Aufgaben:Aufgabe 1.10Z: Gauß-Bandpass: Unterschied zwischen den Versionen
Zeile 72: | Zeile 72: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Für den Bandpass–Frequenzgang $H_{\rm K}(f)$ kann geschrieben werden: | + | '''(1)''' Für den Bandpass–Frequenzgang $H_{\rm K}(f)$ kann geschrieben werden: |
:$$H_{\rm K}(f) = H_{\rm K,\hspace{0.04cm} TP}(f) \star \big [ \delta (f - f_{\rm M}) + \delta (f + f_{\rm M}) \big ] .$$ | :$$H_{\rm K}(f) = H_{\rm K,\hspace{0.04cm} TP}(f) \star \big [ \delta (f - f_{\rm M}) + \delta (f + f_{\rm M}) \big ] .$$ | ||
− | *Die Fourierrücktransformierte des Klammerausdrucks liefert eine Cosinusfunktion der Frequenz $f_{\rm M}$ mit der Amplitude $2$. | + | *Die Fourierrücktransformierte des Klammerausdrucks liefert eine Cosinusfunktion der Frequenz $f_{\rm M}$ mit der Amplitude $2$. |
+ | |||
*Nach dem Faltungssatz gilt somit: | *Nach dem Faltungssatz gilt somit: | ||
:$$h_{\rm K}(t) = 2 \cdot \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ] \cdot \cos(2 \pi f_{\rm M} t ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm K}(t = 0)/\Delta f_{\rm K} \hspace{0.1cm}\underline {= 2}.$$ | :$$h_{\rm K}(t) = 2 \cdot \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ] \cdot \cos(2 \pi f_{\rm M} t ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm K}(t = 0)/\Delta f_{\rm K} \hspace{0.1cm}\underline {= 2}.$$ | ||
− | |||
+ | *Das heißt: Die Tiefpass–Impulsantwort $h_{\rm K,\hspace{0.04cm}TP}(t)$ ist formgleich mit der Hüllkurve der Bandpass–Impulsantwort $h_{\rm K}(t)$, aber doppelt so groß. | ||
+ | |||
+ | |||
+ | |||
+ | [[Datei:P_ID1698__Dig_Z_4_3_b.png|right|frame|Resultierender Basisbandfrequenzgang für $f_{\rm T} = f_{\rm M}$]] | ||
'''(2)''' Richtig sind die <u>Aussagen 2, 3 und 4:</u> | '''(2)''' Richtig sind die <u>Aussagen 2, 3 und 4:</u> | ||
− | * | + | *Aussage 1 ist falsch, da $H_{\rm MKD}(f)$ auch Anteile um $\pm 2f_{\rm T}$ besitzt. |
− | *Die Zeitfunktion $h_{\rm K,\hspace{0.04cm}TP}(t)$ ist | + | |
− | + | *Die Zeitfunktion $h_{\rm K,\hspace{0.04cm}TP}(t)$ ist reell. Gleiches gilt für $h_{\rm MKD}(t)$ auch unter Berücksichtigung der $\pm 2f_{\rm T}$–Anteile, da $H_{\rm MKD}(f)$ eine bezüglich $f = 0$ gerade Funktion ist. | |
− | *Die Grafik zeigt $H_{\rm MKD}(f)$, der auch Anteile um $\pm 2f_{\rm T}$ besitzt. Bei tiefen Frequenzen ist $H_{\rm K,\hspace{0.04cm}TP}(f)$ identisch mit $H_{\rm MKD}(f)$. | + | |
+ | *Die Grafik zeigt $H_{\rm MKD}(f)$, der auch Anteile um $\pm 2f_{\rm T}$ besitzt. Bei tiefen Frequenzen ist $H_{\rm K,\hspace{0.04cm}TP}(f)$ identisch mit $H_{\rm MKD}(f)$. | ||
+ | |||
− | |||
+ | [[Datei:P_ID1699__Dig_Z_4_3c.png|right|frame|Resultierender Basisbandfrequenzgang für $f_{\rm T} \ne f_{\rm M}$]] | ||
'''(3)''' Richtig ist nur der <u>Lösungsvorschlag 4:</u> | '''(3)''' Richtig ist nur der <u>Lösungsvorschlag 4:</u> | ||
− | *Hier unterscheiden sich $H_{\rm K,\hspace{0.04cm}TP}(f)$ und $H_{\rm MKD}(f)$ auch bei den tiefen Frequenzen. | + | *Hier unterscheiden sich $H_{\rm K,\hspace{0.04cm}TP}(f)$ und $H_{\rm MKD}(f)$ auch bei den tiefen Frequenzen. |
− | *$H_{\rm K,\hspace{0.04cm}TP}(f)$ ist eine Gaußfunktion mit | + | |
− | + | *$H_{\rm K,\hspace{0.04cm}TP}(f)$ ist eine Gaußfunktion mit Maximum bei $f_{ε} = f_{\rm M} - f_{\rm T}$. Aufgrund dieser Unsymmetrie ist $h_{\rm K,\hspace{0.04cm}TP}(t)$ komplex. | |
− | *Dagegen ist $H_{\rm MKD}(f)$ weiterhin eine bezüglich $f = 0$ gerade Funktion mit reeller Impulsantwort $h_{\rm MKD}(t)$. | + | |
− | + | *Dagegen ist $H_{\rm MKD}(f)$ weiterhin eine bezüglich $f = 0$ gerade Funktion mit reeller Impulsantwort $h_{\rm MKD}(t)$. $H_{\rm MKD}(f)$ setzt sich dabei aus zwei Gaußfunktionen bei $± f_ε$ zusammen. | |
+ | |||
− | |||
− | '''(4)''' Richtig ist natürlich die <u>erste Antwort.</u> | + | '''(4)''' Richtig ist natürlich die <u>erste Antwort.</u> |
Aktuelle Version vom 7. Mai 2022, 17:04 Uhr
Für diese Aufgabe setzen wir voraus:
- Zur Modulation wird binäre Phasenmodulation $\rm (BPSK)$ verwendet.
- Die Demodulation erfolgt frequenz– und phasensynchron.
Bei trägerfrequenzmodulierter Übertragung muss der Kanalfrequenzgang $H_{\rm K}(f)$ stets als Bandpass angesetzt werden. Die Kanalparameter sind zum Beispiel die Mittenfrequenz $f_{\rm M}$ und die Bandbreite $\Delta f_{\rm K}$, wobei die Mittenfrequenz $f_{\rm M}$ oft mit der Trägerfrequenz $f_{\rm T}$ übereinstimmt.
In dieser Aufgabe soll insbesondere von einem Gaußbandpass entsprechend der Grafik ausgegangen werden. Für dessen Frequenzgang gilt:
- $$H_{\rm K}(f) = {\rm exp} \left [ - \pi \cdot \left ( \frac {f - f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ] +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$
Zur einfacheren Beschreibung benutzt man oft den äquivalenten Tiefpass–Frequenzgang $H_{\rm K,TP}(f)$. Dieser ergibt sich aus $H_{\rm K}(f)$ durch
- Abschneiden der Anteile bei negativen Frequenzen,
- Verschieben des Spektrums um $f_{\rm T}$ nach links.
Im betrachteten Beispiel ergibt sich mit $f_{\rm T} = f_{\rm M}$ für den äquivalenten Tiefpass–Frequenzgang:
- $$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {f }/{\Delta f_{\rm K}}\right )^2 }.$$
Die entsprechende Zeitfunktion ("Fourierrücktransformierte") lautet:
- $$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {\Delta f_{\rm K}} \cdot t \right )^2 }.$$
Zur Beschreibung eines phasensynchronen BPSK–Systems im Tiefpassbereich eignet sich aber auch der Frequenzgang
- $$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$
wobei "MKD" für "Modulator – Kanal – Demodulator" steht. Häufig – aber nicht immer – sind $H_{\rm MKD}(f)$ und $H_{\rm K,TP}(f)$ identisch.
Hinweise:
- Die Aufgabe gehört zum Kapitel "Lineare digitale Modulation – Kohärente Demodulation".
- Bezug genommen wird insbesondere auf die Seite "Basisbandmodell für ASK und BPSK".
Fragebogen
Musterlösung
- $$H_{\rm K}(f) = H_{\rm K,\hspace{0.04cm} TP}(f) \star \big [ \delta (f - f_{\rm M}) + \delta (f + f_{\rm M}) \big ] .$$
- Die Fourierrücktransformierte des Klammerausdrucks liefert eine Cosinusfunktion der Frequenz $f_{\rm M}$ mit der Amplitude $2$.
- Nach dem Faltungssatz gilt somit:
- $$h_{\rm K}(t) = 2 \cdot \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ] \cdot \cos(2 \pi f_{\rm M} t ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm K}(t = 0)/\Delta f_{\rm K} \hspace{0.1cm}\underline {= 2}.$$
- Das heißt: Die Tiefpass–Impulsantwort $h_{\rm K,\hspace{0.04cm}TP}(t)$ ist formgleich mit der Hüllkurve der Bandpass–Impulsantwort $h_{\rm K}(t)$, aber doppelt so groß.
(2) Richtig sind die Aussagen 2, 3 und 4:
- Aussage 1 ist falsch, da $H_{\rm MKD}(f)$ auch Anteile um $\pm 2f_{\rm T}$ besitzt.
- Die Zeitfunktion $h_{\rm K,\hspace{0.04cm}TP}(t)$ ist reell. Gleiches gilt für $h_{\rm MKD}(t)$ auch unter Berücksichtigung der $\pm 2f_{\rm T}$–Anteile, da $H_{\rm MKD}(f)$ eine bezüglich $f = 0$ gerade Funktion ist.
- Die Grafik zeigt $H_{\rm MKD}(f)$, der auch Anteile um $\pm 2f_{\rm T}$ besitzt. Bei tiefen Frequenzen ist $H_{\rm K,\hspace{0.04cm}TP}(f)$ identisch mit $H_{\rm MKD}(f)$.
(3) Richtig ist nur der Lösungsvorschlag 4:
- Hier unterscheiden sich $H_{\rm K,\hspace{0.04cm}TP}(f)$ und $H_{\rm MKD}(f)$ auch bei den tiefen Frequenzen.
- $H_{\rm K,\hspace{0.04cm}TP}(f)$ ist eine Gaußfunktion mit Maximum bei $f_{ε} = f_{\rm M} - f_{\rm T}$. Aufgrund dieser Unsymmetrie ist $h_{\rm K,\hspace{0.04cm}TP}(t)$ komplex.
- Dagegen ist $H_{\rm MKD}(f)$ weiterhin eine bezüglich $f = 0$ gerade Funktion mit reeller Impulsantwort $h_{\rm MKD}(t)$. $H_{\rm MKD}(f)$ setzt sich dabei aus zwei Gaußfunktionen bei $± f_ε$ zusammen.
(4) Richtig ist natürlich die erste Antwort.