Digitalsignalübertragung/Viterbi–Empfänger: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(33 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 8: Zeile 8:
 
== Betrachtetes Szenario und Voraussetzungen ==
 
== Betrachtetes Szenario und Voraussetzungen ==
 
<br>
 
<br>
Der [[Digitalsignalübertragung/Optimale_Empfängerstrategien#Matched.E2.80.93Filter.E2.80.93Empf.C3.A4nger_vs._Korrelationsempf.C3.A4nger|Korrelationsempfänger]] ist im Sinne der [[Digitalsignalübertragung/Optimale_Empfängerstrategien#Maximum.E2.80.93Likelihood.E2.80.93Entscheidung_bei_Gau.C3.9Fscher_St.C3.B6rung| Maximum&ndash;Likelihood&ndash;Entscheidungsregel]] optimal, das heißt, er führt bei gleichwahrscheinlichen Quellensymbolen zur minimalen Fehlerwahrscheinlichkeit. Nachteilig ist:
+
Der &nbsp;[[Digitalsignalübertragung/Optimale_Empfängerstrategien#Matched.E2.80.93Filter.E2.80.93Empf.C3.A4nger_vs._Korrelationsempf.C3.A4nger|"Korrelationsempfänger"]]&nbsp; ist im Sinne der&nbsp;[[Digitalsignalübertragung/Optimale_Empfängerstrategien#Maximum.E2.80.93Likelihood.E2.80.93Entscheidung_bei_Gau.C3.9Fscher_St.C3.B6rung| Maximum&ndash;Likelihood&ndash;Entscheidungsregel]]&nbsp; optimal,&nbsp; das heißt,&nbsp; er führt bei gleichwahrscheinlichen Quellensymbolen zur minimalen Fehlerwahrscheinlichkeit.&nbsp; Nachteilig ist:
*Der Realisierungsaufwand steigt exponentiell mit der Länge $N$ der zu detektierenden Symbolfolge.<br>
+
[[Datei:P ID1467 Dig T 3 8 S1 version1.png|right|frame|Blockschaltbild des Viterbi-Empfängers|class=fit]]
*Da die Folge gemeinsam entschieden wird, kommt es bei großem $N$ zu langen Verzögerungen.<br><br>
 
  
In den 1970er Jahren hat [https://de.wikipedia.org/wiki/Andrew_J._Viterbi Andrew J. Viterbi] einen Maximum&ndash;Likelihood&ndash;Empfänger vorgeschlagen, der die Detektion von Teilen der empfangenen Nachricht erlaubt und bei dem sich der Realisierungsaufwand auch bei unendlich langen Folgen in Grenzen hält.<br>
+
*Der Realisierungsaufwand steigt exponentiell mit der Länge &nbsp;$N$&nbsp; der zu detektierenden Symbolfolge.<br>
 +
*Da die Folge gemeinsam entschieden wird,&nbsp; kommt es bei großem &nbsp;$N$&nbsp; zu langen Verzögerungen.<br><br>
  
[[Datei:P ID1467 Dig T 3 8 S1 version1.png|center|frame|Blockschaltbild des Viterbi-Empfängers|class=fit]]
+
In den 1970er Jahren hat &nbsp;[https://de.wikipedia.org/wiki/Andrew_J._Viterbi Andrew J. Viterbi]&nbsp; einen Maximum&ndash;Likelihood&ndash;Empfänger vorgeschlagen, der die Detektion von Teilen der empfangenen Nachricht erlaubt und bei dem sich der Realisierungsaufwand auch bei unendlich langen Folgen in Grenzen hält.<br>
  
 
Zu den einzelnen Komponenten des Blockschaltbildes ist anzumerken:
 
Zu den einzelnen Komponenten des Blockschaltbildes ist anzumerken:
*Das an den Empfangsgrundimpuls $g_r(t)$  und die Störung angepasste [[Stochastische_Signaltheorie/Matched-Filter|Matched&ndash;Filter]] $H_{\rm MF}(f)$ dient der ''Störleistungsbegrenzung''. Das MF&ndash;Ausgangssignal $m(t)$ bzw. die Folge $\langle m_\nu \rangle$ der äquidistanten Signalwerte nach der Abtastung besitzt das bestmögliche Signal&ndash;zu&ndash;Stör&ndash;Leistungsverhältnis.<br>
+
*Das an den Empfangsgrundimpuls &nbsp;$g_r(t)$&nbsp; und die Störung angepasste &nbsp;[[Stochastische_Signaltheorie/Matched-Filter|"Matched&ndash;Filter"]]&nbsp; $H_{\rm MF}(f)$&nbsp; dient der&nbsp; "Störleistungsbegrenzung".&nbsp; Das MF&ndash;Ausgangssignal &nbsp;$m(t)$&nbsp; bzw. die Folge &nbsp;$\langle m_\nu \rangle$&nbsp; der äquidistanten Signalwerte nach der Abtastung besitzt das bestmögliche Signal&ndash;zu&ndash;Stör&ndash;Leistungsverhältnis&nbsp; $\rm (SNR)$.<br>
  
*Aufgabe des Dekorrelationsfilters $H_{\rm DF}(f)$ ist es, aus der Folge $\langle m_\nu \rangle$ die Detektionsabtastwerte $d_\nu = d_{{\rm S}\nu} + d_{{\rm N}\nu}$ zu gewinnen, deren Störanteile $d_{{\rm N}\nu}$ unkorreliert sind. Dieses Filter wird deshalb auch ''Whitening&ndash;Filter'' genannt.<br>
+
*Aufgabe des Dekorrelationsfilters &nbsp;$H_{\rm DF}(f)$&nbsp; ist es,&nbsp;  aus der Folge &nbsp; $\langle m_\nu \rangle$ &nbsp; die Detektionsabtastwerte &nbsp; $d_\nu = d_{{\rm S}\nu} + d_{{\rm N}\nu}$ &nbsp; zu gewinnen,&nbsp; deren Störanteile &nbsp;$d_{{\rm N}\nu}$&nbsp; unkorreliert sind.&nbsp; Dieses Filter wird deshalb auch&nbsp; "Whitening&ndash;Filter"&nbsp; genannt.<br>
  
*Der ''Viterbi&ndash;Entscheider'', der im Mittelpunkt der folgenden Betrachtungen steht, gewinnt aus der Folge $\langle d_\nu \rangle$ seiner wertkontinuierlichen Eingangswerte die binäre Ausgangsfolge $\langle v_\nu \rangle$ entsprechend der Maximum&ndash;Likelihood&ndash;Regel mit der kleinstmöglichen Fehlerwahrscheinlichkeit ${\rm Pr}(v_\nu \ne q_\nu)$.<br>
+
*Der&nbsp; '''Viterbi&ndash;Entscheider''',&nbsp; der im Mittelpunkt der folgenden Betrachtungen steht,&nbsp; gewinnt aus der Folge &nbsp; $\langle d_\nu \rangle $&nbsp; seiner wertkontinuierlichen Eingangswerte die binäre Ausgangsfolge &nbsp; $\langle v_\nu \rangle$ &nbsp; entsprechend der Maximum&ndash;Likelihood&ndash;Regel mit der kleinstmöglichen Fehlerwahrscheinlichkeit &nbsp;${\rm Pr}(v_\nu \ne q_\nu)$.<br>
  
  
Um den ''Viterbi&ndash;Algorithmus'' möglichst einfach beschreiben zu können, werden hier einige vereinfachende Voraussetzungen getroffen:
+
Um den Viterbi&ndash;Algorithmus möglichst einfach beschreiben zu können,&nbsp; werden hier einige vereinfachende Voraussetzungen getroffen:
*Die Amplitudenkoeffizienten seien ''unipolar'' &nbsp; &#8658; &nbsp; $a_\nu \in  \{0,\hspace{0.05cm} 1\}$. Anzumerken ist, dass es bei der Verwendung bipolarer Koeffizienten &nbsp; &#8658; &nbsp; $a_\nu \in  \{-1,\hspace{0.05cm} +1\}$ nur weniger Modifikationen  bedarf.<br>
+
#Die Amplitudenkoeffizienten seien unipolar &nbsp; &#8658; &nbsp; $a_\nu \in  \{0,\hspace{0.05cm} 1\}$.&nbsp; Anzumerken ist,&nbsp; dass es bei der Verwendung bipolarer Koeffizienten &nbsp; &#8658; &nbsp; $a_\nu \in  \{-1,\hspace{0.05cm} +1\}$&nbsp; nur einiger weniger Modifikationen  bedarf.&nbsp; Diese Schwierigkeiten betreffen eher die Beschreibung als die Implementierung.<br>
 +
#Der Grundimpuls &nbsp;$g_d(t)$&nbsp; nach dem Dekorrelationsfilters &nbsp;$H_{\rm DF}(f)$&nbsp; besteht nur aus dem Hauptwert &nbsp;$g_0 = g_d(t = T_{\rm D})$&nbsp; und dem Vorläufer &nbsp;$g_{-1} = g_d(t = T_{\rm D}-T)$.&nbsp; Nachläufer gibt es in unserem Modell nicht: &nbsp;$g_{\nu} = g_d(t = T_{\rm D}+\nu \cdot T)=0$.&nbsp; Auch weitere Vorläufer seien vorerst ausgeschlossen:&nbsp; $g_{-2} = g_{-3}= \text{ ...} = 0$. <br>
 +
#Für den Abtastwert des wertkontinuierlichen&nbsp; $\rm DF$&ndash;Ausgangssignals&nbsp; $d(t)$&nbsp; zum Zeitpunkt&nbsp; $\nu \cdot T$&nbsp; erhält man das  Ergebnis: &nbsp; &nbsp;$d_{\nu} = a_{\nu}\cdot g_{0} + a_{\nu+1}\cdot g_{-1}+d_{{\rm N}\nu}\hspace{0.05cm}$,&nbsp; wobei die Rauschkomponente &nbsp;$d_{{\rm N}\nu}$&nbsp; als gaußverteilt mit Standardabweichung &nbsp;$\sigma_d$&nbsp; angenommen wird.
  
*Der Grundimpuls $g_d(t)$ besteht nur aus dem Hauptwert $g_0 = g_d(t = T_{\rm D})$ und einem einzigen Vorläufer $g_{-1} = g_d(t = T_{\rm D}-T)$.<br>
 
  
*Damit ergeben sich für die wertkontinuierlichen ''Detektionsabtastwerte'' $d_{\nu} = a_{\nu}\cdot g_{0} + a_{\nu+1}\cdot g_{-1}+d_{{\rm N}\nu}\hspace{0.05cm}$, wobei die Rauschkomponente $d_{{\rm N}\nu}$ als gaußverteilt mit Streuung $\sigma_d$ angenommen wird.
+
<u>Hinweise:</u> &nbsp;
  
 
+
Bei bipolarer Signalisierung ist der Algorithmus nicht aufwändiger. &nbsp; $\bullet$ &nbsp; Dagegen steigt der Rechenaufwand,&nbsp; wenn der Grundimpuls &nbsp;$g_d(t)$&nbsp; breiter wird und mehr als nur einen Vorläufer &nbsp;$g_{-1}$&nbsp; aufweist. &nbsp; $\bullet$ &nbsp; Die Vernachlässigung von Nachläufern in der Beschreibung ist keine grundlegende Einschränkung,&nbsp; weil jeder Impuls diese Bedingung durch geeignete Wahl des Detektionszeitpunktes &nbsp;$T_{\rm D}$&nbsp; erfüllen kann. &nbsp; $\bullet$ &nbsp; Im Folgenden werden alle Signalwerte auf &nbsp;$1$&nbsp; normiert.<br>
Bei bipolarer Signalisierung ist der Algorithmus nicht aufwändiger. Dagegen steigt der Rechenaufwand, wenn der Detektionsgrundimpuls breiter wird und mehr als nur einen Vorläufer $g_{-1}$ aufweist. Die Vernachlässigung von Nachläufern stellt keine grundlegende Einschränkung dar, weil jeder Impuls $g_d(t)$ diese Bedingung durch geeignete Wahl des Detektionszeitpunktes $T_{\rm D}$ erfüllen kann. Anzumerken ist weiter, dass im Folgenden alle Signalwerte auf $1$ normiert werden.<br>
 
  
 
[[Datei:P ID1468 Dig T 3 8 S1b version1.png|right|frame|Abtastwerte zur Verdeutlichung des Viterbi-Algorithmus|class=fit]]
 
[[Datei:P ID1468 Dig T 3 8 S1b version1.png|right|frame|Abtastwerte zur Verdeutlichung des Viterbi-Algorithmus|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; In der Grafik sind  als (blaue) Kreuze die Detektionsnutzabtastwerte $d_{ {\rm S}\nu}$ eingetragen, wobei die zugehörigen Amplitudenkoeffizienten $a_1 = 1$, $a_2 = 1$, $a_3 = 0$, ... aus dem grün eingezeichneten Quellensignal $q(t)$ abgelesen werden können.  
+
$\text{Beispiel 1:}$&nbsp; In der Grafik sind  als (blaue) Kreuze die Detektionsnutzabtastwerte &nbsp;$d_{ {\rm S}\nu}$&nbsp; eingetragen, wobei die zugehörigen Amplitudenkoeffizienten &nbsp;$a_1 = 1$, &nbsp;$a_2 = 1$, &nbsp;$a_3 = 0$, ... aus dem grün eingezeichneten Quellensignal &nbsp;$q(t)$&nbsp; abgelesen werden können.  
  
Die Grundimpulswerte sind in diesem Beispiel zu $g_0 = 0.7$ und $g_{-1} = 0.3$ angenommen. Es ist weiter zu erkennen, dass $d_{ {\rm S}\nu}$ nur vier verschiedene Werte annehmen kann, nämlich $0$, $g_{-1}=0.3$, $g_0= 0.7$  und $g_0 +g_{-1}= 1$.
+
Die Grundimpulswerte sind in diesem Beispiel zu &nbsp;$g_0 = 0.7$&nbsp; und &nbsp;$g_{-1} = 0.3$&nbsp; angenommen. Es ist weiter zu erkennen, dass &nbsp;$d_{ {\rm S}\nu}$&nbsp; nur vier verschiedene Werte annehmen kann, nämlich &nbsp;$0$, &nbsp;$g_{-1}=0.3$, &nbsp;$g_0= 0.7$&nbsp; und &nbsp;$g_0 +g_{-1}= 1$.
  
Die am Viterbi&ndash;Entscheider anstehenden Abtastwerte (rote Punkte) sind $d_0 = 0.2$, $d_1 = 0.7$, $d_2 = 0.5$, $d_3 = 0$, ... , wobei die Differenzen $d_{ {\rm N}\nu} = d_\nu - d_{ {\rm S}\nu}$ von einer AWGN&ndash;Rauschquelle herrühren.<br>
+
Die am Viterbi&ndash;Entscheider anstehenden Abtastwerte (rote Punkte) sind &nbsp;$d_0 = 0.2$, &nbsp;$d_1 = 0.7$, &nbsp;$d_2 = 0.5$, &nbsp;$d_3 = 0$, ... , wobei die Differenzen &nbsp;$d_{ {\rm N}\nu} = d_\nu - d_{ {\rm S}\nu}$&nbsp; von einer AWGN&ndash;Rauschquelle herrühren.<br>
  
Ein Schwellenwertentscheider (mit der Schwelle bei $E = 0.5$) würde bei diesen dargestellten zehn Bit mindestens eine Fehlentscheidung treffen (zur Zeit  $t  = 4T$), und eventuell eine weitere bei $t  = 2T$, falls der Abtastwert $d_2 = 0.5$ doch geringfügig kleiner ist als der Schwellenwert $E = 0.5$. Dagegen wird der Viterbi&ndash;Empfänger diese Folge der Länge $10$ richtig entscheiden, wie auf den nächsten Seiten gezeigt werden wird.}}<br>
+
*Ein Schwellenwertentscheider $($mit der Schwelle bei &nbsp;$E = 0.5)$&nbsp; würde bei diesen dargestellten zehn Bit mindestens eine Fehlentscheidung treffen $($zur Zeit  &nbsp;$t  = 4T)$, und eventuell eine weitere bei &nbsp;$t  = 2T$, falls der Abtastwert &nbsp;$d_2 = 0.5$&nbsp; doch geringfügig kleiner ist als der Schwellenwert &nbsp;$E = 0.5$.  
 +
*Dagegen wird der Viterbi&ndash;Empfänger diese Folge der Länge &nbsp;$10$&nbsp; richtig entscheiden, wie auf den nächsten Seiten gezeigt wird.}}<br>
  
 
== Fehlergrößen und Gesamtfehlergrößen==
 
== Fehlergrößen und Gesamtfehlergrößen==
 
<br>
 
<br>
Wie im Kapitel  [[Digitalsignalübertragung/Optimale_Empfängerstrategien#Betrachtetes_Szenario_und_Voraussetzungen|Optimale Empfängerstrategien]] gibt $Q \in \{Q_i\}$ die begrenzte, aus $N$ Binärsymbolen bestehende Quellensymbolfolge an.  
+
Wie im Kapitel&nbsp; [[Digitalsignalübertragung/Optimale_Empfängerstrategien|Optimale Empfängerstrategien]]&nbsp; gibt &nbsp;$Q \in \{Q_i\}$&nbsp; die begrenzte,&nbsp; aus &nbsp;$N$&nbsp; Binärsymbolen bestehende Quellensymbolfolge an.  
*Die Anzahl der möglichen Symbolfolgen $Q_i$ ist somit $2^N$.  
+
*Die Anzahl der möglichen Symbolfolgen &nbsp;$Q_i$&nbsp; ist somit &nbsp;$2^N$.
*$V$ bezeichnet  die Sinkensymbolfolge der Länge $N$, die vom Viterbi&ndash;Entscheider gleich der wahrscheinlichsten Folge $Q_j$ gesetzt wird.<br>
+
 +
*$V$&nbsp; bezeichnet  die Sinkensymbolfolge der Länge&nbsp; $N$,&nbsp; die vom Viterbi&ndash;Entscheider gleich der wahrscheinlichsten Folge &nbsp;$Q_j$&nbsp; gesetzt wird.<br>
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definitionen:}$&nbsp; Die '''Fehlergröße''' $\varepsilon_{\nu}(i)$ bezeichnet die quadratische Abweichung zwischen dem tatsächlichen, verrauschten Abtastwert $d_\nu$ und dem zur Folge $Q_i$ gehörenden Nutzabtastwert $d_{ {\rm S}\nu}$:
+
$\text{Definitionen:}$&nbsp;  
 +
*Die &nbsp;'''Fehlergröße'''&nbsp; $\varepsilon_{\nu}(i)$&nbsp; bezeichnet die quadratische Abweichung zwischen dem tatsächlichen, verrauschten Abtastwert &nbsp;$d_\nu$&nbsp; und dem zur Folge &nbsp;$Q_i$&nbsp; gehörenden Nutzabtastwert &nbsp;$d_{ {\rm S}\nu}$:
 
:$$\varepsilon_{\nu}(i) = \vert d_{\nu} - d_{ {\rm S}\nu}(i) \vert^2
 
:$$\varepsilon_{\nu}(i) = \vert d_{\nu} - d_{ {\rm S}\nu}(i) \vert^2
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
:In der Literatur findet man hierfür auch die Bezeichnung&nbsp; "Teilmetrik"&nbsp; (englisch: &nbsp;"metric").
  
Die '''Gesamtfehlergröße''' $\gamma_{\nu}(i)$ kennzeichnet die Summe aller Fehlergrößen bis zum Zeitpunkt $\nu$:<br>
+
* Die &nbsp;'''Gesamtfehlergröße'''&nbsp; $\gamma_{\nu}(i)$&nbsp; kennzeichnet die Summe aller Fehlergrößen bis zum Zeitpunkt &nbsp;$\nu$:<br>
 
:$$\gamma_{\nu}(i)= \sum_{k=0}^{\nu}\varepsilon_{k}(i)
 
:$$\gamma_{\nu}(i)= \sum_{k=0}^{\nu}\varepsilon_{k}(i)
  \hspace{0.05cm}.$$}}<br>
+
  \hspace{0.05cm}.$$
 +
:Man  spricht in diesem Zusammenhang auch von&nbsp; "akkumulierten Metrik"&nbsp; (englisch: &nbsp;"accumulated metric").}}
  
[[Datei:P ID1469 Dig T 3 8 S2b version1.png|right|frame|Darstellung der Fehlergrößen im Baumdiagramm|class=fit]]
+
 
Die Grafik verdeutlicht die oben definierten Größen in einer Baumstruktur, woraus zu erkennen ist, dass die Gesamtfehlergrößen iterativ berechnet werden können:
+
[[Datei:P ID1469 Dig T 3 8 S2b version1.png|right|frame|Fehlergrößen&nbsp; $\varepsilon_{\nu}(i)$&nbsp; und Gesamtfehlergrößen&nbsp; $\gamma_{\nu}(i)= \gamma_{\nu-1}(i\hspace{0.05cm}')+\varepsilon_{\nu}(i\hspace{0.05cm}'')
:$$\gamma_{\nu}(i)= \gamma_{\nu-1}(i')+\varepsilon_{\nu}(i'')
+
\hspace{0.05cm}$&nbsp; im Baumdiagramm.&nbsp; <u>Hinweise:</u> &nbsp; $\bullet$ &nbsp; $i$, &nbsp;$i\hspace{0.05cm}'$, &nbsp;$i\hspace{0.05cm}''$ sind unterschiedliche Laufvariable.<br>&nbsp; $\bullet$ &nbsp; Definition gilt für Grundimpuls mit Hauptwert &nbsp;$g_{0}$&nbsp; und einem Vorläufer &nbsp;$g_{-1}$.<br>&nbsp; $\bullet$ &nbsp; Bei &nbsp;$v$&nbsp; Vorläufern müsste die obige Summe bei &nbsp;$k = 1 -v$&nbsp; beginnen.<br>&nbsp; $\bullet$ &nbsp; Der Parameter &nbsp;$i \in  \{0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, 2^{N+1}-1\}$&nbsp;  wird meist binär dargestellt. <br>&nbsp; $\bullet$ &nbsp; Er beschreibt die Amplitudenkoeffizienten &nbsp;$a_1$, ... , &nbsp;$a_{\nu +1}$ $($jeweils &nbsp;$0$&nbsp; oder &nbsp;$1)$.|class=fit]]
 +
Die Grafik verdeutlicht die oben definierten Größen in einer Baumstruktur,&nbsp; woraus zu erkennen ist,&nbsp; dass die Gesamtfehlergrößen iterativ berechnet werden können:
 +
:$$\gamma_{\nu}(i)= \gamma_{\nu-1}(i\hspace{0.05cm}')+\varepsilon_{\nu}(i\hspace{0.05cm}'')
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
''Anmerkungen:''
+
Zu dieser Grafik ist weiter anzumerken:
*$i$, $i'$, $i''$ sind unterschiedliche Laufvariable.
+
*Die Knoten des Baumdiagramms stehen für die&nbsp; "Gesamtfehlergrößen"&nbsp; $\gamma_{\nu}(i)$.&nbsp; Deren Anzahl wird mit jedem Iterationsschritt verdoppelt.&nbsp; Zum Zeitpunkt &nbsp;$\nu$&nbsp; gibt es &nbsp;$2^{\nu+1}$&nbsp; solcher Knoten.&nbsp; Also für &nbsp;$\nu = 3$&nbsp; genau &nbsp;$2^4 = 16$&nbsp; Knoten.<br>
*Man bezeichnet $\gamma_{\nu}(i)$ auch als <i>Metrik</i>.
 
*Obige Definition gilt für einen Grundimpuls mit Hauptwert $g_{0}$ und einem Vorläufer $g_{-1}$.
 
*Bei $v$ Vorläufern müsste die obige Summe bei $k = 1 -v$ beginnen.
 
*Der Parameter $i \in  \{0, \text{...} , 2^{N+1}-1\}$  wird meist binär dargestellt und beschreibt so die Amplitudenkoeffizienten $a_1$, ... , $a_{\nu +1}$ (jeweils entweder $0$ oder $1$).
 
<br clear = all>
 
Weiter ist zu dieser Grafik noch Folgendes anzumerken:
 
*Die Knoten des Baumdiagramms stehen für die <i>Gesamtfehlergrößen</i> $\gamma_{\nu}(i)$; deren Anzahl wird mit jedem Iterationsschritt verdoppelt. Zum Zeitpunkt $\nu$ gibt es $2^{\nu+1}$ solcher Knoten. Beispielsweise sind für $\nu = 3$ genau $2^4 = 16$ Knoten zu erkennen.<br>
 
  
*Die zu den Gesamtfehlergrößen $\gamma_{\nu}(i)$  gehörigen <i>Amplitudenkoeffizienten</i> ergeben sich, wenn man den Weg vom Anfangsknoten bis zum betrachteten Knoten verfolgt. Es wird vereinbart, dass einem nach oben gerichteten Zweig der Amplitudenkoeffizient $a_\nu=1$ und einem nach unten gerichteten Zweig der Koeffizient $a_\nu=0$ zugeordnet wird.<br>
+
*Die zu den Gesamtfehlergrößen &nbsp;$\gamma_{\nu}(i)$&nbsp; gehörigen&nbsp; "Amplitudenkoeffizienten"&nbsp; ergeben sich,&nbsp; wenn man den Weg vom Anfangsknoten bis zum betrachteten Knoten verfolgt.&nbsp; Ein nach oben gerichteten Zweig steht für &nbsp;$a_\nu=1$,&nbsp;  einem nach unten gerichteten Zweig wird der Koeffizient &nbsp;$a_\nu=0$&nbsp; zugewiesen.<br>
  
*Beispielsweise kennzeichnet der grün hinterlegte Knoten $\gamma_{3}(\rm 1100)$ die Gesamtfehlergröße unter der hypothetischen Annahme, dass die Symbole $a_1=1$, $a_2=1$, $a_3=0$, $a_4=0$ gesendet wurden. Diese Zuordnung kann auch aus den Richtungen der Pfeile im Baumdiagramm abgelesen werden: Zunächst zweimal nach oben, dann zweimal nach unten.<br>
+
*Beispielsweise kennzeichnet der grün hinterlegte Knoten &nbsp;$\gamma_{3}(\rm 1100)$&nbsp; die Gesamtfehlergröße unter der hypothetischen Annahme, dass die Symbole &nbsp;$a_1=1$, &nbsp;$a_2=1$, &nbsp;$a_3=0$, &nbsp;$a_4=0$ gesendet wurden.  
  
*Aufgrund des Vorläufers muss bereits zum Zeitpunkt $\nu = 3$ der Koeffizient $a_4$ mitberücksichtigt werden. Alle Knoten $\gamma_{\nu}(i)$, die unter der Voraussetzung $a_{\nu +1}=1$ berechnet werden, sind im Baumdiagramm durch Rechtecke dargestellt, während die Hypothese $a_{\nu +1}=0$ jeweils durch ein abgerundetes Rechteck symbolisiert ist, zum Beispiel $\gamma_{2}(\rm 110)$ oder $\gamma_{3}(\rm 1100)$.<br>
+
*Diese Zuordnung kann auch aus den Richtungen der Pfeile im Baumdiagramm abgelesen werden: &nbsp; Zunächst zweimal nach oben, dann zweimal nach unten.<br>
  
*Die Zweige im Baumdiagramm sind den <i>Fehlergrößen</i> $\varepsilon_{\nu}(i)$ zugeordnet. Beim vorausgesetzten Grundimpuls (nur $g_{0}$ und $g_{-1}$ sind ungleich Null) gibt es zu jedem Zeitpunkt mit Ausnahme des Startzustandes $(\nu> = 0)$ genau vier unterschiedliche Größen:
+
*Aufgrund des Vorläufers muss bereits zum Zeitpunkt &nbsp;$\nu = 3$&nbsp; der Koeffizient &nbsp;$a_4$&nbsp; mitberücksichtigt werden.&nbsp; Alle Knoten &nbsp;$\gamma_{\nu}(i)$,&nbsp; die unter der Hypothese &nbsp;$a_{\nu +1}=1$&nbsp; berechnet werden,&nbsp; sind im Baumdiagramm durch Rechtecke dargestellt.&nbsp; Die Hypothese &nbsp;$a_{\nu +1}=0$&nbsp; wird jeweils durch ein abgerundetes Rechteck symbolisiert ist,&nbsp; zum Beispiel &nbsp;$\gamma_{2}(\rm 110)$&nbsp; oder &nbsp;$\gamma_{3}(\rm 1100)$.<br>
 +
 
 +
*Die Zweige im Baumdiagramm sind den&nbsp; "Fehlergrößen"&nbsp; $\varepsilon_{\nu}(i)$&nbsp; zugeordnet.&nbsp; Beim vorausgesetzten Grundimpuls&nbsp; $($nur &nbsp;$g_{0}$&nbsp; und &nbsp;$g_{-1}$&nbsp; sind ungleich Null$)$&nbsp; gibt es zu jedem Zeitpunkt mit Ausnahme des Startzustandes &nbsp;$(\nu = 0)$&nbsp; genau vier unterschiedliche Größen:
 
:$$\varepsilon_{\nu}(00) = |d_{\nu}|^2\hspace{0.05cm},\hspace{0.5cm}\varepsilon_{\nu}(01) = |d_{\nu}-g_{-1}|^2\hspace{0.05cm},\hspace{0.2cm}
 
:$$\varepsilon_{\nu}(00) = |d_{\nu}|^2\hspace{0.05cm},\hspace{0.5cm}\varepsilon_{\nu}(01) = |d_{\nu}-g_{-1}|^2\hspace{0.05cm},\hspace{0.2cm}
 
\varepsilon_{\nu}(10) = |d_{\nu}-g_{0}|^2\hspace{0.05cm},\hspace{0.2cm}\varepsilon_{\nu}(11) = |d_{\nu}-g_{0}-g_{-1}|^2\hspace{0.05cm}.$$
 
\varepsilon_{\nu}(10) = |d_{\nu}-g_{0}|^2\hspace{0.05cm},\hspace{0.2cm}\varepsilon_{\nu}(11) = |d_{\nu}-g_{0}-g_{-1}|^2\hspace{0.05cm}.$$
  
*Die Gesamtfehlergröße $\gamma_{\nu}(i)$ ist gleich der Summe aus dem vorausgegangenen Knoten $\gamma_{\nu-1}(i')$ und dem dazwischenliegenden Zweig $\varepsilon_{\nu}(i'')$. Beispielsweise gilt für die hervorgehobenen Knoten:
+
*Die Gesamtfehlergröße &nbsp;$\gamma_{\nu}(i)$&nbsp; ist gleich der Summe aus dem vorausgegangenen Knoten &nbsp;$\gamma_{\nu-1}(i\hspace{0.05cm}')$&nbsp; und dem dazwischenliegenden Zweig &nbsp;$\varepsilon_{\nu}(i\hspace{0.05cm}'')$.&nbsp; Beispielsweise gilt für die hervorgehobenen Knoten:
:$$\gamma_{1}(11)=\gamma_{0}(1)+\varepsilon_{1}(11) ,\hspace{0.05cm}
+
:$$\gamma_{1}(11)=\gamma_{0}(1)+\varepsilon_{1}(11) ,\hspace{0.25cm}
  \gamma_{2}(110)=\gamma_{1}(11)+\varepsilon_{2}(10) ,\hspace{0.05cm}
+
  \gamma_{2}(110)=\gamma_{1}(11)+\varepsilon_{2}(10) ,\hspace{0.25cm}
 
  \gamma_{3}(1100)=\gamma_{2}(110)+\varepsilon_{3}(00).$$
 
  \gamma_{3}(1100)=\gamma_{2}(110)+\varepsilon_{3}(00).$$
  
*Bei den ersten Knoten $\gamma_{0}(0)$ und $\gamma_{0}(1)$ wird berücksichtigt, dass vor der eigentlichen Übertragung ($a_1$, $a_2$, ...) vereinbarungsgemäß stets das Symbol $a_0 = 0$ übertragen wird. Daraus folgt:
+
*Bei den ersten Knoten &nbsp;$\gamma_{0}(0)$&nbsp; und &nbsp;$\gamma_{0}(1)$&nbsp; wird berücksichtigt,&nbsp; dass vor der eigentlichen Übertragung &nbsp;$(a_1$, &nbsp;$a_2$, ...$)$&nbsp; vereinbarungsgemäß stets das Symbol &nbsp;"$a_0 = 0$"&nbsp; übertragen wird.&nbsp; Daraus folgt:
 
:$$\gamma_{0}(0)=\varepsilon_{0}(00)= |d_{0}|^2 \hspace{0.05cm},\hspace{0.2cm}
 
:$$\gamma_{0}(0)=\varepsilon_{0}(00)= |d_{0}|^2 \hspace{0.05cm},\hspace{0.2cm}
 
  \gamma_{0}(1)=\varepsilon_{0}(01)=|d_{0}-g_{-1}|^2
 
  \gamma_{0}(1)=\varepsilon_{0}(01)=|d_{0}-g_{-1}|^2
Zeile 98: Zeile 100:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Wir betrachten wie im [[Digitalsignalübertragung/Viterbi–Empfänger#Betrachtetes_Szenario_und_Voraussetzungen|Beispiel 1]] die unipolare Quellensymbolfolge der Länge $N=3$ mit folgenden Parameterwerten:  
+
$\text{Beispiel 2:}$&nbsp; Wir betrachten wie im &nbsp;[[Digitalsignalübertragung/Viterbi–Empfänger#Betrachtetes_Szenario_und_Voraussetzungen|$\text{Beispiel 1}$]]&nbsp; die unipolare Quellensymbolfolge der Länge &nbsp;$N=3$&nbsp; mit folgenden Parameterwerten:  
 
:$$g_{0}=0.7 \hspace{0.05cm},\hspace{0.2cm}
 
:$$g_{0}=0.7 \hspace{0.05cm},\hspace{0.2cm}
 
  g_{-1}=0.3 \hspace{0.05cm},\hspace{0.2cm}
 
  g_{-1}=0.3 \hspace{0.05cm},\hspace{0.2cm}
Zeile 107: Zeile 109:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Dann gilt für die Fehlergrößen $\varepsilon_{\nu}(i)$ zu den Zeitpunkten $\nu = 0$ bis $\nu = 3$:  
+
Dann gilt für die Fehlergrößen &nbsp;$\varepsilon_{\nu}(i)$&nbsp; zu den Zeitpunkten &nbsp;$\nu = 0$&nbsp; bis &nbsp;$\nu = 3$:  
:$$\nu = 0\text{:} \hspace{0.2cm}\varepsilon_{0}(00)  =  [0.2- (0 \cdot 0.7 + 0 \cdot
+
:$$\nu = 0\text{:} \hspace{0.2cm}\varepsilon_{0}(00)  =  \big [0.2- (0 \cdot 0.7 + 0 \cdot
  0.3)]^2=0.04 \hspace{0.05cm},\hspace{0.4cm} \varepsilon_{0}(01)  =  [0.2- (0 \cdot 0.7 + 1 \cdot
+
  0.3) \big ]^2=0.04 \hspace{0.05cm},\hspace{0.4cm} \varepsilon_{0}(01)  =  \big [0.2- (0 \cdot 0.7 + 1 \cdot
  0.3)]^2=0.01 \hspace{0.05cm};$$
+
  0.3) \big ]^2=0.01 \hspace{0.05cm};$$
  
:$$\nu = 1{:} \hspace{0.2cm}\varepsilon_{1}(00)  =  [0.7- (0 \cdot 0.7 + 0 \cdot
+
:$$\nu = 1{:} \hspace{0.2cm}\varepsilon_{1}(00)  =  \big [0.7- (0 \cdot 0.7 + 0 \cdot
  0.3)]^2=0.49 \hspace{0.05cm},\hspace{0.4cm} \varepsilon_{1}(01)  =  [0.7- (0 \cdot 0.7 + 1 \cdot
+
  0.3)\big ]^2=0.49 \hspace{0.05cm},\hspace{0.4cm} \varepsilon_{1}(01)  = \big [0.7- (0 \cdot 0.7 + 1 \cdot
  0.3)]^2=0.16 \hspace{0.05cm},$$
+
  0.3)\big ]^2=0.16 \hspace{0.05cm},$$
:$$\hspace{1.4cm}\varepsilon_{1}(10) =  [0.7- (1 \cdot 0.7 + 0 \cdot
+
:$$\hspace{1.4cm}\varepsilon_{1}(10) =  \big [0.7- (1 \cdot 0.7 + 0 \cdot
  0.3)]^2=0.00 \hspace{0.05cm}\hspace{0.4cm}\varepsilon_{1}(11)  =  [0.7- (1 \cdot 0.7 + 1 \cdot
+
  0.3)\big ]^2=0.00 \hspace{0.05cm}\hspace{0.4cm}\varepsilon_{1}(11)  =  \big [0.7- (1 \cdot 0.7 + 1 \cdot
  0.3)]^2=0.09 \hspace{0.05cm};$$
+
  0.3)\big ]^2=0.09 \hspace{0.05cm};$$
  
:$$\nu = 2\text{:} \hspace{0.2cm}\varepsilon_{2}(00)  =  [0.5- (0 \cdot 0.7 + 0 \cdot
+
:$$\nu = 2\text{:} \hspace{0.2cm}\varepsilon_{2}(00)  = \big [0.5- (0 \cdot 0.7 + 0 \cdot
  0.3)]^2=0.25 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{2}(01)  =  [0.5- (0 \cdot 0.7 + 1 \cdot
+
  0.3)\big ]^2=0.25 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{2}(01)  =  \big [0.5- (0 \cdot 0.7 + 1 \cdot
  0.3)]^2=0.04 \hspace{0.05cm},$$
+
  0.3)\big ]^2=0.04 \hspace{0.05cm},$$
:$$\hspace{1.4cm}\varepsilon_{2}(10) =  [0.5- (1 \cdot 0.7 + 0 \cdot
+
:$$\hspace{1.4cm}\varepsilon_{2}(10) = \big [0.5- (1 \cdot 0.7 + 0 \cdot
  0.3)]^2=0.04 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{2}(11)  =  [0.5- (1 \cdot 0.7 + 1 \cdot
+
  0.3)\big ]^2=0.04 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{2}(11)  =  \big [0.5- (1 \cdot 0.7 + 1 \cdot
  0.3)]^2=0.25 \hspace{0.05cm};$$
+
  0.3)\big ]^2=0.25 \hspace{0.05cm};$$
  
:$$ \nu = 3\text{:} \hspace{0.2cm}\varepsilon_{3}(00)  =  [0.0- (0 \cdot 0.7 + 0 \cdot
+
:$$ \nu = 3\text{:} \hspace{0.2cm}\varepsilon_{3}(00)  = \big [0.0- (0 \cdot 0.7 + 0 \cdot
  0.3)]^2=0.00 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{3}(01)  =  [0.0- (0 \cdot 0.7 + 1 \cdot
+
  0.3)\big ]^2=0.00 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{3}(01)  = \big [0.0- (0 \cdot 0.7 + 1 \cdot
  0.3)]^2=0.09 \hspace{0.05cm},$$
+
  0.3)\big ]^2=0.09 \hspace{0.05cm},$$
:$$\hspace{1.4cm}\varepsilon_{3}(10) =  [0.0- (1 \cdot 0.7 + 0 \cdot
+
:$$\hspace{1.4cm}\varepsilon_{3}(10) =  \big [0.0- (1 \cdot 0.7 + 0 \cdot
  0.3)]^2=0.49 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{3}(11)  =  [0.0- (1 \cdot 0.7 + 1 \cdot
+
  0.3)\big ]^2=0.49 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{3}(11)  =  \big [0.0- (1 \cdot 0.7 + 1 \cdot
  0.3)]^2=1.00 \hspace{0.05cm}.$$}}
+
  0.3)\big ]^2=1.00 \hspace{0.05cm}.$$}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Mit den im Beispiel 2 ermittelten Fehlergrößen $\varepsilon_{\nu}(i)$ können nun auch die Gesamtfehlergrößen $\gamma_{\nu}(i)$ berechnet  werden. Nachfolgend ist das Baumdiagramm mit den Gesamtfehlergrößen $\gamma_{\nu}(i)$  als Knoten für die Zeitpunkte $\nu = 0$ bis $\nu = 3$ dargestellt.  
+
$\text{Beispiel 3:}$&nbsp; Mit den im &nbsp;$\text{Beispiel 2}$&nbsp; ermittelten Fehlergrößen &nbsp;$\varepsilon_{\nu}(i)$&nbsp; können nun auch die Gesamtfehlergrößen &nbsp;$\gamma_{\nu}(i)$&nbsp; berechnet  werden. Nachfolgend ist das Baumdiagramm mit den Gesamtfehlergrößen &nbsp;$\gamma_{\nu}(i)$&nbsp; als Knoten für die Zeitpunkte &nbsp;$\nu = 0$&nbsp; bis &nbsp;$\nu = 3$&nbsp; dargestellt.  
  
[[Datei:P ID1470 Dig T 3 8 S2c version1.png|center|frame|Iterative Berechnung der Gesamtfehlergrößen (Beispiel)|class=fit]]
+
[[Datei:P ID1470 Dig T 3 8 S2c version1.png|right|frame|Iterative Berechnung der Gesamtfehlergrößen (Beispiel)|class=fit]]
 +
<br><br>
  
Die minimale Gesamtfehlergröße zum Zeitpunkt $\nu = 3$ ist $\gamma_{3}(\rm 1100) = 0.14$. Daraus ergeben sich die Koeffizienten der nach den vorliegenden Signalwerten $d_0 = 0.2$, $d_1 = 0.7$, $d_2 = 0.5$ und $d_3 = 0$ mit größter Wahrscheinlichkeit gesendeten (unipolaren) Folge zu $a_1 = 1$, $a_2 = 1$ und $a_3 = 0$ (grün eingezeichneter Pfad).  
+
*Die minimale Gesamtfehlergröße zum Zeit &nbsp;$\nu = 3$&nbsp; ist &nbsp;$\gamma_{3}(\rm 1100) = 0.14$.&nbsp; Mit den Signalwerten &nbsp;$d_0 = 0.2$, &nbsp;$d_1 = 0.7$, &nbsp;$d_2 = 0.5$,&nbsp; $d_3 = 0$&nbsp; sind die Koeffizienten der wahrscheinlichsten&nbsp;  (unipolaren)&nbsp; Sendefolge gleich &nbsp;$a_1 = 1$, &nbsp;$a_2 = 1$&nbsp; und &nbsp;$a_3 = 0$&nbsp; (grüner Pfad).  
  
Weiter ist zu sagen:
+
*Ist die Folgenlänge &nbsp;$N = 3$&nbsp; $($das heißt: &nbsp; nur drei Symbole werden durch den Viterbi&ndash;Empfänger gemeinsam entschieden$)$,&nbsp; so ist auch die Entscheidung &nbsp;$a_4 = 0$&nbsp; mit Sicherheit die richtige,&nbsp; da alle Koeffizienten &nbsp;$a_{\nu>3}$&nbsp; als Null vorausgesetzt wurden.<br>
*Ist die Folgenlänge $N = 3$ (das heißt: nur drei Symbole werden durch den Viterbi&ndash;Empfänger gemeinsam entschieden), so ist auch die Entscheidung $a_4 = 0$ mit Sicherheit die richtige, da alle Koeffizienten $a_{\nu>3}$ als Null vorausgesetzt wurden.<br>
 
  
*Bei längerer Folge $(N > 3)$ kann aber aus dem minimalen Wert $\gamma_{3}(\rm 1100)$ nicht unbedingt geschlossen werden, dass $a_1 = 1$, $a_2 = 1$, $a_3 = 0$ Teil der wahrscheinlichsten Folge ist. Bei Berücksichtigung weiterer Abtastwerte ($d_4$, $d_5$, ...) könnte sich dieses vorläufige Ergebnis durchaus noch ändern.}}<br><br>
+
*Bei längerer Folge &nbsp;$(N > 3)$&nbsp; kann aus dem minimalen Wert &nbsp;$\gamma_{3}(\rm 1100)$&nbsp; aber nicht unbedingt geschlossen werden,&nbsp; dass &nbsp;$a_1 = 1$, &nbsp;$a_2 = 1$,&nbsp; $a_3 = 0$&nbsp; tatsächlich Teil der wahrscheinlichsten Folge ist.  
  
 +
*Bei Berücksichtigung weiterer Abtastwerte &nbsp;$(d_4$, &nbsp;$d_5$, ...$)$&nbsp; könnte sich dieses vorläufige Ergebnis durchaus noch ändern.}}<br><br>
  
== Minimale Gesamtfehlergröße==
+
 
 +
== Minimale Gesamtfehlergrößen==
 
<br>
 
<br>
[[Datei:P ID1471 Dig T 3 8 S3 version1.png|right|frame|Vereinfachung des Baumdiagramms nach Viterbi|class=fit]]
 
 
Wir gehen weiterhin von den Zahlenwerten der letzten Beispiele aus:
 
Wir gehen weiterhin von den Zahlenwerten der letzten Beispiele aus:
:$$d_{0}=0.2 ,\hspace{0.1cm}
+
:$$d_{0}=0.2 ,\hspace{0.2cm}
  d_{1}=0.7 ,\hspace{0.1cm}
+
  d_{1}=0.7 ,\hspace{0.2cm}
  d_{2}=0.5 ,\hspace{0.1cm}
+
  d_{2}=0.5 ,\hspace{0.2cm}
  d_{3}=0 ,$$
+
  d_{3}=0 ,\hspace{0.1cm} g_{0}=0.7 ,\hspace{0.2cm}
:$$g_{0}=0.7 ,\hspace{0.1cm}
 
 
  g_{-1}=0.3 .$$
 
  g_{-1}=0.3 .$$
  
Damit ändert sich auch am Baumdiagramm gegenüber dem Beispiel 3 nichts.  
+
Damit ändert sich auch am Baumdiagramm gegenüber dem &nbsp;$\text{Beispiel 3}$&nbsp; nichts.&nbsp; Durch einige farbliche Markierungen in dieser Grafik wird nur angedeutet,&nbsp; in welcher Weise das Baumdiagramm entsprechend den Vorschlägen von Viterbi vereinfacht werden kann.
 +
 
 +
Wichtige Eigenschaften des Viterbi&ndash;Entscheiders lassen sich in obiger Grafik beispielsweise zum  Zeitpunkt &nbsp;$\nu = 2$&nbsp; erkennen:
 +
[[Datei:P ID1471 Dig T 3 8 S3 version1.png|right|frame|Vereinfachung des Baumdiagramms nach Viterbi|class=fit]]
 +
 
 +
*Zum  Zeitpunkt &nbsp;$\nu = 2$&nbsp; ist die minimale Gesamtfehlergröße &nbsp;$\gamma_{2}(\rm 101) = 0.05$&nbsp; $($braun hervorgehoben$)$.&nbsp; Das bedeutet: &nbsp; Eine Entscheidung bei &nbsp;$\nu = 2$&nbsp; &ndash; basierend auf  &nbsp;$d_0$, &nbsp;$d_1$&nbsp; und&nbsp; $d_2$&nbsp; &ndash; wäre zugunsten der Folge &nbsp;"$\rm 101$"&nbsp; anstelle der gesendeten Folge &nbsp;"$\rm 110$"&nbsp; ausgegangen.<br>
  
Durch einige farbliche Markierungen in dieser Grafik wird nur angedeutet, in welcher Weise das Baumdiagramm entsprechend den Vorschlägen von Viterbi vereinfacht werden kann.
+
*Daraus folgt: &nbsp; Eine zu frühe endgültige Festlegung sollte unbedingt vermieden werden.&nbsp; Allerdings kann man zu jedem Zeitpunkt &nbsp;$\nu$&nbsp; bereits mehrere Teilsymbolfolgen ausschließen,&nbsp; die zu späteren Zeitpunkten nicht mehr berücksichtigt werden müssen.<br>
<br clear = all>
 
Wichtige Eigenschaften des Viterbi&ndash;Entscheiders lassen sich in obiger Grafik zum  Zeitpunkt $\nu = 2$ erkennen:
 
*Zum  Zeitpunkt $\nu = 2$ ist die minimale Gesamtfehlergröße $\gamma_{2}(\rm 101) = 0.05$ (braun hervorgehoben). Das bedeutet: Eine Entscheidung bei $\nu = 2$ &ndash; basierend auf den Werten $d_0$, $d_1$ und $d_2$ &ndash; wäre zugunsten der Folge $\rm 101$ anstelle der gesendeten Folge $\rm 110$ ausgegangen.<br>
 
  
*Daraus folgt: Eine zu frühe endgültige Festlegung sollte unbedingt vermieden werden. Allerdings kann man zu jedem Zeitpunkt $\nu$ bereits mehrere Teilsymbolfolgen ausschließen, die zu späteren Zeitpunkten nicht mehr berücksichtigt werden müssen.<br>
+
*Zu  &nbsp;$\gamma_{2}(\rm 111) = 0.35$&nbsp; werden die gleichen Metriken &nbsp;$\varepsilon_{3}(\rm 11)$&nbsp; bzw. &nbsp;$\varepsilon_{3}(\rm 10)$&nbsp; addiert wie zu &nbsp;$\gamma_{2}(\rm 101) = 0.05$.&nbsp; Wegen&nbsp;  $\gamma_{2}(\rm 111) > \gamma_{2}(\rm 101)$&nbsp; steht  bereits bei &nbsp;$\nu = 2$&nbsp; fest,&nbsp; dass &nbsp;"$\rm 111$"&nbsp; nicht Teil der wahrscheinlichsten Folge ist.&nbsp;
  
*Zu  $\gamma_{2}(\rm 111) = 0.35$ werden die gleichen Fehlergrößen $\varepsilon_{3}(\rm 11)$ bzw.  $\varepsilon_{3}(\rm 10)$ hinzuaddiert wie zu $\gamma_{2}(\rm 101) = 0.05$. Wegen  $\gamma_{2}(\rm 111) > \gamma_{2}(\rm 101)$ steht somit bereits bei $\nu = 2$ fest, dass $\rm 111$ nicht Bestandteil der wahrscheinlichsten Folge sein kann. Gleiches gilt für $\rm 001$ und $\rm 011$. Diese Knoten und alle ihre Nachfahren müssen deshalb nicht weiter beachtet werden (braune Überdeckungen).<br>
+
*Gleiches gilt für &nbsp;"$\rm 001$"&nbsp; und &nbsp;"$\rm 011$".&nbsp; Diese Knoten und alle ihre Nachfahren müssen deshalb nicht weiter beachtet werden&nbsp; $($braune Überdeckungen$)$.<br>
  
*Auch die abgerundeten Knoten $\gamma_{2}(\rm 000) = 0.78$, $\gamma_{2}(\rm 010) = 0.24$ und $\gamma_{2}(\rm 100) = 0.26$ sind nicht Bestandteil der wahrscheinlichsten Folge, da sie  größer sind als der grün markierte Knoten $\gamma_{2}(\rm 110) = 0.14$. Auch diese und ihre Nachfahren müssen ab dem Zeitpunkt $\nu = 3$ nicht mehr berücksichtigt werden müssen (grüne Überdeckungen).<br>
+
*Auch die abgerundeten Knoten &nbsp;$\gamma_{2}(\rm 000) = 0.78$, &nbsp;$\gamma_{2}(\rm 010) = 0.24$&nbsp; und&nbsp; $\gamma_{2}(\rm 100) = 0.26$&nbsp; sind nicht Bestandteil der wahrscheinlichsten Folge, da sie  größer sind als der grün markierte Knoten &nbsp;$\gamma_{2}(\rm 110) = 0.14$.  
  
 +
*Auch diese und ihre Nachfahren müssen ab dem Zeitpunkt &nbsp;$\nu = 3$&nbsp; nicht mehr berücksichtigt werden&nbsp; $($grüne Überdeckungen$)$.<br>
 +
<br clear=all>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Von den acht Knoten bei $\nu = 2$ müssen nur zwei weiterverfolgt werden, nämlich das Rechteck $\gamma_{2}(\rm 101) = 0.05$ und das abgerundete Rechteck $\gamma_{2}(\rm 110) = 0.14$. Diese beschreiben die minimalen Gesamtfehlergrößen unter der Annahme, dass $a_3 = 0$ bzw. $a_3 = 1$ sein wird.}}<br><br>
+
$\text{Fazit:}$&nbsp;  
 +
*Von den acht Knoten bei &nbsp;$\nu = 2$&nbsp; müssen nur zwei weiterverfolgt werden,&nbsp; nämlich das Rechteck &nbsp;$\gamma_{2}(\rm 101) = 0.05$&nbsp; und das abgerundete Rechteck &nbsp;$\gamma_{2}(\rm 110) = 0.14$.  
 +
*Diese beschreiben die minimalen Gesamtfehlergrößen unter der hypothetischen Annahme,&nbsp; dass &nbsp;$a_3 = 0$&nbsp; bzw. &nbsp;$a_3 = 1$&nbsp; wäre.}}
  
  
  
== Trellisdiagramm ==
+
== Darstellung der minimalen Gesamtfehlergrößen &ndash; Trellisdiagramm ==
 
<br>
 
<br>
Verallgemeinern wir nun das Ergebnis dieses Beispiels. Unter der weiterhin gültigen Annahme, dass der Grundimpuls neben dem Hauptwert $(g_0)$ nur einen Vorläufer $(g_{-1})$ aufweist, ergeben sich die beiden '''minimalen Gesamtfehlergrößen''' zum Zeitpunkt $\nu$ formal zu
+
Wir verallgemeinern nun das Ergebnis dieses Beispiels.&nbsp; Unter der weiterhin gültigen Annahme,&nbsp; dass der Grundimpuls neben dem Hauptwert &nbsp;$(g_0)$&nbsp; nur einen Vorläufer &nbsp;$(g_{-1})$&nbsp; aufweist,&nbsp; ergeben sich die beiden &nbsp; '''minimalen Gesamtfehlergrößen''' &nbsp; zum Zeitpunkt &nbsp;$\nu$&nbsp; formal zu
 
:$${\it \Gamma}_{\nu}(0)  =  {\rm Min}\left[{\it \Gamma}_{\nu-1}(0) + \varepsilon_{\nu}(00),
 
:$${\it \Gamma}_{\nu}(0)  =  {\rm Min}\left[{\it \Gamma}_{\nu-1}(0) + \varepsilon_{\nu}(00),
 
  \hspace{0.2cm}{\it \Gamma}_{\nu-1}(1) + \varepsilon_{\nu}(10)\right] \hspace{0.05cm},$$
 
  \hspace{0.2cm}{\it \Gamma}_{\nu-1}(1) + \varepsilon_{\nu}(10)\right] \hspace{0.05cm},$$
Zeile 186: Zeile 194:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Das Verfahren der <i>Gesamtfehlerminimierung</i> lässt sich im '''Trellisdiagramm''' anschaulich darstellen.<br>
+
Das Verfahren der&nbsp; "Gesamtfehlerminimierung"&nbsp; lässt sich im &nbsp;'''Trellisdiagramm'''&nbsp; anschaulich darstellen.&nbsp; Ein Vergleich mit den Bildern auf den letzten Seiten zeigt:<br>
  
[[Datei:P ID1472 Dig T 3 8 S3b version1.png|center|frame|Beispielhaftes Trellisdiagramm|class=fit]]<br>
+
[[Datei:P ID1472 Dig T 3 8 S3b version1.png|right|frame|Beispielhaftes Trellisdiagramm|class=fit]]
  
Ein Vergleich mit den Bildern auf den letzten Seiten zeigt:
+
*Der untere Zweig stellt die minimale Gesamtfehlergröße &nbsp;${\it \Gamma}_{\nu}(0)$&nbsp; dar,&nbsp; die zu jedem Zeitpunkt&nbsp; $\nu$&nbsp; unter der Hypothese berechnet wird,&nbsp; dass &nbsp;$a_{\nu + 1} = 0$&nbsp; gelten wird&nbsp; (blaue abgerundete Quadrate).<br>
*Der untere Zweig stellt die minimale Gesamtfehlergröße ${\it \Gamma}_{\nu}(0)$ dar, die zu jedem Zeitpunkt $\nu$ unter der Hypothese berechnet wird, dass $a_{\nu + 1} = 0$ gelten wird (blaue abgerundete Quadrate).<br>
 
  
*Dagegen beschreibt der obere Zweig die minimalen Gesamtfehlergrößen ${\it \Gamma}_{\nu}(1)$ unter der Annahme $a_{\nu + 1} = 1$  (rote Quadrate). Auch hier sind die Zahlenwerte an das bisherige Beispiel angepasst.<br>
+
*Der obere Zweig beschreibt die minimalen Gesamtfehlergrößen &nbsp;${\it \Gamma}_{\nu}(1)$&nbsp; unter der Annahme&nbsp; $a_{\nu + 1} = 1$&nbsp; (rote Quadrate).&nbsp; Auch hier sind die Zahlenwerte an das bisherige Beispiel angepasst.<br>
  
*Außer ${\it \Gamma}_{\nu}(0)$ und ${\it \Gamma}_{\nu}(1)$ muss der ML&ndash;Entscheider auch die dazugehörigen Symbolfolgen (Pfade) abspeichern. Diese Zweige sind in der Grafik rot bzw. blau hervorgehoben.<br>
+
*Außer&nbsp; ${\it \Gamma}_{\nu}(0)$&nbsp; und&nbsp; ${\it \Gamma}_{\nu}(1)$&nbsp; muss der ML&ndash;Entscheider auch die zugehörigen Symbolfolgen&nbsp; ("Pfade")&nbsp; abspeichern.&nbsp; Diese Zweige sind in der Grafik rot bzw. blau hervorgehoben.<br>
  
*Falls ${\it \Gamma}_{\nu}$ aus dem Knoten ${\it \Gamma}_{\nu-1}(0)$ hervorgeht &ndash; also wenn der untere der beiden ankommenden Zweige hervorgehoben ist &ndash; so ist das dazugehörige Symbol $\rm 0$, andernfalls die $\rm 1$.<br>
+
*Falls &nbsp;${\it \Gamma}_{\nu}$&nbsp; aus dem Knoten &nbsp;${\it \Gamma}_{\nu-1}(0)$&nbsp; hervorgeht &ndash; also wenn der untere der beiden ankommenden Zweige hervorgehoben ist &ndash; so ist das dazugehörige Symbol &nbsp;"$\rm 0$",&nbsp; andernfalls das Symbol &nbsp;"$\rm 1$".<br>
  
*Zur Zeit $\nu = 3$ ergeben sich z. B. sowohl ${\it \Gamma}_{3}(0) = 0.14$ als auch ${\it \Gamma}_{3}(1) = 0.23$ aus dem Vorgänger ${\it \Gamma}_{2}(0)$, so dass beide ausgewählte Pfade jeweils auf das Symbol $\rm 0$ verweisen (blaue Zweige).<br>
+
*Zur Zeit &nbsp;$\nu = 3$&nbsp; ergeben sich   &nbsp;${\it \Gamma}_{3}(0) = 0.14$&nbsp; und  &nbsp;${\it \Gamma}_{3}(1) = 0.23$&nbsp; aus dem gleichen Vorgänger &nbsp;${\it \Gamma}_{2}(0)$,&nbsp; so dass beide ausgewählte Pfade jeweils auf das Symbol &nbsp;"$\rm 0$"&nbsp; verweisen&nbsp; (blaue Zweige).<br>
  
 
== Vereinfachtes Trellisdiagramm ==
 
== Vereinfachtes Trellisdiagramm ==
 
<br>
 
<br>
Der Vorteil des Trellisdiagramms besteht darin, dass sich die Anzahl der Knoten und Zweige nicht bei jedem Iterationsschritt verdoppeln. Durch die Auswahl der minimalen Gesamtfehlergrößen werden nur noch diejenigen Symbolfolgen weiter betrachtet, die als Teil der wahrscheinlichsten Folge überhaupt noch in Frage kommen.<br>
+
Der Vorteil des Trellisdiagramms besteht darin,&nbsp; dass sich die Anzahl der Knoten und Zweige nicht bei jedem Iterationsschritt verdoppeln.&nbsp; Durch die Auswahl der minimalen Gesamtfehlergrößen werden nur noch diejenigen Symbolfolgen weiter betrachtet,&nbsp; die als Teil der wahrscheinlichsten Folge überhaupt noch in Frage kommen.<br>
  
Das Trellisdiagramm lässt sich weiter vereinfachen, indem man nur noch die ausgewählten Zweige einzeichnet. Dies ist im unteren Teil der Grafik an unserem Zahlenbeispiel verdeutlicht. Zur Erinnerung: Die tatsächlich gesendeten Amplitudenkoeffizienten seien <i>a</i><sub>1</sub> = 1, <i>a</i><sub>2</sub> = 1 und <i>a</i><sub>3</sub> = 0, und das oben gezeichnete Trellisdiagramm wurden unter der Annahme berechnet, dass aufgrund der Impulswerte <i>g</i><sub>&ndash;1</sub> = 0.3 und <i>g</i><sub>0</sub> = 0.7 und des AWGN&ndash;Rauschens die Eingangswerte <i>d</i><sub>0</sub> = 0.2, <i>d</i><sub>1</sub> = 0.7, <i>d</i><sub>2</sub> = 0.5 und <i>d</i><sub>3</sub> = 0 am ML&ndash;Entscheider anliegen.<br>
+
Das Trellisdiagramm lässt sich weiter vereinfachen,&nbsp; indem man nur noch die ausgewählten Zweige einzeichnet.&nbsp; Dies ist im unteren Teil der Grafik an unserem Zahlenbeispiel verdeutlicht.&nbsp; Zur Erinnerung: &nbsp;
 +
#Die tatsächlich gesendeten Amplitudenkoeffizienten seien &nbsp;$a_1= 1$, &nbsp;$a_2= 1$&nbsp; und&nbsp; $a_3= 0$.
 +
#Das oben gezeichnete Trellisdiagramm wurde unter der Annahme berechnet,&nbsp; dass aufgrund der Impulswerte&nbsp; $g_{-1} = 0.3$&nbsp; und&nbsp; $g_{0} = 0.7$.&nbsp;  
 +
#Am ML&ndash;Entscheider liegen  die verrauschten Eingangswerte &nbsp;$d_0= 0.2$, &nbsp;$d_1= 0.7$, &nbsp;$d_2= 0.5$&nbsp; und&nbsp; $d_3= 0$&nbsp; an.<br>
  
[[Datei:P ID1473 Dig T 3 8 S4 version1.png|center|frame|Trellisdiagramm und vereinfachtes Trellisdiagramm|class=fit]]<br>
+
[[Datei:P ID1473 Dig T 3 8 S4 version1.png|right|frame|Trellisdiagramm&nbsp; (oben)&nbsp; und vereinfachtes Trellisdiagramm&nbsp; (unten)|class=fit]]
 +
<br>
 +
Dieses&nbsp; ''' vereinfachte Trellisdiagramm'''&nbsp; erlaubt folgende Aussagen:
 +
*Die Entscheidung über &nbsp;$a_1= 1$&nbsp; kann sofort zum Zeitpunkt &nbsp;$\nu = 1$&nbsp; getroffen werden,&nbsp; da sich unter beiden Hypothesen &ndash; nämlich das nachfolgende Symbol sei&nbsp; $a_2= 0$&nbsp; bzw. dieses Symbol  sei&nbsp; $a_2= 1$&nbsp; &ndash; das gleiche Resultat&nbsp; $a_1= 1$&nbsp; ergibt.<br>
  
Dieses vereinfachte Trellisdiagramm erlaubt folgende Aussagen:
+
*Dagegen kann zur Zeit &nbsp;$\nu = 2$&nbsp; die endgültige Entscheidung über&nbsp; $a_2$&nbsp; noch nicht getroffen werden.&nbsp; Unter der Annahme,&nbsp; dass&nbsp; $a_3= 0$&nbsp; sein wird,&nbsp;würde sich für&nbsp; $a_2= 1$&nbsp; entschieden.&nbsp; Die Hypothese&nbsp; $a_3= 1$&nbsp; würde zur Festlegung auf&nbsp; $a_2= 0$&nbsp; führen.<br>
*Die Entscheidung über <i>a</i><sub>1</sub> = 1 kann sofort zum Zeitpunkt <i>&nu;</i> = 1 getroffen werden, da sich unter beiden Hypothesen &ndash; nämlich das nachfolgende Symbol ist <i>a</i><sub>2</sub> = 0 bzw. das nachfolgende Symbol  ist <i>a</i><sub>2</sub> = 1 &ndash; das gleiche Resultat <i>a</i><sub>1</sub> = 1 ergibt.<br>
 
  
*Dagegen kann die endgültige Entscheidung über <i>a</i><sub>2</sub> zum Zeitpunkt <i>&nu;</i> = 2 noch nicht getroffen werden. Unter der Annahme, dass <i>a</i><sub>3</sub> = 0 sein wird, müsste man sich für <i>a</i><sub>2</sub> = 1 entscheiden, während die Hypothese <i>a</i><sub>3</sub> = 1 zur Festlegung auf <i>a</i><sub>2</sub> = 0 führen würde.<br>
+
*Bei&nbsp; $\nu = 3$&nbsp; ist die Entscheidung für&nbsp; $a_1= 1$, &nbsp;$a_2= 1$, &nbsp;$a_3= 0$&nbsp; endgültig,&nbsp; da beide durchgehenden Pfade diese&nbsp; (die in diesem Fall richtige)&nbsp; Folge suggerieren.
 +
 +
*Würde man die finale Entscheidung auf den Zeitpunkt &nbsp;$\nu = 4$&nbsp; verschieben, so hätte man auch nicht mehr nutzbare Information über&nbsp; $a_1$,&nbsp; $a_2$&nbsp; und&nbsp; $a_3$&nbsp; zur Verfügung.<br><br>
  
*Zur Zeit <i>&nu;</i> = 3 ist die Entscheidung für <i>a</i><sub>1</sub> = 1, <i>a</i><sub>2</sub> = 1, <i>a</i><sub>3</sub> = 0 endgültig, da beide durchgehenden Pfade diese (die in diesem Fall richtige) Folge suggerieren. Würde man die Entscheidung auf den Zeitpunkt <i>&nu;</i> = 4 verschieben, so hätte man nicht mehr nutzbare Information über <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub> und <i>a</i><sub>3</sub>.<br><br>
 
 
Alle Aussagen dieses Kapitels können mit dem folgenden Interaktionsmodul überprüft werden:<br>
 
[[:File:Viterbi.swf|Viterbi&ndash;Empfänger für einen Vorläufer]]<br>
 
  
 
== Erweiterung auf zwei Vorläufer ==
 
== Erweiterung auf zwei Vorläufer ==
 
<br>
 
<br>
Wird der Grundimpuls durch die Abtastwerte <i>g</i><sub>0</sub>, <i>g</i><sub>&ndash;1</sub> und <i>g</i><sub>&ndash;2</sub> beschrieben, so gibt es im Trellisdiagramm zu jedem Zeitpunkt <i>&nu;</i> genau vier Metriken <i>&Gamma;<sub>&nu;</sub></i>(00), ... , <i>&Gamma;<sub>&nu;</sub></i>(11) zu bestimmen.  <i>&Gamma;<sub>&nu;</sub></i>(01) beschreibt dann beispielsweise die minimale Gesamtfehlergröße für die Detektion des Symbols <i>a<sub>&nu;</sub></i> unter der Hypothese, dass <i>a<sub>&nu;</sub></i><sub>+1</sub> = 0 und <i>a<sub>&nu;</sub></i><sub>+2</sub> = 1 sein werden, und es gilt:
+
Wird der Grundimpuls durch die Abtastwerte&nbsp; $g_{0} \ne 0$,&nbsp; $g_{-1} \ne 0$&nbsp; und&nbsp; $g_{-2} \ne 0$&nbsp; beschrieben, so müssen im Trellisdiagramm zu jedem Zeitpunkt &nbsp;$\nu$&nbsp; vier Metriken&nbsp; ${\it \Gamma}_{\nu}(00)$,&nbsp; ${\it \Gamma}_{\nu}(01)$,&nbsp; ${\it \Gamma}_{\nu}(10)$&nbsp; und&nbsp; ${\it \Gamma}_{\nu}(11)$&nbsp; bestimmt werden
  
:<math>{\it \Gamma}_{\nu}(01) = {\rm Min}\left[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001),
+
${\it \Gamma}_{\nu}(01)$&nbsp; beschreibt dann beispielsweise die minimale Gesamtfehlergröße für die Detektion des Symbols&nbsp; $a_\nu$&nbsp; unter der Hypothese,&nbsp; dass&nbsp; $a_{\nu-1} = 0$&nbsp; und&nbsp; $a_{\nu-2} = 1$&nbsp; sein werden,&nbsp; und es gilt:
  \hspace{0.2cm}{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\right]
+
:$${\it \Gamma}_{\nu}(01) = {\rm Min}\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001),
  \hspace{0.05cm}.</math>
+
  \hspace{0.2cm}{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big]
 +
  \hspace{0.05cm}.$$
  
In der Aufgabe  A3.12 wird noch im Detail auf die Berechnung der Fehlergrößen und die Minimierung der Gesamtfehlergrößen eingegangen. Hier betrachten wir nur ein beispielhaftes Trellisdiagramm, das die (fehlerfreie) Detektion von folgender Symbolfolge widergibt:
+
In der&nbsp; [[Aufgaben:Aufgabe_3.12:_Trellisdiagramm_für_zwei_Vorläufer|Aufgabe  3.12]]&nbsp; wird im Detail auf die Berechnung der Fehlergrößen (Metriken) und die Minimierung der Gesamtfehlergrößen (akkumulierten Metriken) eingegangen.  
  
:<math>a_{1}=0 \hspace{0.05cm},\hspace{0.2cm}
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 4:}$&nbsp; Wir betrachten hier ein beispielhaftes Trellisdiagramm,&nbsp; das die&nbsp; (fehlerfreie)&nbsp; Detektion von folgender Symbolfolge widergibt:
 +
[[Datei:P ID1474 Dig T 3 8 S5 version1.png|right|frame|Trellisdiagramm für zwei Vorläufer|class=fit]]
 +
 +
:$$a_{1}=0 \hspace{0.05cm},\hspace{0.2cm}
 
a_{2}=0  
 
a_{2}=0  
 
\hspace{0.05cm},\hspace{0.2cm} a_{3}=1
 
\hspace{0.05cm},\hspace{0.2cm} a_{3}=1
 
\hspace{0.05cm},\hspace{0.2cm} a_{4}=1
 
\hspace{0.05cm},\hspace{0.2cm} a_{4}=1
 
\hspace{0.05cm},\hspace{0.2cm} a_{5}=1
 
\hspace{0.05cm},\hspace{0.2cm} a_{5}=1
\hspace{0.05cm},\hspace{0.2cm} a_{6}=0 \hspace{0.05cm}, \hspace{0.05cm}...</math>
+
\hspace{0.05cm},\hspace{0.2cm} a_{6}=0 \hspace{0.05cm}, \hspace{0.05cm}\text{...}$$
 
 
[[Datei:P ID1474 Dig T 3 8 S5 version1.png|Trellisdiagramm für zwei Vorläufer|class=fit]]<br>
 
  
 
Dieses vereinfachte Trellisdiagramm erlaubt folgende Aussagen:
 
Dieses vereinfachte Trellisdiagramm erlaubt folgende Aussagen:
*Alle von <i>&Gamma;<sub>&nu;</sub></i><sub>&ndash;1</sub> (00) bzw. <i>&Gamma;<sub>&nu;</sub></i><sub>&ndash;1</sub> (01) abgehende Zweige sind dem Symbol &bdquo;0&rdquo; zugeordnet und blau gezeichnet. Die von den zwei oberen Zuständen abgehenden roten Zweige kennzeichnen die &bdquo;1&rdquo;.<br>
+
#Alle von &nbsp;${\it \Gamma}_{\nu}(00)$&nbsp; bzw.&nbsp; ${\it \Gamma}_{\nu}(01)$&nbsp; abgehende Zweige gehören zum Symbol&nbsp; "$\rm 0$"&nbsp; und sind blau gezeichnet.&nbsp; Die von den beiden oberen Zuständen abgehenden roten Zweige beschreiben die&nbsp; "$\rm 1$".<br>
 
+
#Verfolgt man die durchgehenden Pfade,&nbsp; so kann man die Folge erkennen.&nbsp; Da bei&nbsp; $\nu = 6$&nbsp; nur Zweige gleicher Farbe ankommen, liegen hier die ersten sechs Bit der Folge endgültig fest.<br>
*Verfolgt man die durchgehenden Pfade, so erkennt man die angegebene Folge. Da zum Zeitpunkt <i>&nu;</i> = 6 nur blaue Zweige ankommen, liegen hier die ersten sechs Bit der Folge endgültig fest.<br>
+
#Teilfolgen könnten aber auch bereits zu den Zeiten&nbsp; $\nu = 1$,&nbsp; $\nu = 3$&nbsp; und&nbsp; $\nu = 4$&nbsp; ausgegeben werden, da sich zu diesen Zeiten für alle vier Zustände die gleichen Teilpfade ergeben.<br>
 
+
#Bei&nbsp; $\nu = 2$&nbsp; und&nbsp; $\nu = 5$&nbsp; darf nicht sofort entschieden werden. Beispielsweise ist zur Zeit&nbsp; $\nu = 5$&nbsp; nur sicher, dass entweder&nbsp; "$a_5 = 0$,&nbsp; $a_6 = 1$"&nbsp;  sein werden oder&nbsp; "$a_5 = 1$,&nbsp; $a_6 = 0$".&nbsp; Andere Kombinationen sind nicht möglich.}}<br>
*Teilfolgen könnten aber auch bereits zu den Zeiten <i>&nu;</i> = 1, <i>&nu;</i> = 3 und <i>&nu;</i> = 4 ausgegeben werden, da sich zu diesen Zeiten für alle vier Zustände die gleichen Teilpfade ergeben.<br>
 
 
 
*Dagegen darf bei <i>&nu;</i> = 2 und <i>&nu;</i> = 5 nicht sofort entschieden werden. Beispielsweise ist zum Zeitpunkt <i>&nu;</i> = 5 nur sicher, dass entweder <i>a</i><sub>5</sub> = 0, <i>a</i><sub>6</sub> = 1 oder <i>a</i><sub>5</sub> = 1, <i>a</i><sub>6</sub> = 0 sein werden.<br>
 
  
 
== Fehlerwahrscheinlichkeit bei Maximum–Likelihood–Entscheidung==
 
== Fehlerwahrscheinlichkeit bei Maximum–Likelihood–Entscheidung==
 
<br>
 
<br>
Die exakte Berechnung der Fehlerwahrscheinlichkeit <i>p</i><sub>B</sub> bei ML&ndash;Entscheidung (beispielsweise mit dem Korrelations&ndash; oder dem Viterbi&ndash;Empfänger) ist sehr aufwändig. Dabei müssen  
+
Die exakte Fehlerwahrscheinlichkeitsberechnung bei ML&ndash;Entscheidung&nbsp; $($zum Beispiel mit dem Korrelations&ndash; oder dem Viterbi&ndash;Empfänger$)$&nbsp; ist aufwändig.&nbsp; Dabei müssen  
*die Differenzenergien zwischen allen möglichen Symbolfolgen <i>Q<sub>i</sub></i>, <i>Q<sub>j</sub></i> ermittelt werden, wobei die Fehlerwahrscheinlichkeit im Wesentlichen durch die minimale Differenzenergie bestimmt wird;<br>
+
*die Differenzenergien zwischen allen möglichen Symbolfolgen&nbsp; $Q_i$&nbsp; und&nbsp;  $Q_{j \ne i}$&nbsp; ermittelt werden,&nbsp; wobei die Fehlerwahrscheinlichkeit im Wesentlichen durch die minimale Differenzenergie bestimmt wird;<br>
  
*auch die Einflüsse von Matched&ndash;Filter <i>H</i><sub>MF</sub>(<i>f</i>) und Dekorrelationsfilter <i>H</i><sub>DF</sub>(<i>f</i>) berücksichtigt und der Effektivwert <i>&sigma;<sub>d</sub></i> des Detektionsstörsignals bestimmt werden.<br><br>
+
*die Einflüsse von Matched&ndash;Filter&nbsp; $H_{\rm MF}(f)$&nbsp; und Dekorrelationsfilter&nbsp; $H_{\rm DF}(f)$&nbsp; berücksichtigt werdrn und zusätzlich ist der Effektivwert&nbsp; $\sigma_d$&nbsp; des Detektionsstörsignals zu bestimmen.<br><br>
  
Eine einfache Näherung für die (mittlere) Fehlerwahrscheinlichkeit bei ML&ndash;Entscheidung lautet:
+
{{BlaueBox|TEXT= 
 
+
$\text{Ohne Beweis:}$&nbsp; Eine einfache Näherung für die (mittlere) &nbsp;'''Fehlerwahrscheinlichkeit bei Maximum–Likelihood–&ndash;Entscheidung'''&nbsp; lautet:
:<math>p_{\rm ML} = {\rm Q}\left(\frac{g_{\rm max}}{\sigma_d}\right)
+
:$$p_{\rm ML} = {\rm Q}\left(g_{\rm max}/{\sigma_d}\right)
 
  \hspace{0.3cm}{\rm mit}\hspace{0.2cm}g_{\rm max}= {\rm
 
  \hspace{0.3cm}{\rm mit}\hspace{0.2cm}g_{\rm max}= {\rm
  Max}\hspace{0.15cm}|g_\nu
+
  Max}\hspace{0.15cm} \vert g_\nu \vert \hspace{0.05cm}.$$
|
+
Die Näherung gilt nur für binäre bipolare Signalisierung. Bei unipolarer Signalisierung ist das Argument der Q-Funktion zu halbieren.}}<br>
\hspace{0.05cm}.</math>
 
  
Diese Näherung gilt nur bei bipolarer Signalisierung. Bei unipolaren Amplitudenkoeffizienten muss das Argument der Q-Funktion halbiert werden.<br>
+
Für die Interpretation und das anschließende Beispiel wird vorausgesetzt, dass&nbsp; $v + 1$&nbsp; Grundimpulswerte (inklusive Hauptwert) von Null verschieden sind. Dann gilt:
 +
#Der Viterbi&ndash;Entscheider muss alle diese Grundimpulswerte berücksichtigen.&nbsp; Das bedeutet,&nbsp; dass ein Trellisdiagramm mit&nbsp; $2^v$&nbsp; Zuständen zu bearbeiten ist.<br>
 +
#Voraussetzung für die Gültigkeit obiger Gleichung ist die Unkorreliertheit der Störungen am Entscheider,&nbsp; die durch das Dekorrelationsfilter erreicht wird.<br>
 +
#Für den Vergleich mit Schwellenwertentscheider&nbsp; $(p_{\rm SE})$&nbsp; bzw. Entscheidungsrückkopplung&nbsp; $(p_{\rm DFE})$&nbsp; wird der Störeffektivwert&nbsp; $\sigma_d$&nbsp; als konstant vorausgesetzt.<br>
 +
#Die Optimierung des ML&ndash;Systems  führt zu sehr schmalbandigen Filtern,&nbsp; da alle Impulsausläufer durch den ML&ndash;Algorithmus herausgerechnet werden können.<br>
 +
#Bei konstanter Rauschleistungsdichte&nbsp; $N_0$&nbsp; $($am Empfängereingang$)$&nbsp; ist die Störleistung&nbsp; $\sigma_d^2$&nbsp; $($am Entscheider$)$&nbsp; beim ML&ndash;System kleiner als bei anderen Varianten.<br>
 +
#Das bedeutet: &nbsp; Der Störabstandsgewinn durch die ML&ndash;Entscheidung ist unter Umständen noch größer,&nbsp; als es das folgende Beispiel&nbsp; $($mit &nbsp;$\sigma_d = \rm const.)$&nbsp; ausdrückt.<br>
  
Für die folgende Interpretation und das anschließende Beispiel auf der nächsten Seite wird vorausgesetzt, dass <i>&upsilon;</i> + 1 Grundimpulswerte (inclusive des Hauptwertes) von 0 verschieden sind. Dann gilt:
 
*Der Viterbi&ndash;Entscheider muss alle diese Grundimpulswerte berücksichtigen. Das bedeutet, dass ein Trellisdiagramm mit 2<sup><i>&upsilon;</i></sup> Zuständen zu bearbeiten ist.<br>
 
  
*Voraussetzung für die Gültigkeit obiger Gleichung ist die Unkorreliertheit der Störungen am Entscheider, die durch das Dekorrelationsfilter erreicht wird.<br>
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 5:}$&nbsp; Wir betrachten die Grundimpulswerte&nbsp; $g_{0} = 0.6$&nbsp; und&nbsp; $g_{-1} = g_{+1} = 0.2 \ ( = g_1)$.&nbsp; Zudem  gehen wir vom konstanten Störeffektivwert&nbsp; $\sigma_d = 0.1$&nbsp; aus.&nbsp; Zur Vereinfachung sind alle Größen normiert.<br>
  
*Für den Vergleich mit Schwellenwertentscheider (<i>p</i><sub>SE</sub>) bzw. Entscheidungsrückkopplung (<i>p</i><sub>DFE</sub>) wird der Effektivwert <i>&sigma;<sub>d</sub></i> des Detektionsstörsignals als konstant vorausgesetzt.<br>
+
*Bei einem Binärempfänger mit einfacher Schwellenwertentscheidung &nbsp;$\rm (SE)$&nbsp; entsprechend dem Kapitel&nbsp; [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen|"Fehlerwahrscheinlichkeit unter Berücksichtigung von Impulsinterferenzen"]]&nbsp; ergibt sich bei bipolarer Signalisierung  für die&nbsp; $($mittlere$)$&nbsp; Fehlerwahrscheinlichkeit:
 
+
:$$p_{\rm SE}  =  {1}/{4}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}+\hspace{-0.02cm}2 \cdot g_{1} }{\sigma_d}\right)
*Zu berücksichtigen ist aber, dass die Optimierung des ML&ndash;Systems zu sehr schmalbandigen Filtern führt, da alle Impulsausläufer durch den ML&ndash;Algorithmus herausgerechnet werden können.<br>
+
  +{1}/{2}\cdot {\rm
 
+
  Q}\left(\frac{g_{0} }{\sigma_d}\right)+ {1}/{4}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}2 \cdot g_{1} }{\sigma_d}\right)
*Unter der Voraussetzung konstanter Rauschleistungsdichte <i>N</i><sub>0</sub> (am Empfängereingang) ist deshalb der Störeffektivwert (am Entscheider) beim ML&ndash;System kleiner als bei den anderen Varianten.<br>
+
  \approx {1}/{4}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}2 \cdot g_{1} }{\sigma_d}\right) \frac{ {\rm
 
 
*Das bedeutet: Der Störabstandsgewinn durch die Maximum&ndash;Likelihood&ndash;Entscheidung ist unter Umständen noch größer, als es das nachfolgende Beispiel (mit <i>&sigma;<sub>d</sub></i> = const.) ausdrückt.<br>
 
 
 
== Fehlerwahrscheinlichkeit bei Maximum–Likelihood–Entscheidung (2) ==
 
<br>
 
{{Beispiel}}''':''' Wir betrachten die Grundimpulswerte <i>g</i><sub>&ndash;1</sub> = 0.2, <i>g</i><sub>0</sub> = 0.6 und <i>g</i><sub>1</sub> = 0.2 und gehen vom konstanten Störeffektivwert <i>&sigma;<sub>d</sub></i> = 0.1 aus. Zur Vereinfachung sind alle Größen normiert.<br>
 
 
 
Bei einem Binärempfänger mit einfacher Schwellenwertentscheidung entsprechend [http://www.lntwww.de/Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_unter_Ber%C3%BCcksichtigung_von_Impulsinterferenzen#Gau.C3.9Ff.C3.B6rmiges_Empfangsfilter_.281.29 Kapitel 3.2] ergibt sich für die (mittlere) Fehlerwahrscheinlichkeit bei bipolarer Signalisierung:
 
 
 
:<math>p_{\rm SE}  =  \frac{1}{4}\cdot {\rm Q}\left(\frac{g_{0}+g_{1}+g_{-1}}{\sigma_d}\right)
 
  +\frac{1}{4}\cdot {\rm
 
  Q}\left(\frac{g_{0}+g_{1}-g_{-1}}{\sigma_d}\right)</math>
 
::<math> \hspace{0.15cm}  =  \frac{1}{4}\cdot {\rm Q}\left(\frac{g_{0}-g_{1}+g_{-1}}{\sigma_d}\right)
 
  +\frac{1}{4}\cdot {\rm
 
Q}\left(\frac{g_{0}-g_{1}-g_{-1}}{\sigma_d}\right)\approx \frac{{\rm
 
 
  Q}(2)}{4}= 0.57 \%
 
  Q}(2)}{4}= 0.57 \%
  \hspace{0.05cm}.</math>
+
  \hspace{0.05cm}.$$
 
 
Für den Empfänger mit idealer Entscheidungsrückkopplung erhält man unter Berücksichtigung von <i>g</i><sub>1</sub> = 0 (Kompensation des Nachläufers):
 
  
:<math>p_{\rm DFE} = \frac{1}{2}\cdot {\rm Q}\left(\frac{g_{0}+g_{-1}}{\sigma_d}\right)
+
*Für den&nbsp; [[Digitalsignalübertragung/Entscheidungsrückkopplung|Empfänger mit Entscheidungsrückkopplung]]&nbsp; $\rm (DFE)$&nbsp; erhält man unter Berücksichtigung von&nbsp; $g_{+1} = 0$&nbsp; $($vollständige Kompensation des Nachläufers$)$:
  +\frac{1}{2}\cdot {\rm
+
:$$p_{\rm DFE} ={1}/{2}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}+\hspace{-0.02cm}g_{-1} }{\sigma_d}\right)
  Q}\left(\frac{g_{0}-g_{-1}}{\sigma_d}\right)\approx \frac{{\rm
+
  +{1}/{2}\cdot {\rm
 +
Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}g_{-1} }{\sigma_d}\right)\approx {1}/{2}\cdot {\rm
 +
  Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}g_{-1} }{\sigma_d}\right)=\frac{{\rm
 
  Q}(4)}{4}= 0.16 \cdot 10^{-4}
 
  Q}(4)}{4}= 0.16 \cdot 10^{-4}
  \hspace{0.05cm}.</math>
+
  \hspace{0.05cm}.$$
  
Dagegen führt die Anwendung der Maximum&ndash;Likelihood&ndash;Entscheidung (mit Korrelations&ndash; bzw. Viterbi&ndash;Empfänger) zur sehr viel kleineren Fehlerwahrscheinlichkeit
+
*Dagegen führt die Anwendung der Maximum&ndash;Likelihood&ndash;Entscheidung&nbsp; $($mit&nbsp; [[Digitalsignalübertragung/Optimale_Empfängerstrategien#Matched.E2.80.93Filter.E2.80.93Empf.C3.A4nger_vs._Korrelationsempf.C3.A4nger|Korrelations&ndash;Empfänger]]&nbsp; bzw.&nbsp; [[Digitalsignalübertragung/Viterbi–Empfänger#Betrachtetes_Szenario_und_Voraussetzungen|Viterbi&ndash;Empfänger]])&nbsp; $\rm (ML)$ zur sehr viel kleineren Fehlerwahrscheinlichkeit
 +
:$$p_{\rm ML} = {\rm Q}\left(\frac{g_{0}}{\sigma_d}\right)
 +
\approx {\rm  Q}(6) = 10^{-9}
 +
\hspace{0.05cm}.$$
  
:<math>p_{\rm ML} = {\rm Q}\left(\frac{g_{0}}{\sigma_d}\right)
+
*Dies entspricht gegenüber den beiden anderen Systemen einem Störabstandsgewinn von ca.&nbsp; $3 \ \rm dB$&nbsp; $($gegenüber $\rm DFE)$&nbsp; bzw.&nbsp; $7.5 \ \rm dB$&nbsp; $($gegenüber $\rm SE)$.&nbsp; Das Ergebnis dieser einfachen Näherung wurde durch Simulationen im Wesentlichen bestätigt.}}<br>
\approx {\rm Q}(6) = 10^{-9}
 
\hspace{0.05cm}.</math>
 
  
Dies entspricht gegenüber den beiden anderen Systemen einem Störabstandsgewinn von ca. 3 dB (DFE) bzw. 7.5 dB (SE). Das Ergebnis dieser einfachen Näherung wurde durch Simulationen im Wesentlichen bestätigt.<br>
+
<u>Anmerkung:</u>
 +
#Um den Viterbi&ndash;Algorithmus direkt anwenden zu können,&nbsp; müssen die (normierten) Grundimpulswerte&nbsp; $g_{0} =0.2$,&nbsp; $g_{-1} =0.6$&nbsp; und&nbsp; $g_{-2} =0.2$&nbsp; eingestellt werden.
 +
#Eine Zeitverschiebung um Vielfache der Symboldauer $T$ ändert nämlich die Leistungsmerkmale der Viterbi&ndash;Entscheidung nicht.<br>
 +
#Die Maximum–Likelihood&ndash;Fehlerwahrscheinlichkeit nach obiger Gleichung richtet sich allein nach dem größten Grundimpulswert.  
 +
#Dabei kann es durchaus sein, dass ein &bdquo;Vorläufer&rdquo; $($hier:&nbsp; $g_{-1} =0.6)$&nbsp; größer als der Hauptwert&nbsp; $g_{0}$&nbsp; ist.
 +
# Bei Schwellenwertentscheidung würde das zu einem geschlossenen Auge führen.<br>
  
Um den oben beschriebenen Viterbi&ndash;Algorithmus direkt anwenden zu können, müssen die (normierten) Grundimpulswerte <i>g</i><sub>0</sub> = 0.2, <i>g</i><sub>&ndash;1</sub> = 0.6 und <i>g</i><sub>&ndash;2</sub> = 0.2 eingestellt werden. Eine Zeitverschiebung um Vielfache der Symboldauer <i>T</i> gegenüber dem aus Darstellungsgründen gewählten Koordinatensystem ändert nämlich die Leistungsmerkmale der Viterbi&ndash;Entscheidung nicht.<br>
 
  
Die ML&ndash;Fehlerwahrscheinlichkeit nach obiger Gleichung richtet sich allein nach dem größten aller Grundimpulswerte. Dabei kann es durchaus sein, dass &bdquo;Vorläufer&rdquo; größer sind als der Hauptwert.{{end}}<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp;  
 +
*Eine Maximum–Likelihood&ndash;Entscheidung ist nur bei Vorhandensein von Impulsinterferenzen von Vorteil.  
  
Aus der obigen Näherung erkennt man weiter, dass eine ML&ndash;Entscheidung nur bei Vorhandensein von Impulsinterferenzen von Vorteil ist. Bei Nyquistentzerrung (das heißt: nur der Grundimpulswert <i>g</i><sub>0</sub> ist von 0 verschieden) arbeitet auch der Maximum&ndash;Likelihood&ndash;Empfänger symbolweise und mit der gleichen Fehlerwahrscheinlichkeit Q(<i>g</i><sub>0</sub>/<i>&sigma;<sub>d</sub></i>) wie ein herkömmlicher Empfänger.<br>
+
*Bei Nyquistentzerrung&nbsp; $($das heißt: &nbsp; Nur der Grundimpulswert&nbsp; $g_0$&nbsp; ist ungleich Null$)$&nbsp; arbeitet auch der Maximum&ndash;Likelihood&ndash;Empfänger symbolweise und mit gleicher Fehlerwahrscheinlichkeit&nbsp; ${\rm Q}(g_0/\sigma_d)$&nbsp; wie ein Empfänger mit Schwellenwertentscheidung.}}<br>
  
 
== Aufgaben zum Kapitel==
 
== Aufgaben zum Kapitel==
 
<br>
 
<br>
[[Aufgaben:3.11 Viterbi–Empfänger und Trellisdiagramm|A3.11 Viterbi–Empfänger und Trellisdiagramm]]
+
[[Aufgaben:3.11_Viterbi-Empf%C3%A4nger_und_Trellisdiagramm|Aufgabe 3.11: Viterbi–Empfänger und Trellisdiagramm]]
  
[[Zusatzaufgaben:3.11 Maximum-Likelihood-Fehlergrößen]]
+
[[Aufgaben:3.11Z_Maximum-Likelihood-Fehlergrößen|Aufgabe 3.11Z: Maximum-Likelihood-Fehlergrößen]]
  
[[Aufgaben:3.12 Trellisdiagramm für 2 Vorläufer|A3.12 Trellisdiagramm für 2 Vorläufer]]
+
[[Aufgaben:3.12_Trellisdiagramm_für_zwei_Vorläufer|Aufgabe 3.12: Trellisdiagramm für zwei Vorläufer]]
  
[[Aufgaben:3.13 Vergleich SE – DFE – ML|A3.13 Vergleich SE – DFE – ML]]
+
[[Aufgaben:3.13_Vergleich_SWE_-_DFE_-_ML|Aufgabe 3.13: Vergleich SWE – DFE – ML]]
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 5. Juli 2022, 16:22 Uhr

Betrachtetes Szenario und Voraussetzungen


Der  "Korrelationsempfänger"  ist im Sinne der  Maximum–Likelihood–Entscheidungsregel  optimal,  das heißt,  er führt bei gleichwahrscheinlichen Quellensymbolen zur minimalen Fehlerwahrscheinlichkeit.  Nachteilig ist:

Blockschaltbild des Viterbi-Empfängers
  • Der Realisierungsaufwand steigt exponentiell mit der Länge  $N$  der zu detektierenden Symbolfolge.
  • Da die Folge gemeinsam entschieden wird,  kommt es bei großem  $N$  zu langen Verzögerungen.

In den 1970er Jahren hat  Andrew J. Viterbi  einen Maximum–Likelihood–Empfänger vorgeschlagen, der die Detektion von Teilen der empfangenen Nachricht erlaubt und bei dem sich der Realisierungsaufwand auch bei unendlich langen Folgen in Grenzen hält.

Zu den einzelnen Komponenten des Blockschaltbildes ist anzumerken:

  • Das an den Empfangsgrundimpuls  $g_r(t)$  und die Störung angepasste  "Matched–Filter"  $H_{\rm MF}(f)$  dient der  "Störleistungsbegrenzung".  Das MF–Ausgangssignal  $m(t)$  bzw. die Folge  $\langle m_\nu \rangle$  der äquidistanten Signalwerte nach der Abtastung besitzt das bestmögliche Signal–zu–Stör–Leistungsverhältnis  $\rm (SNR)$.
  • Aufgabe des Dekorrelationsfilters  $H_{\rm DF}(f)$  ist es,  aus der Folge   $\langle m_\nu \rangle$   die Detektionsabtastwerte   $d_\nu = d_{{\rm S}\nu} + d_{{\rm N}\nu}$   zu gewinnen,  deren Störanteile  $d_{{\rm N}\nu}$  unkorreliert sind.  Dieses Filter wird deshalb auch  "Whitening–Filter"  genannt.
  • Der  Viterbi–Entscheider,  der im Mittelpunkt der folgenden Betrachtungen steht,  gewinnt aus der Folge   $\langle d_\nu \rangle $  seiner wertkontinuierlichen Eingangswerte die binäre Ausgangsfolge   $\langle v_\nu \rangle$   entsprechend der Maximum–Likelihood–Regel mit der kleinstmöglichen Fehlerwahrscheinlichkeit  ${\rm Pr}(v_\nu \ne q_\nu)$.


Um den Viterbi–Algorithmus möglichst einfach beschreiben zu können,  werden hier einige vereinfachende Voraussetzungen getroffen:

  1. Die Amplitudenkoeffizienten seien unipolar   ⇒   $a_\nu \in \{0,\hspace{0.05cm} 1\}$.  Anzumerken ist,  dass es bei der Verwendung bipolarer Koeffizienten   ⇒   $a_\nu \in \{-1,\hspace{0.05cm} +1\}$  nur einiger weniger Modifikationen bedarf.  Diese Schwierigkeiten betreffen eher die Beschreibung als die Implementierung.
  2. Der Grundimpuls  $g_d(t)$  nach dem Dekorrelationsfilters  $H_{\rm DF}(f)$  besteht nur aus dem Hauptwert  $g_0 = g_d(t = T_{\rm D})$  und dem Vorläufer  $g_{-1} = g_d(t = T_{\rm D}-T)$.  Nachläufer gibt es in unserem Modell nicht:  $g_{\nu} = g_d(t = T_{\rm D}+\nu \cdot T)=0$.  Auch weitere Vorläufer seien vorerst ausgeschlossen:  $g_{-2} = g_{-3}= \text{ ...} = 0$.
  3. Für den Abtastwert des wertkontinuierlichen  $\rm DF$–Ausgangssignals  $d(t)$  zum Zeitpunkt  $\nu \cdot T$  erhält man das Ergebnis:    $d_{\nu} = a_{\nu}\cdot g_{0} + a_{\nu+1}\cdot g_{-1}+d_{{\rm N}\nu}\hspace{0.05cm}$,  wobei die Rauschkomponente  $d_{{\rm N}\nu}$  als gaußverteilt mit Standardabweichung  $\sigma_d$  angenommen wird.


Hinweise:  

Bei bipolarer Signalisierung ist der Algorithmus nicht aufwändiger.   $\bullet$   Dagegen steigt der Rechenaufwand,  wenn der Grundimpuls  $g_d(t)$  breiter wird und mehr als nur einen Vorläufer  $g_{-1}$  aufweist.   $\bullet$   Die Vernachlässigung von Nachläufern in der Beschreibung ist keine grundlegende Einschränkung,  weil jeder Impuls diese Bedingung durch geeignete Wahl des Detektionszeitpunktes  $T_{\rm D}$  erfüllen kann.   $\bullet$   Im Folgenden werden alle Signalwerte auf  $1$  normiert.

Abtastwerte zur Verdeutlichung des Viterbi-Algorithmus

$\text{Beispiel 1:}$  In der Grafik sind als (blaue) Kreuze die Detektionsnutzabtastwerte  $d_{ {\rm S}\nu}$  eingetragen, wobei die zugehörigen Amplitudenkoeffizienten  $a_1 = 1$,  $a_2 = 1$,  $a_3 = 0$, ... aus dem grün eingezeichneten Quellensignal  $q(t)$  abgelesen werden können.

Die Grundimpulswerte sind in diesem Beispiel zu  $g_0 = 0.7$  und  $g_{-1} = 0.3$  angenommen. Es ist weiter zu erkennen, dass  $d_{ {\rm S}\nu}$  nur vier verschiedene Werte annehmen kann, nämlich  $0$,  $g_{-1}=0.3$,  $g_0= 0.7$  und  $g_0 +g_{-1}= 1$.

Die am Viterbi–Entscheider anstehenden Abtastwerte (rote Punkte) sind  $d_0 = 0.2$,  $d_1 = 0.7$,  $d_2 = 0.5$,  $d_3 = 0$, ... , wobei die Differenzen  $d_{ {\rm N}\nu} = d_\nu - d_{ {\rm S}\nu}$  von einer AWGN–Rauschquelle herrühren.

  • Ein Schwellenwertentscheider $($mit der Schwelle bei  $E = 0.5)$  würde bei diesen dargestellten zehn Bit mindestens eine Fehlentscheidung treffen $($zur Zeit  $t = 4T)$, und eventuell eine weitere bei  $t = 2T$, falls der Abtastwert  $d_2 = 0.5$  doch geringfügig kleiner ist als der Schwellenwert  $E = 0.5$.
  • Dagegen wird der Viterbi–Empfänger diese Folge der Länge  $10$  richtig entscheiden, wie auf den nächsten Seiten gezeigt wird.


Fehlergrößen und Gesamtfehlergrößen


Wie im Kapitel  Optimale Empfängerstrategien  gibt  $Q \in \{Q_i\}$  die begrenzte,  aus  $N$  Binärsymbolen bestehende Quellensymbolfolge an.

  • Die Anzahl der möglichen Symbolfolgen  $Q_i$  ist somit  $2^N$.
  • $V$  bezeichnet die Sinkensymbolfolge der Länge  $N$,  die vom Viterbi–Entscheider gleich der wahrscheinlichsten Folge  $Q_j$  gesetzt wird.


$\text{Definitionen:}$ 

  • Die  Fehlergröße  $\varepsilon_{\nu}(i)$  bezeichnet die quadratische Abweichung zwischen dem tatsächlichen, verrauschten Abtastwert  $d_\nu$  und dem zur Folge  $Q_i$  gehörenden Nutzabtastwert  $d_{ {\rm S}\nu}$:
$$\varepsilon_{\nu}(i) = \vert d_{\nu} - d_{ {\rm S}\nu}(i) \vert^2 \hspace{0.05cm}.$$
In der Literatur findet man hierfür auch die Bezeichnung  "Teilmetrik"  (englisch:  "metric").
  • Die  Gesamtfehlergröße  $\gamma_{\nu}(i)$  kennzeichnet die Summe aller Fehlergrößen bis zum Zeitpunkt  $\nu$:
$$\gamma_{\nu}(i)= \sum_{k=0}^{\nu}\varepsilon_{k}(i) \hspace{0.05cm}.$$
Man spricht in diesem Zusammenhang auch von  "akkumulierten Metrik"  (englisch:  "accumulated metric").


Fehlergrößen  $\varepsilon_{\nu}(i)$  und Gesamtfehlergrößen  $\gamma_{\nu}(i)= \gamma_{\nu-1}(i\hspace{0.05cm}')+\varepsilon_{\nu}(i\hspace{0.05cm}'') \hspace{0.05cm}$  im Baumdiagramm.  Hinweise:   $\bullet$   $i$,  $i\hspace{0.05cm}'$,  $i\hspace{0.05cm}''$ sind unterschiedliche Laufvariable.
  $\bullet$   Definition gilt für Grundimpuls mit Hauptwert  $g_{0}$  und einem Vorläufer  $g_{-1}$.
  $\bullet$   Bei  $v$  Vorläufern müsste die obige Summe bei  $k = 1 -v$  beginnen.
  $\bullet$   Der Parameter  $i \in \{0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, 2^{N+1}-1\}$  wird meist binär dargestellt.
  $\bullet$   Er beschreibt die Amplitudenkoeffizienten  $a_1$, ... ,  $a_{\nu +1}$ $($jeweils  $0$  oder  $1)$.

Die Grafik verdeutlicht die oben definierten Größen in einer Baumstruktur,  woraus zu erkennen ist,  dass die Gesamtfehlergrößen iterativ berechnet werden können:

$$\gamma_{\nu}(i)= \gamma_{\nu-1}(i\hspace{0.05cm}')+\varepsilon_{\nu}(i\hspace{0.05cm}'') \hspace{0.05cm}.$$

Zu dieser Grafik ist weiter anzumerken:

  • Die Knoten des Baumdiagramms stehen für die  "Gesamtfehlergrößen"  $\gamma_{\nu}(i)$.  Deren Anzahl wird mit jedem Iterationsschritt verdoppelt.  Zum Zeitpunkt  $\nu$  gibt es  $2^{\nu+1}$  solcher Knoten.  Also für  $\nu = 3$  genau  $2^4 = 16$  Knoten.
  • Die zu den Gesamtfehlergrößen  $\gamma_{\nu}(i)$  gehörigen  "Amplitudenkoeffizienten"  ergeben sich,  wenn man den Weg vom Anfangsknoten bis zum betrachteten Knoten verfolgt.  Ein nach oben gerichteten Zweig steht für  $a_\nu=1$,  einem nach unten gerichteten Zweig wird der Koeffizient  $a_\nu=0$  zugewiesen.
  • Beispielsweise kennzeichnet der grün hinterlegte Knoten  $\gamma_{3}(\rm 1100)$  die Gesamtfehlergröße unter der hypothetischen Annahme, dass die Symbole  $a_1=1$,  $a_2=1$,  $a_3=0$,  $a_4=0$ gesendet wurden.
  • Diese Zuordnung kann auch aus den Richtungen der Pfeile im Baumdiagramm abgelesen werden:   Zunächst zweimal nach oben, dann zweimal nach unten.
  • Aufgrund des Vorläufers muss bereits zum Zeitpunkt  $\nu = 3$  der Koeffizient  $a_4$  mitberücksichtigt werden.  Alle Knoten  $\gamma_{\nu}(i)$,  die unter der Hypothese  $a_{\nu +1}=1$  berechnet werden,  sind im Baumdiagramm durch Rechtecke dargestellt.  Die Hypothese  $a_{\nu +1}=0$  wird jeweils durch ein abgerundetes Rechteck symbolisiert ist,  zum Beispiel  $\gamma_{2}(\rm 110)$  oder  $\gamma_{3}(\rm 1100)$.
  • Die Zweige im Baumdiagramm sind den  "Fehlergrößen"  $\varepsilon_{\nu}(i)$  zugeordnet.  Beim vorausgesetzten Grundimpuls  $($nur  $g_{0}$  und  $g_{-1}$  sind ungleich Null$)$  gibt es zu jedem Zeitpunkt mit Ausnahme des Startzustandes  $(\nu = 0)$  genau vier unterschiedliche Größen:
$$\varepsilon_{\nu}(00) = |d_{\nu}|^2\hspace{0.05cm},\hspace{0.5cm}\varepsilon_{\nu}(01) = |d_{\nu}-g_{-1}|^2\hspace{0.05cm},\hspace{0.2cm} \varepsilon_{\nu}(10) = |d_{\nu}-g_{0}|^2\hspace{0.05cm},\hspace{0.2cm}\varepsilon_{\nu}(11) = |d_{\nu}-g_{0}-g_{-1}|^2\hspace{0.05cm}.$$
  • Die Gesamtfehlergröße  $\gamma_{\nu}(i)$  ist gleich der Summe aus dem vorausgegangenen Knoten  $\gamma_{\nu-1}(i\hspace{0.05cm}')$  und dem dazwischenliegenden Zweig  $\varepsilon_{\nu}(i\hspace{0.05cm}'')$.  Beispielsweise gilt für die hervorgehobenen Knoten:
$$\gamma_{1}(11)=\gamma_{0}(1)+\varepsilon_{1}(11) ,\hspace{0.25cm} \gamma_{2}(110)=\gamma_{1}(11)+\varepsilon_{2}(10) ,\hspace{0.25cm} \gamma_{3}(1100)=\gamma_{2}(110)+\varepsilon_{3}(00).$$
  • Bei den ersten Knoten  $\gamma_{0}(0)$  und  $\gamma_{0}(1)$  wird berücksichtigt,  dass vor der eigentlichen Übertragung  $(a_1$,  $a_2$, ...$)$  vereinbarungsgemäß stets das Symbol  "$a_0 = 0$"  übertragen wird.  Daraus folgt:
$$\gamma_{0}(0)=\varepsilon_{0}(00)= |d_{0}|^2 \hspace{0.05cm},\hspace{0.2cm} \gamma_{0}(1)=\varepsilon_{0}(01)=|d_{0}-g_{-1}|^2 \hspace{0.05cm}.$$

Die beiden folgenden Beispiele werden hoffentlich diese etwas ermüdenden Aussagen verdeutlichen.

$\text{Beispiel 2:}$  Wir betrachten wie im  $\text{Beispiel 1}$  die unipolare Quellensymbolfolge der Länge  $N=3$  mit folgenden Parameterwerten:

$$g_{0}=0.7 \hspace{0.05cm},\hspace{0.2cm} g_{-1}=0.3 \hspace{0.05cm},\hspace{0.2cm} d_{0}=0.2 \hspace{0.05cm},\hspace{0.2cm} d_{1}=0.7 \hspace{0.05cm},\hspace{0.2cm} d_{2}=0.5 \hspace{0.05cm},\hspace{0.2cm} d_{3}=0 \hspace{0.05cm} \hspace{0.05cm}.$$

Dann gilt für die Fehlergrößen  $\varepsilon_{\nu}(i)$  zu den Zeitpunkten  $\nu = 0$  bis  $\nu = 3$:

$$\nu = 0\text{:} \hspace{0.2cm}\varepsilon_{0}(00) = \big [0.2- (0 \cdot 0.7 + 0 \cdot 0.3) \big ]^2=0.04 \hspace{0.05cm},\hspace{0.4cm} \varepsilon_{0}(01) = \big [0.2- (0 \cdot 0.7 + 1 \cdot 0.3) \big ]^2=0.01 \hspace{0.05cm};$$
$$\nu = 1{:} \hspace{0.2cm}\varepsilon_{1}(00) = \big [0.7- (0 \cdot 0.7 + 0 \cdot 0.3)\big ]^2=0.49 \hspace{0.05cm},\hspace{0.4cm} \varepsilon_{1}(01) = \big [0.7- (0 \cdot 0.7 + 1 \cdot 0.3)\big ]^2=0.16 \hspace{0.05cm},$$
$$\hspace{1.4cm}\varepsilon_{1}(10) = \big [0.7- (1 \cdot 0.7 + 0 \cdot 0.3)\big ]^2=0.00 \hspace{0.05cm}\hspace{0.4cm}\varepsilon_{1}(11) = \big [0.7- (1 \cdot 0.7 + 1 \cdot 0.3)\big ]^2=0.09 \hspace{0.05cm};$$
$$\nu = 2\text{:} \hspace{0.2cm}\varepsilon_{2}(00) = \big [0.5- (0 \cdot 0.7 + 0 \cdot 0.3)\big ]^2=0.25 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{2}(01) = \big [0.5- (0 \cdot 0.7 + 1 \cdot 0.3)\big ]^2=0.04 \hspace{0.05cm},$$
$$\hspace{1.4cm}\varepsilon_{2}(10) = \big [0.5- (1 \cdot 0.7 + 0 \cdot 0.3)\big ]^2=0.04 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{2}(11) = \big [0.5- (1 \cdot 0.7 + 1 \cdot 0.3)\big ]^2=0.25 \hspace{0.05cm};$$
$$ \nu = 3\text{:} \hspace{0.2cm}\varepsilon_{3}(00) = \big [0.0- (0 \cdot 0.7 + 0 \cdot 0.3)\big ]^2=0.00 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{3}(01) = \big [0.0- (0 \cdot 0.7 + 1 \cdot 0.3)\big ]^2=0.09 \hspace{0.05cm},$$
$$\hspace{1.4cm}\varepsilon_{3}(10) = \big [0.0- (1 \cdot 0.7 + 0 \cdot 0.3)\big ]^2=0.49 \hspace{0.05cm},\hspace{0.4cm}\varepsilon_{3}(11) = \big [0.0- (1 \cdot 0.7 + 1 \cdot 0.3)\big ]^2=1.00 \hspace{0.05cm}.$$


$\text{Beispiel 3:}$  Mit den im  $\text{Beispiel 2}$  ermittelten Fehlergrößen  $\varepsilon_{\nu}(i)$  können nun auch die Gesamtfehlergrößen  $\gamma_{\nu}(i)$  berechnet werden. Nachfolgend ist das Baumdiagramm mit den Gesamtfehlergrößen  $\gamma_{\nu}(i)$  als Knoten für die Zeitpunkte  $\nu = 0$  bis  $\nu = 3$  dargestellt.

Iterative Berechnung der Gesamtfehlergrößen (Beispiel)



  • Die minimale Gesamtfehlergröße zum Zeit  $\nu = 3$  ist  $\gamma_{3}(\rm 1100) = 0.14$.  Mit den Signalwerten  $d_0 = 0.2$,  $d_1 = 0.7$,  $d_2 = 0.5$,  $d_3 = 0$  sind die Koeffizienten der wahrscheinlichsten  (unipolaren)  Sendefolge gleich  $a_1 = 1$,  $a_2 = 1$  und  $a_3 = 0$  (grüner Pfad).
  • Ist die Folgenlänge  $N = 3$  $($das heißt:   nur drei Symbole werden durch den Viterbi–Empfänger gemeinsam entschieden$)$,  so ist auch die Entscheidung  $a_4 = 0$  mit Sicherheit die richtige,  da alle Koeffizienten  $a_{\nu>3}$  als Null vorausgesetzt wurden.
  • Bei längerer Folge  $(N > 3)$  kann aus dem minimalen Wert  $\gamma_{3}(\rm 1100)$  aber nicht unbedingt geschlossen werden,  dass  $a_1 = 1$,  $a_2 = 1$,  $a_3 = 0$  tatsächlich Teil der wahrscheinlichsten Folge ist.
  • Bei Berücksichtigung weiterer Abtastwerte  $(d_4$,  $d_5$, ...$)$  könnte sich dieses vorläufige Ergebnis durchaus noch ändern.




Minimale Gesamtfehlergrößen


Wir gehen weiterhin von den Zahlenwerten der letzten Beispiele aus:

$$d_{0}=0.2 ,\hspace{0.2cm} d_{1}=0.7 ,\hspace{0.2cm} d_{2}=0.5 ,\hspace{0.2cm} d_{3}=0 ,\hspace{0.1cm} g_{0}=0.7 ,\hspace{0.2cm} g_{-1}=0.3 .$$

Damit ändert sich auch am Baumdiagramm gegenüber dem  $\text{Beispiel 3}$  nichts.  Durch einige farbliche Markierungen in dieser Grafik wird nur angedeutet,  in welcher Weise das Baumdiagramm entsprechend den Vorschlägen von Viterbi vereinfacht werden kann.

Wichtige Eigenschaften des Viterbi–Entscheiders lassen sich in obiger Grafik beispielsweise zum Zeitpunkt  $\nu = 2$  erkennen:

Vereinfachung des Baumdiagramms nach Viterbi
  • Zum Zeitpunkt  $\nu = 2$  ist die minimale Gesamtfehlergröße  $\gamma_{2}(\rm 101) = 0.05$  $($braun hervorgehoben$)$.  Das bedeutet:   Eine Entscheidung bei  $\nu = 2$  – basierend auf  $d_0$,  $d_1$  und  $d_2$  – wäre zugunsten der Folge  "$\rm 101$"  anstelle der gesendeten Folge  "$\rm 110$"  ausgegangen.
  • Daraus folgt:   Eine zu frühe endgültige Festlegung sollte unbedingt vermieden werden.  Allerdings kann man zu jedem Zeitpunkt  $\nu$  bereits mehrere Teilsymbolfolgen ausschließen,  die zu späteren Zeitpunkten nicht mehr berücksichtigt werden müssen.
  • Zu  $\gamma_{2}(\rm 111) = 0.35$  werden die gleichen Metriken  $\varepsilon_{3}(\rm 11)$  bzw.  $\varepsilon_{3}(\rm 10)$  addiert wie zu  $\gamma_{2}(\rm 101) = 0.05$.  Wegen  $\gamma_{2}(\rm 111) > \gamma_{2}(\rm 101)$  steht bereits bei  $\nu = 2$  fest,  dass  "$\rm 111$"  nicht Teil der wahrscheinlichsten Folge ist. 
  • Gleiches gilt für  "$\rm 001$"  und  "$\rm 011$".  Diese Knoten und alle ihre Nachfahren müssen deshalb nicht weiter beachtet werden  $($braune Überdeckungen$)$.
  • Auch die abgerundeten Knoten  $\gamma_{2}(\rm 000) = 0.78$,  $\gamma_{2}(\rm 010) = 0.24$  und  $\gamma_{2}(\rm 100) = 0.26$  sind nicht Bestandteil der wahrscheinlichsten Folge, da sie größer sind als der grün markierte Knoten  $\gamma_{2}(\rm 110) = 0.14$.
  • Auch diese und ihre Nachfahren müssen ab dem Zeitpunkt  $\nu = 3$  nicht mehr berücksichtigt werden  $($grüne Überdeckungen$)$.


$\text{Fazit:}$ 

  • Von den acht Knoten bei  $\nu = 2$  müssen nur zwei weiterverfolgt werden,  nämlich das Rechteck  $\gamma_{2}(\rm 101) = 0.05$  und das abgerundete Rechteck  $\gamma_{2}(\rm 110) = 0.14$.
  • Diese beschreiben die minimalen Gesamtfehlergrößen unter der hypothetischen Annahme,  dass  $a_3 = 0$  bzw.  $a_3 = 1$  wäre.


Darstellung der minimalen Gesamtfehlergrößen – Trellisdiagramm


Wir verallgemeinern nun das Ergebnis dieses Beispiels.  Unter der weiterhin gültigen Annahme,  dass der Grundimpuls neben dem Hauptwert  $(g_0)$  nur einen Vorläufer  $(g_{-1})$  aufweist,  ergeben sich die beiden   minimalen Gesamtfehlergrößen   zum Zeitpunkt  $\nu$  formal zu

$${\it \Gamma}_{\nu}(0) = {\rm Min}\left[{\it \Gamma}_{\nu-1}(0) + \varepsilon_{\nu}(00), \hspace{0.2cm}{\it \Gamma}_{\nu-1}(1) + \varepsilon_{\nu}(10)\right] \hspace{0.05cm},$$
$${\it \Gamma}_{\nu}(1) = {\rm Min}\left[{\it \Gamma}_{\nu-1}(0) + \varepsilon_{\nu}(01), \hspace{0.2cm}{\it \Gamma}_{\nu-1}(1) + \varepsilon_{\nu}(11)\right] \hspace{0.05cm}.$$

Das Verfahren der  "Gesamtfehlerminimierung"  lässt sich im  Trellisdiagramm  anschaulich darstellen.  Ein Vergleich mit den Bildern auf den letzten Seiten zeigt:

Beispielhaftes Trellisdiagramm
  • Der untere Zweig stellt die minimale Gesamtfehlergröße  ${\it \Gamma}_{\nu}(0)$  dar,  die zu jedem Zeitpunkt  $\nu$  unter der Hypothese berechnet wird,  dass  $a_{\nu + 1} = 0$  gelten wird  (blaue abgerundete Quadrate).
  • Der obere Zweig beschreibt die minimalen Gesamtfehlergrößen  ${\it \Gamma}_{\nu}(1)$  unter der Annahme  $a_{\nu + 1} = 1$  (rote Quadrate).  Auch hier sind die Zahlenwerte an das bisherige Beispiel angepasst.
  • Außer  ${\it \Gamma}_{\nu}(0)$  und  ${\it \Gamma}_{\nu}(1)$  muss der ML–Entscheider auch die zugehörigen Symbolfolgen  ("Pfade")  abspeichern.  Diese Zweige sind in der Grafik rot bzw. blau hervorgehoben.
  • Falls  ${\it \Gamma}_{\nu}$  aus dem Knoten  ${\it \Gamma}_{\nu-1}(0)$  hervorgeht – also wenn der untere der beiden ankommenden Zweige hervorgehoben ist – so ist das dazugehörige Symbol  "$\rm 0$",  andernfalls das Symbol  "$\rm 1$".
  • Zur Zeit  $\nu = 3$  ergeben sich  ${\it \Gamma}_{3}(0) = 0.14$  und  ${\it \Gamma}_{3}(1) = 0.23$  aus dem gleichen Vorgänger  ${\it \Gamma}_{2}(0)$,  so dass beide ausgewählte Pfade jeweils auf das Symbol  "$\rm 0$"  verweisen  (blaue Zweige).

Vereinfachtes Trellisdiagramm


Der Vorteil des Trellisdiagramms besteht darin,  dass sich die Anzahl der Knoten und Zweige nicht bei jedem Iterationsschritt verdoppeln.  Durch die Auswahl der minimalen Gesamtfehlergrößen werden nur noch diejenigen Symbolfolgen weiter betrachtet,  die als Teil der wahrscheinlichsten Folge überhaupt noch in Frage kommen.

Das Trellisdiagramm lässt sich weiter vereinfachen,  indem man nur noch die ausgewählten Zweige einzeichnet.  Dies ist im unteren Teil der Grafik an unserem Zahlenbeispiel verdeutlicht.  Zur Erinnerung:  

  1. Die tatsächlich gesendeten Amplitudenkoeffizienten seien  $a_1= 1$,  $a_2= 1$  und  $a_3= 0$.
  2. Das oben gezeichnete Trellisdiagramm wurde unter der Annahme berechnet,  dass aufgrund der Impulswerte  $g_{-1} = 0.3$  und  $g_{0} = 0.7$. 
  3. Am ML–Entscheider liegen die verrauschten Eingangswerte  $d_0= 0.2$,  $d_1= 0.7$,  $d_2= 0.5$  und  $d_3= 0$  an.
Trellisdiagramm  (oben)  und vereinfachtes Trellisdiagramm  (unten)


Dieses  vereinfachte Trellisdiagramm  erlaubt folgende Aussagen:

  • Die Entscheidung über  $a_1= 1$  kann sofort zum Zeitpunkt  $\nu = 1$  getroffen werden,  da sich unter beiden Hypothesen – nämlich das nachfolgende Symbol sei  $a_2= 0$  bzw. dieses Symbol sei  $a_2= 1$  – das gleiche Resultat  $a_1= 1$  ergibt.
  • Dagegen kann zur Zeit  $\nu = 2$  die endgültige Entscheidung über  $a_2$  noch nicht getroffen werden.  Unter der Annahme,  dass  $a_3= 0$  sein wird, würde sich für  $a_2= 1$  entschieden.  Die Hypothese  $a_3= 1$  würde zur Festlegung auf  $a_2= 0$  führen.
  • Bei  $\nu = 3$  ist die Entscheidung für  $a_1= 1$,  $a_2= 1$,  $a_3= 0$  endgültig,  da beide durchgehenden Pfade diese  (die in diesem Fall richtige)  Folge suggerieren.
  • Würde man die finale Entscheidung auf den Zeitpunkt  $\nu = 4$  verschieben, so hätte man auch nicht mehr nutzbare Information über  $a_1$,  $a_2$  und  $a_3$  zur Verfügung.


Erweiterung auf zwei Vorläufer


Wird der Grundimpuls durch die Abtastwerte  $g_{0} \ne 0$,  $g_{-1} \ne 0$  und  $g_{-2} \ne 0$  beschrieben, so müssen im Trellisdiagramm zu jedem Zeitpunkt  $\nu$  vier Metriken  ${\it \Gamma}_{\nu}(00)$,  ${\it \Gamma}_{\nu}(01)$,  ${\it \Gamma}_{\nu}(10)$  und  ${\it \Gamma}_{\nu}(11)$  bestimmt werden.

${\it \Gamma}_{\nu}(01)$  beschreibt dann beispielsweise die minimale Gesamtfehlergröße für die Detektion des Symbols  $a_\nu$  unter der Hypothese,  dass  $a_{\nu-1} = 0$  und  $a_{\nu-2} = 1$  sein werden,  und es gilt:

$${\it \Gamma}_{\nu}(01) = {\rm Min}\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001), \hspace{0.2cm}{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big] \hspace{0.05cm}.$$

In der  Aufgabe 3.12  wird im Detail auf die Berechnung der Fehlergrößen (Metriken) und die Minimierung der Gesamtfehlergrößen (akkumulierten Metriken) eingegangen.

$\text{Beispiel 4:}$  Wir betrachten hier ein beispielhaftes Trellisdiagramm,  das die  (fehlerfreie)  Detektion von folgender Symbolfolge widergibt:

Trellisdiagramm für zwei Vorläufer
$$a_{1}=0 \hspace{0.05cm},\hspace{0.2cm} a_{2}=0 \hspace{0.05cm},\hspace{0.2cm} a_{3}=1 \hspace{0.05cm},\hspace{0.2cm} a_{4}=1 \hspace{0.05cm},\hspace{0.2cm} a_{5}=1 \hspace{0.05cm},\hspace{0.2cm} a_{6}=0 \hspace{0.05cm}, \hspace{0.05cm}\text{...}$$

Dieses vereinfachte Trellisdiagramm erlaubt folgende Aussagen:

  1. Alle von  ${\it \Gamma}_{\nu}(00)$  bzw.  ${\it \Gamma}_{\nu}(01)$  abgehende Zweige gehören zum Symbol  "$\rm 0$"  und sind blau gezeichnet.  Die von den beiden oberen Zuständen abgehenden roten Zweige beschreiben die  "$\rm 1$".
  2. Verfolgt man die durchgehenden Pfade,  so kann man die Folge erkennen.  Da bei  $\nu = 6$  nur Zweige gleicher Farbe ankommen, liegen hier die ersten sechs Bit der Folge endgültig fest.
  3. Teilfolgen könnten aber auch bereits zu den Zeiten  $\nu = 1$,  $\nu = 3$  und  $\nu = 4$  ausgegeben werden, da sich zu diesen Zeiten für alle vier Zustände die gleichen Teilpfade ergeben.
  4. Bei  $\nu = 2$  und  $\nu = 5$  darf nicht sofort entschieden werden. Beispielsweise ist zur Zeit  $\nu = 5$  nur sicher, dass entweder  "$a_5 = 0$,  $a_6 = 1$"  sein werden oder  "$a_5 = 1$,  $a_6 = 0$".  Andere Kombinationen sind nicht möglich.


Fehlerwahrscheinlichkeit bei Maximum–Likelihood–Entscheidung


Die exakte Fehlerwahrscheinlichkeitsberechnung bei ML–Entscheidung  $($zum Beispiel mit dem Korrelations– oder dem Viterbi–Empfänger$)$  ist aufwändig.  Dabei müssen

  • die Differenzenergien zwischen allen möglichen Symbolfolgen  $Q_i$  und  $Q_{j \ne i}$  ermittelt werden,  wobei die Fehlerwahrscheinlichkeit im Wesentlichen durch die minimale Differenzenergie bestimmt wird;
  • die Einflüsse von Matched–Filter  $H_{\rm MF}(f)$  und Dekorrelationsfilter  $H_{\rm DF}(f)$  berücksichtigt werdrn und zusätzlich ist der Effektivwert  $\sigma_d$  des Detektionsstörsignals zu bestimmen.

$\text{Ohne Beweis:}$  Eine einfache Näherung für die (mittlere)  Fehlerwahrscheinlichkeit bei Maximum–Likelihood––Entscheidung  lautet:

$$p_{\rm ML} = {\rm Q}\left(g_{\rm max}/{\sigma_d}\right) \hspace{0.3cm}{\rm mit}\hspace{0.2cm}g_{\rm max}= {\rm Max}\hspace{0.15cm} \vert g_\nu \vert \hspace{0.05cm}.$$

Die Näherung gilt nur für binäre bipolare Signalisierung. Bei unipolarer Signalisierung ist das Argument der Q-Funktion zu halbieren.


Für die Interpretation und das anschließende Beispiel wird vorausgesetzt, dass  $v + 1$  Grundimpulswerte (inklusive Hauptwert) von Null verschieden sind. Dann gilt:

  1. Der Viterbi–Entscheider muss alle diese Grundimpulswerte berücksichtigen.  Das bedeutet,  dass ein Trellisdiagramm mit  $2^v$  Zuständen zu bearbeiten ist.
  2. Voraussetzung für die Gültigkeit obiger Gleichung ist die Unkorreliertheit der Störungen am Entscheider,  die durch das Dekorrelationsfilter erreicht wird.
  3. Für den Vergleich mit Schwellenwertentscheider  $(p_{\rm SE})$  bzw. Entscheidungsrückkopplung  $(p_{\rm DFE})$  wird der Störeffektivwert  $\sigma_d$  als konstant vorausgesetzt.
  4. Die Optimierung des ML–Systems führt zu sehr schmalbandigen Filtern,  da alle Impulsausläufer durch den ML–Algorithmus herausgerechnet werden können.
  5. Bei konstanter Rauschleistungsdichte  $N_0$  $($am Empfängereingang$)$  ist die Störleistung  $\sigma_d^2$  $($am Entscheider$)$  beim ML–System kleiner als bei anderen Varianten.
  6. Das bedeutet:   Der Störabstandsgewinn durch die ML–Entscheidung ist unter Umständen noch größer,  als es das folgende Beispiel  $($mit  $\sigma_d = \rm const.)$  ausdrückt.


$\text{Beispiel 5:}$  Wir betrachten die Grundimpulswerte  $g_{0} = 0.6$  und  $g_{-1} = g_{+1} = 0.2 \ ( = g_1)$.  Zudem gehen wir vom konstanten Störeffektivwert  $\sigma_d = 0.1$  aus.  Zur Vereinfachung sind alle Größen normiert.

$$p_{\rm SE} = {1}/{4}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}+\hspace{-0.02cm}2 \cdot g_{1} }{\sigma_d}\right) +{1}/{2}\cdot {\rm Q}\left(\frac{g_{0} }{\sigma_d}\right)+ {1}/{4}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}2 \cdot g_{1} }{\sigma_d}\right) \approx {1}/{4}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}2 \cdot g_{1} }{\sigma_d}\right) = \frac{ {\rm Q}(2)}{4}= 0.57 \% \hspace{0.05cm}.$$
$$p_{\rm DFE} ={1}/{2}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}+\hspace{-0.02cm}g_{-1} }{\sigma_d}\right) +{1}/{2}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}g_{-1} }{\sigma_d}\right)\approx {1}/{2}\cdot {\rm Q}\left(\frac{g_{0}\hspace{-0.02cm}-\hspace{-0.02cm}g_{-1} }{\sigma_d}\right)=\frac{{\rm Q}(4)}{4}= 0.16 \cdot 10^{-4} \hspace{0.05cm}.$$
$$p_{\rm ML} = {\rm Q}\left(\frac{g_{0}}{\sigma_d}\right) \approx {\rm Q}(6) = 10^{-9} \hspace{0.05cm}.$$
  • Dies entspricht gegenüber den beiden anderen Systemen einem Störabstandsgewinn von ca.  $3 \ \rm dB$  $($gegenüber $\rm DFE)$  bzw.  $7.5 \ \rm dB$  $($gegenüber $\rm SE)$.  Das Ergebnis dieser einfachen Näherung wurde durch Simulationen im Wesentlichen bestätigt.


Anmerkung:

  1. Um den Viterbi–Algorithmus direkt anwenden zu können,  müssen die (normierten) Grundimpulswerte  $g_{0} =0.2$,  $g_{-1} =0.6$  und  $g_{-2} =0.2$  eingestellt werden.
  2. Eine Zeitverschiebung um Vielfache der Symboldauer $T$ ändert nämlich die Leistungsmerkmale der Viterbi–Entscheidung nicht.
  3. Die Maximum–Likelihood–Fehlerwahrscheinlichkeit nach obiger Gleichung richtet sich allein nach dem größten Grundimpulswert.
  4. Dabei kann es durchaus sein, dass ein „Vorläufer” $($hier:  $g_{-1} =0.6)$  größer als der Hauptwert  $g_{0}$  ist.
  5. Bei Schwellenwertentscheidung würde das zu einem geschlossenen Auge führen.


$\text{Fazit:}$ 

  • Eine Maximum–Likelihood–Entscheidung ist nur bei Vorhandensein von Impulsinterferenzen von Vorteil.
  • Bei Nyquistentzerrung  $($das heißt:   Nur der Grundimpulswert  $g_0$  ist ungleich Null$)$  arbeitet auch der Maximum–Likelihood–Empfänger symbolweise und mit gleicher Fehlerwahrscheinlichkeit  ${\rm Q}(g_0/\sigma_d)$  wie ein Empfänger mit Schwellenwertentscheidung.


Aufgaben zum Kapitel


Aufgabe 3.11: Viterbi–Empfänger und Trellisdiagramm

Aufgabe 3.11Z: Maximum-Likelihood-Fehlergrößen

Aufgabe 3.12: Trellisdiagramm für zwei Vorläufer

Aufgabe 3.13: Vergleich SWE – DFE – ML