellt werden:
+
'''(3)'''&nbsp; Der in der letzten Teilaufgabe berechnete Ausdruck kann mit der Abkürzung&nbsp; ${\rm SNR} =\sigma_s^2/\sigma_n^2$&nbsp; wie folgt dargestellt werden:
:$$\rho_{sr } = \frac{1}{  \sqrt{1 + \frac{1}{SNR}}} \approx \frac{1}{  {1 + \frac{1}{2 \cdot SNR}}} \approx  1 - \frac{1}{2 \cdot SNR}.$$
+
:$$\rho_{sr } = \rm \frac{1}{  \sqrt{1 + \frac{1}{SNR}}} \approx \frac{1}{  {1 + \frac{1}{2 \cdot SNR}}} \approx  1 - \frac{1}{2 \cdot SNR}.$$
  
:Der Signal-zu-Stör-Abstand 10 &middot; lg(<i>SNR</i>) = 30&nbsp;dB führt zum absoluten Wert <i>SNR</i> = 1000. In die obige Gleichung eingesetzt ergibt dies n&auml;herungsweise einen Korrelationskoeffizienten von <u>0.9995</u>.
+
*Der Signal-zu-Stör-Abstand&nbsp; $10 \cdot {\rm lg \ SNR = 30 \ dB}$&nbsp; führt zum absoluten Wert&nbsp; $\rm SNR = 1000$.  
 +
*In die obige Gleichung eingesetzt ergibt dies n&auml;herungsweise einen Korrelationskoeffizienten von&nbsp; $\rho_{sr }\hspace{0.15cm}\underline{ = 0.9995}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 27. Februar 2022, 15:02 Uhr

Modell des AWGN–Kanals

Wir betrachten hier ein analoges Nachrichtensignal  $s(t)$,  dessen Amplitudenwerte gaußverteilt sind.  Die Streuung dieses mittelwertfreien Signals beträgt  $\sigma_s=1 \hspace{0.05cm} \rm V$.

Bei der Übertragung wird  $s(t)$  von einem Störsignal  $n(t)$  additiv überlagert,  das ebenso wie  $s(t)$  als gaußverteilt und mittelwertfrei angenommen werden kann.

  • Der Effektivwert  (gleichzeitig die Streuung)  des Störsignals sei allgemein  $\sigma_n$.
  • Es wird angenommen,  dass zwischen den Signalen  $n(t)$  keine statistischen Abhängigkeiten bestehen.
  • Man bezeichnet eine solche Konstellation als  "Additive White Gaussian Noise"  $\rm (AWGN)$.
  • Als Qualitätskriterium für das Empfangssignal  $r(t)=s(t)+n(t)$  verwendet man das  "Signal-zu-Stör-Leistungsverhältnis":
$${\rm SNR} = {\sigma_s^2}/{\sigma_n^2}.$$



Hinweise:



Fragebogen

1

Geben Sie die WDF $f_r(r)$  des Empfangssignals  $r(t)$  allgemein an.  Wie groß ist die Streuung  $\sigma_r$,  wenn  $\sigma_n =0.75 \hspace{0.05cm} \rm V$  beträgt?

$\sigma_r \ = \ $

$ \ \rm V$

2

Berechnen Sie den Korrelationskoeffizienten  $\rho_{sr}$  zwischen den beiden Signalen  $s(t)$  und  $r(t)$.  Welcher Wert ergibt sich für  $\sigma_n =0.75 \hspace{0.05cm} \rm V$?

$\rho_{sr} \ = \ $

3

Berechnen Sie den Korrelationskoeffizienten  $\rho_{sr}$  abhängig vom SNR des AWGN-Kanals.  Leiten Sie eine Näherung für großes SNR ab.
Welcher Koeffizient ergibt sich für $10 \cdot {\rm lg \ SNR = 30 \ dB}$?

$\rho_{sr} \ = \ $


Musterlösung

(1)  Es gilt  $r(t) = s(t)+n(t)$.  Somit kann $f_r(r)$  aus der Faltung der beiden Dichtefunktionen $f_s(s)$  und $f_n(n)$  berechnet werden.

  • Da beide Signale gaußverteilt sind,  liefert die Faltung ebenfalls eine Gaußfunktion:
$$f_r(r)= \frac {1}{\sqrt{2 \pi} \cdot \sigma_r} \cdot {\rm e}^{-r^2/(2 \sigma_r^2)}.$$
  • Die Varianzen von  $s(t)$  und  $n(t)$  addieren sich.  Deshalb erhält man mit  $\sigma_s =1 \hspace{0.05cm} \rm V$  und  $\sigma_n =0.75 \hspace{0.05cm} \rm V$:
$$\sigma_r = \sqrt{\sigma_s^2 + \sigma_n^2} =\sqrt{{(\rm 1\hspace{0.1cm}V)^2} + {(\rm 0.75\hspace{0.1cm}V)^2}}\hspace{0.15cm}\underline{ = {\rm 1.25\hspace{0.1cm}V}}.$$


(2)  Für den Korrelationskoeffizienten gilt mit dem gemeinsamen Moment  $m_{sr}$:

$$\rho_{sr } = \frac{m_{sr }}{\sigma_s \cdot \sigma_r}.$$
  • Hierbei ist berücksichtigt, dass  $s(t)$  und auch  $r(t)$  mittelwertfrei sind, so dass  $\mu_{sr} =m_{sr}$  gilt.
  • Da  $s(t)$  und  $n(t)$  als statistisch unabhängig voneinander und damit als unkorreliert vorausgesetzt wurden,  gilt weiter:
$$m_{sr} = {\rm E}\big[s(t) \cdot r(t)\big] = {\rm E}\big[s^2(t)\big] + {\rm E}\big[s(t) \cdot n(t)\big] ={\rm E}\big[s^2(t)\big] = \sigma_s^2.$$
$$\rightarrow \hspace{0.3cm} \rho_{sr } = \frac{\sigma_s}{ \sigma_r} = \sqrt{\frac{\sigma_s^2}{\sigma_s^2 + \sigma_n^2}} = \left (1+ {\sigma_n^2}/{\sigma_s^2}\right)^{-1/2}.$$
  • Mit  $\sigma_s =1 \hspace{0.05cm} \rm V$,  $\sigma_n =0.75 \hspace{0.05cm} \rm V$  und  $\sigma_r =1.25 \hspace{0.05cm} \rm V$  erhält man  $\rho_{sr }\hspace{0.15cm}\underline{ = 0.8}$.


(3)  Der in der letzten Teilaufgabe berechnete Ausdruck kann mit der Abkürzung  ${\rm SNR} =\sigma_s^2/\sigma_n^2$  wie folgt dargestellt werden:

$$\rho_{sr } = \rm \frac{1}{ \sqrt{1 + \frac{1}{SNR}}} \approx \frac{1}{ {1 + \frac{1}{2 \cdot SNR}}} \approx 1 - \frac{1}{2 \cdot SNR}.$$
  • Der Signal-zu-Stör-Abstand  $10 \cdot {\rm lg \ SNR = 30 \ dB}$  führt zum absoluten Wert  $\rm SNR = 1000$.
  • In die obige Gleichung eingesetzt ergibt dies näherungsweise einen Korrelationskoeffizienten von  $\rho_{sr }\hspace{0.15cm}\underline{ = 0.9995}$.