Digitalsignalübertragung/Struktur des optimalen Empfängers: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(42 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 8: Zeile 8:
 
== Blockschaltbild und Voraussetzungen ==
 
== Blockschaltbild und Voraussetzungen ==
 
<br>
 
<br>
In diesem Kapitel wird die Struktur des optimalen Empfängers eines digitalen Übertragungssystems sehr allgemein hergeleitet, wobei
+
In diesem Kapitel wird die Struktur des optimalen Empfängers eines digitalen Übertragungssystems sehr allgemein hergeleitet,&nbsp; wobei
 
*das Modulationsverfahren und weitere Systemdetails nicht weiter spezifiziert werden,<br>
 
*das Modulationsverfahren und weitere Systemdetails nicht weiter spezifiziert werden,<br>
*von den Basisfunktionen und der Signalraumdarstellung gemäß Kapitel 4.1 ausgegangen wird..
 
  
:[[Datei:P ID2000 Dig T 4 2 S1 version1.png|Allgemeines Blockschaltbild eines Kommunikationssystems|class=fit]]<br>
+
*von den Basisfunktionen und der Signalraumdarstellung gemäß dem Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Zur_Nomenklatur_im_vierten_Kapitel_.281.29|"Signale, Basisfunktionen und Vektorräume"]]&nbsp; ausgegangen wird.
 +
[[Datei:P ID2000 Dig T 4 2 S1 version1.png|right|frame|Allgemeines Blockschaltbild eines Kommunikationssystems|class=fit]]
 +
 
  
 
Zum obigen Blockschaltbild ist anzumerken:
 
Zum obigen Blockschaltbild ist anzumerken:
*Der Symbolumfang der Quelle beträgt <i>M</i> und der Symbolvorrat ist {<i>m<sub>i</sub></i>} mit <i>i</i> = 0, ... , <i>M</i> &ndash; 1. Die zugehörigen Symbolwahrscheinlichkeiten Pr(<i>m</i> = <i>m<sub>i</sub></i>) seien auch dem Empfänger bekannt.<br>
+
*Der Symbolumfang der Quelle beträgt&nbsp; $M$&nbsp; und der Symbolvorrat ist&nbsp; $\{m_i\}$&nbsp; mit&nbsp; $i = 0$, ... , $M-1$.&nbsp;  
  
*Zur Nachrichtenübertragung stehen <i>M</i> verschiedene Signalformen <i>s<sub>i</sub></i>(<i>t</i>) zur Verfügung, wobei für die Laufvariable ebenfalls die Indizierung <i>i</i> = 0, ... , <i>M</i> &ndash; 1 gelten soll.<br>
+
*Die zugehörigen Symbolwahrscheinlichkeiten&nbsp; ${\rm Pr}(m = m_i)$&nbsp; seien auch dem Empfänger bekannt.<br>
  
*Es besteht eine feste Beziehung zwischen den Nachrichten {<i>m<sub>i</sub></i>} und den Signalen {<i>s<sub>i</sub></i>(<i>t</i>)}. Wird die Nachricht <i>m</i> = <i>m<sub>i</sub></i> übertragen, so ist das Sendesignal <i>s</i>(<i>t</i>) = <i>s<sub>i</sub></i>(<i>t</i>).<br>
+
*Zur Nachrichtenübertragung stehen&nbsp; $M$&nbsp;  Signalformen&nbsp; $s_i(t)$&nbsp; zur Verfügung;&nbsp; auch für die Laufvariable gelte die Indizierung&nbsp; $i = 0$, ... , $M-1$.  
  
*Lineare Kanalverzerrungen sind in der obigen Grafik durch die Impulsantwort <i>h</i>(<i>t</i>) berücksichtigt. Außerdem ist ein (irgendwie geartetes) Rauschen <i>n</i>(<i>t</i>) wirksam.<br>
+
*Es besteht eine feste Beziehung zwischen den Nachrichten und den Signalen.&nbsp; Wird&nbsp; $m =m_i$&nbsp; übertragen, so ist das Sendesignal&nbsp; $s(t) =s_i(t)$.<br>
  
*Mit diesen beiden die Übertragung störenden Effekten lässt sich das am Empfänger ankommende Signal <i>r</i>(<i>t</i>) in folgender Weise angeben:
+
*Lineare Kanalverzerrungen sind in der obigen Grafik durch die Impulsantwort&nbsp; $h(t)$&nbsp; berücksichtigt.&nbsp; Außerdem ist ein&nbsp; (irgendwie geartetes)&nbsp; Rauschen&nbsp; $n(t)$&nbsp; wirksam.
  
::<math>r(t) = s(t) \star h(t) + n(t) \hspace{0.05cm}.</math>
+
*Mit diesen beiden die Übertragung störenden Effekten lässt sich das am Empfänger ankommende Signal&nbsp; $r(t)$&nbsp; in folgender Weise angeben:
 +
:$$r(t) = s(t) \star h(t) + n(t) \hspace{0.05cm}.$$
  
*Aufgabe des (optimalen) Empfängers ist es, anhand seines Eingangssignals <i>r</i>(<i>t</i>) herauszufinden, welche der <i>M</i> möglichen Nachrichten <i>m<sub>i</sub></i> &ndash; bzw. welches der Signale <i>s<sub>i</sub></i>(<i>t</i>) &ndash; gesendet wurde.<br>
+
*Aufgabe des&nbsp; (optimalen)&nbsp; Empfängers ist es,&nbsp; anhand seines Eingangssignals&nbsp; $r(t)$&nbsp; herauszufinden,&nbsp; welche der&nbsp; $M$&nbsp; möglichen Nachrichten&nbsp; $m_i$ &nbsp; &rArr; &nbsp; Signal&nbsp; $s_i(t)$&nbsp; gesendet wurde.&nbsp; Der vom Empfänger gefundene Schätzwert für&nbsp; $m$&nbsp; wird durch ein&nbsp; "Zirkumflex"&nbsp; gekennzeichnet &nbsp; &rArr; &nbsp;  $\hat{m}$.
  
*Der vom Empfänger gefundene Schätzwert für <i>m</i> wird in Gleichungen durch ein &bdquo;Circonflexe&rdquo; (^) gekennzeichnet. Im Fließtext (HTML&ndash;Zeichensatz) ist diese Darstellung leider nicht möglich.<br>
 
  
*Man spricht von einem optimalen Empfänger, wenn die Symbolfehlerwahrscheinlichkeit den für die Randbedingungen kleinstmöglichsten Wert annimmt:
+
{{BlaueBox|TEXT= 
::<math>p_{\rm S} = {\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm Minimum}  \hspace{0.05cm}.</math>
+
$\text{Definition:}$&nbsp; Man spricht von einem&nbsp; '''optimalen Empfänger''',&nbsp; wenn die Symbolfehlerwahrscheinlichkeit den für die Randbedingungen kleinstmöglichen Wert annimmt:
 +
:$$p_{\rm S} = {\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm Minimum}  \hspace{0.05cm}.$$}}
  
<b>Hinweis:</b> Im Folgenden wird meist <i>r</i>(<i>t</i>) = <i>s</i>(<i>t</i>) + <i>n</i>(<i>t</i>) vorausgesetzt, was bedeutet, dass <i>h</i>(<i>t</i>) = <i>&delta;</i>(<i>t</i>) als verzerrungsfrei angenommen wird. Andernfalls könnten wir die Signale <i>s<sub>i</sub></i>(<i>t</i>) als <i>s'<sub>i</sub></i>(<i>t</i>) = <i>s<sub>i</sub></i>(<i>t</i>) &#8727; <i>h</i>(<i>t</i>) neu definieren, also die deterministischen Kanalverzerrungen dem Sendesignal beaufschlagen.<br>
 
  
== Fundamentaler Ansatz zum optimalen Empfängerentwurf (1) ==
+
Hinweise:
 +
#Im Folgenden wird meist der AWGN&ndash;Ansatz &nbsp; &rArr; &nbsp;  $r(t) =  s(t) + n(t)$&nbsp; vorausgesetzt,&nbsp; was bedeutet,&nbsp; dass &nbsp;$h(t) =  \delta(t)$&nbsp; als verzerrungsfrei angenommen wird.
 +
#Andernfalls können wir die Signale&nbsp; $s_i(t)$&nbsp; als &nbsp;${s_i}'(t) = s_i(t) \star h(t)$&nbsp; neu definieren,&nbsp; also die deterministischen Kanalverzerrungen dem Sendesignal beaufschlagen.<br>
 +
 
 +
== Fundamentaler Ansatz zum optimalen Empfängerentwurf==
 
<br>
 
<br>
Gegenüber dem auf der vorherigen Seite gezeigten [http://www.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers&action=submit#Blockschaltbild_und_Voraussetzungen Blockschaltbild] führen wir nun einige wesentliche Verallgemeinerungen durch:
+
Gegenüber dem auf der vorherigen Seite gezeigten&nbsp; [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Blockschaltbild_und_Voraussetzungen| "Blockschaltbild"]]&nbsp; führen wir nun einige wesentliche Verallgemeinerungen durch:
*Der Übertragungskanal wird durch die bedingte Wahrscheinlichkeitsdichtefunktion <i>p</i><sub><i>r</i>(<i>t</i>)|<i>s</i>(<i>t</i>)</sub> beschrieben, welche die Anhängigkeit des Empfangssignals <i>r</i>(<i>t</i>) vom Sendesignal <i>s</i>(<i>t</i>) festlegt.<br>
+
[[Datei:P ID2001 Dig T 4 2 S2 version2.png|right|frame|Modell zur Herleitung des optimalen Empfängers|class=fit]]
 +
 
 +
*Der Übertragungskanal wird nun beschrieben durch die&nbsp; [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit#Bedingte_Wahrscheinlichkeit|"bedingte Wahrscheinlichkeitsdichtefunktion"]] &nbsp; $p_{\hspace{0.02cm}r(t)\hspace{0.02cm} \vert \hspace{0.02cm}s(t)}$, &nbsp; welche die Abhängigkeit des Empfangssignals&nbsp; $r(t)$&nbsp; vom Sendesignal&nbsp; $s(t)$&nbsp; festlegt.<br>
 +
 
 +
*Wurde nun ein ganz bestimmtes Signal&nbsp; $r(t) = \rho(t)$&nbsp; empfangen,&nbsp; so hat der Empfänger die Aufgabe, die Wahrscheinlichkeitsdichtefunktionen auf der Grundlage dieser&nbsp; "Signalrealisierung" &nbsp; $\rho(t)$&nbsp; und der&nbsp; $M$&nbsp; bedingten Wahrscheinlichkeitsdichtefunktionen zu bestimmen:
 +
:$$p_{\hspace{0.05cm}r(t) \hspace{0.05cm} \vert \hspace{0.05cm} s(t) } (\rho(t) \hspace{0.05cm} \vert \hspace{0.05cm} s_i(t))\hspace{0.5cm}{\rm mit}\hspace{0.5cm} i = 0, \text{...} \hspace{0.05cm}, M-1.$$
 +
*Ermittelt werden soll,&nbsp; welche Nachricht&nbsp; $\hat{m}$&nbsp; am wahrscheinlichsten gesendet wurde,&nbsp; unter Berücksichtigung aller möglichen Sendesignale&nbsp; $s_i(t)$&nbsp; und derenn Auftrittsswahrscheinlichkeiten&nbsp; ${\rm Pr}(m = m_i)$.
 +
 
 +
*Die Schätzung des optimalen Empfängers ist also ganz allgemein bestimmt durch die Gleichung
 +
:$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} p_{\hspace{0.02cm}s(t) \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } (  s_i(t) \hspace{0.05cm} \vert \hspace{0.05cm} \rho(t)) = {\rm arg} \max_i \hspace{0.1cm} p_{m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } (  \hspace{0.05cm}m_i\hspace{0.05cm} \vert \hspace{0.05cm}\rho(t))\hspace{0.05cm}.$$
  
*Wurde nun ein ganz bestimmtes Signal <i>r</i>(<i>t</i>) = <i>&rho;</i>(<i>t</i>) empfangen, so hat der Empfänger die Aufgabe, anhand dieses Signals <i>&rho;</i>(<i>t</i>) sowie der <i>M</i> bedingten Wahrscheinlichkeitsdichtefunktionen
+
{{BlaueBox|TEXT= 
 +
$\text{In anderen Worten:}$&nbsp; Der optimale Empfänger betrachtet diejenige Nachricht&nbsp; $\hat{m} \in \{m_i\}$&nbsp; als die am wahrscheinlichsten gesendete Nachricht,&nbsp; deren bedingte Wahrscheinlichkeitsdichtefunktion&nbsp; $p_{\hspace{0.02cm}m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) }$&nbsp;  für das anliegende Empfangssignal&nbsp; $\rho(t)$&nbsp; sowie unter der Annahme&nbsp; $m=\hat{m}$&nbsp; den größtmöglichen Wert annimmt.}}
  
::<math>p_{r(t) | s(t) } (\rho(t) | s_i(t))\hspace{0.2cm}{\rm mit}\hspace{0.2cm} i = 0, ... \hspace{0.05cm}, M-1</math>
 
  
:unter Berücksichtigung aller möglichen Sendesignale <i>s<sub>i</sub></i>(<i>t</i>) und deren Auftrittswahrscheinlichkeiten Pr(<i>m</i> = <i>m<sub>i</sub></i>) herauszufinden, welche der möglichen Nachrichten (<i>m<sub>i</sub></i>) bzw. welches der möglichen Signale (<i>s<sub>i</sub></i>(<i>t</i>)) am wahrscheinlichsten gesendet wurde.<br>
+
Bevor wir die diese Entscheidungsregel näher diskutieren,&nbsp; soll der optimale Empfänger entsprechend der Grafik noch in zwei Funktionsblöcke aufgeteilt werden:
 +
*Der &nbsp;'''Detektor'''&nbsp; nimmt am Empfangssignal&nbsp; $r(t)$&nbsp; verschiedene Messungen vor und fasst diese im Vektor &nbsp;$\boldsymbol{r}$&nbsp; zusammen.&nbsp; Bei &nbsp;$K$&nbsp; Messungen entspricht&nbsp; $\boldsymbol{r}$&nbsp; einem Punkt im &nbsp;$K$&ndash;dimensionalen Vektorraum.<br>
  
*Die Schätzung des optimalen Empfängers ist also ganz allgemein bestimmt durch die Gleichung
+
*Der &nbsp;'''Entscheider'''&nbsp; bildet abhängig von diesem Vektor den Schätzwert.&nbsp; Bei einem gegebenen Vektor&nbsp; $\boldsymbol{r} = \boldsymbol{\rho}$&nbsp; lautet dabei die Entscheidungsregel:
 +
:$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) \hspace{0.05cm}.$$
 +
Im Gegensatz zur oberen Entscheidungsregel tritt nun eine bedingte Wahrscheinlichkeit &nbsp; $P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} }$ &nbsp; anstelle der bedingten Wahrscheinlichkeitskeitsdichtefunktion&nbsp; $\rm (WDF)$ &nbsp; $p_{m\hspace{0.05cm} \vert \hspace{0.05cm}r(t)}$&nbsp; auf.&nbsp; Beachten Sie bitte die Groß&ndash; bzw. Kleinschreibung für die unterschiedlichen Bedeutungen.
 +
<br clear=all>
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 1:}$&nbsp; Wir betrachten nun die Funktion&nbsp; $y =  {\rm arg}\hspace{0.05cm} \max \ p(x)$,&nbsp; wobei&nbsp; $p(x)$&nbsp; die Wahrscheinlichkeitsdichtefunktion&nbsp; $\rm (WDF)$&nbsp; einer wertkontinuierlichen oder wertdiskreten Zufallsgröße&nbsp; $x$&nbsp; beschreibt.&nbsp; In der rechten Grafik besteht die WDF aus einer Summe von Diracfunktionen mit Wahrscheinlichkeiten als Impulsgewichte.<br>
 +
 
 +
[[Datei:P ID2002 Dig T 4 2 S2b version1.png|righ|frame|Zur Verdeutlichung der Funktion „arg max”|class=fit]]
  
::<math>\hat{m} = {\rm arg} \max_i \hspace{0.1cm} p_{s(t) | r(t) } (  s_i(t) | \rho(t)) = {\rm arg} \max_i \hspace{0.1cm} p_{m | r(t) } (  m_i | \rho(t))\hspace{0.05cm},</math>
+
&rArr; &nbsp; Die Grafik zeigt beispielhafte Funktionen.&nbsp;  In beiden Fällen liegt das WDF&ndash;Maximum&nbsp; $(17)$&nbsp; bei&nbsp; $x = 6$:
 +
:$$\max_i \hspace{0.1cm} p(x) = 17\hspace{0.05cm},$$
 +
:$$y = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} p(x) = 6\hspace{0.05cm}.$$
  
:wobei wieder berücksichtigt ist, dass die gesendete Nachricht <i>m</i> = <i>m<sub>i</sub></i> und das gesendete Signal <i>s</i>(<i>t</i>) =  <i>s<sub>i</sub></i>(<i>t</i>) eineindeutig ineinander übergeführt werden können.<br>
+
&rArr; &nbsp; Die&nbsp; (bedingten)&nbsp; Wahrscheinlichkeiten in der Gleichung
  
In anderen Worten: Der optimale Empfänger betrachtet diejenige Nachricht <i>m<sub>i</sub></i> als die gesendete, wenn die bedingte Wahrscheinlichkeitsdichtefunktion <i>p</i><sub><i>m</i>|<i>r</i>(<i>t</i>)</sub> für das anliegende Empfangssignal <i>&rho;</i>(<i>t</i>) sowie unter der Annahme <i>m</i> = <i>m<sub>i</sub></i> den größtmöglichen Wert annimmt.<br>
+
:$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho})$$
  
[[Datei:P ID2001 Dig T 4 2 S2 version2.png|Modell zur Herleitung des optimalen Empfängers|class=fit]]<br>
+
sind  &nbsp;'''a&ndash;Posteriori&ndash;Wahrscheinlichkeiten'''.&nbsp; Mit dem&nbsp; [[Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit#R.C3.BCckschlusswahrscheinlichkeit| Satz von Bayes]]&nbsp; kann hierfür geschrieben werden:
 +
:$$P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) =
 +
\frac{ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )}{p_{\boldsymbol{ r} } (\boldsymbol{\rho})}
 +
\hspace{0.05cm}.$$}}
  
Bevor wir die obige Entscheidungsregel näher diskutieren, soll der optimale Empfänger entsprechend der Grafik noch in zwei Funktionsblöcke aufgeteilt werden:
 
*Der Detektor nimmt am Empfangssignal <i>r</i>(<i>t</i>) verschiedene Messungen vor und fasst diese im Vektor <b><i>r</i></b> zusammen. Bei <i>K</i> Messungen entspricht <b><i>r</i></b> einem Punkt im <i>K</i>&ndash;dimensionalen Vektorraum.<br>
 
  
*Der Entscheider bildet abhängig von diesem Vektor den Schätzwert. Bei einem gegebenen Vektor <b><i>r</i></b> = <b><i>&rho;</i></b> lautet dabei die Entscheidungsregel:
+
Der Nennerterm &nbsp; $p_{\boldsymbol{ r} }(\boldsymbol{\rho})$ ist für alle Alternativen&nbsp; $m_i$&nbsp; gleich und muss für die Entscheidung nicht berücksichtigt werden.&nbsp; Damit erhält man folgende Regeln:
  
::<math>\hat{m} = {\rm arg} \max_i \hspace{0.1cm} P_{m | \boldsymbol{ r} } ( m_i | \boldsymbol{\rho}) \hspace{0.05cm}.</math>
+
{{BlaueBox|TEXT= 
 +
$\text{Theorem:}$&nbsp; Die Entscheidungsregel des optimalen Empfängers, auch bekannt als '''Maximum–a–posteriori&ndash;Empfänger'''&nbsp; $($kurz:&nbsp; '''MAP&ndash;Empfänger'''$)$&nbsp; lautet:
  
Im Gegensatz zur oberen Gleichung tritt nun in der Entscheidungsregel eine bedingte Wahrscheinlichkeit <i>P</i><sub><i>m</i>|<b><i>r</i></b></sub> anstelle der bedingten Wahrscheinlichkeitskeitsdichtefunktion (WDF) <i>p</i><sub><i>m</i>|<i>r</i>(<i>t</i>)</sub> auf. Beachten Sie bitte die Groß&ndash; bzw. Kleinschreibung für die unterschiedlichen Bedeutungen.<br>
+
:$$\hat{m}_{\rm MAP} = {\rm \hspace{0.05cm} arg} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}) = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm} m_i )\big ]\hspace{0.05cm}.$$
  
== Fundamentaler Ansatz zum optimalen Empfängerentwurf (2) ==
+
*Vorteil der zweiten Gleichung ist,&nbsp; dass die Vorwärtsrichtung des Kanals Anwendung findet  &nbsp; &rArr; &nbsp;  bedingte WDF&nbsp; $p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m }$&nbsp; $($"Ausgang unter der Bedingung Eingang"$)$.  
<br>
 
Wir betrachten nun die Funktion <i>y</i> = arg max <i>p</i>(<i>x</i>), wobei <i>p</i>(<i>x</i>) die Wahrscheinlichkeitsdichtefunktion (WDF) einer wertkontinuierlichen oder wertdiskreten Zufallsgröße <i>x</i> beschreibt. Im zweiten Fall besteht die WDF aus einer Summe von Diracfunktionen mit den Wahrscheinlichkeiten als Impulsgewichte.<br>
 
  
[[Datei:P ID2002 Dig T 4 2 S2b version1.png|Zur Verdeutlichung der Funktion „arg max”|class=fit]]<br>
+
*Dagegen verwendet die erste Gleichung die Rückschlusswahrscheinlichkeiten&nbsp; $P_{\hspace{0.05cm}m\hspace{0.05cm} \vert \hspace{0.02cm} \boldsymbol{ r} } $&nbsp;  $($"Eingang unter der Bedingung Ausgang"$)$.}}
  
Die Grafik zeigt beispielhafte Funktionen. In beiden Fällen liegt das WDF&ndash;Maximum (17) bei <i>x</i> = 6:
 
  
:<math>\max_i \hspace{0.1cm} p(x) = 17\hspace{0.05cm},\hspace{0.2cm}y = {\rm arg} \max_i \hspace{0.1cm} p(x) = 6\hspace{0.05cm}.</math>
+
{{BlaueBox|TEXT=
 +
$\text{Theorem:}$&nbsp; Der &nbsp;'''Maximum&ndash;Likelihood&ndash;Empfänger'''&nbsp; $($kurz:&nbsp; '''ML&ndash;Empfänger'''$)$&nbsp; verwendet die Entscheidungsregel
  
Man nennt die (bedingten) Wahrscheinlichkeiten in der Gleichung
+
:$$\hat{m}_{\rm ML} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm}  p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$
  
:<math>\hat{m} = {\rm arg} \max_i \hspace{0.1cm} P_{m | \boldsymbol{ r} } (  m_i | \boldsymbol{\rho})</math>
+
*Bei diesem werden die möglicherweise unterschiedlichen Auftrittswahrscheinlichkeiten&nbsp; ${\rm Pr}(m = m_i)$&nbsp; für den Entscheidungsprozess nicht herangezogen.
 +
* Zum Beispiel,&nbsp; weil diese dem Empfänger nicht bekannt sind.}}<br>
  
auch a&ndash;Posteriori&ndash;Wahrscheinlichkeiten. Mit dem [http://www.lntwww.de/Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit#R.C3.BCckschlusswahrscheinlichkeit Satz] von Bayes kann hierfür geschrieben werden:
+
Im früheren Kapitel &nbsp; [[Digitalsignalübertragung/Optimale_Empfängerstrategien|"Optimale Empfängerstrategien"]] &nbsp; finden Sie auch andere Herleitungen für diese Empfängertypen.  
  
:<math>P_{m | \boldsymbol{ r} } (  m_i | \boldsymbol{\rho}) =
+
{{BlaueBox|TEXT= 
\frac{{\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}|m } (\boldsymbol{\rho}|m_i )}{p_{\boldsymbol{ r}} (\boldsymbol{\rho})}
+
$\text{Fazit:}$&nbsp; Bei gleichwahrscheinlichen Nachrichten&nbsp; $\{m_i\}$  &nbsp; &#8658; &nbsp; ${\rm Pr}(m = m_i) = 1/M$&nbsp; ist der im Allgemeinen etwas schlechtere&nbsp; "Maximum–Likelihood&ndash;Empfänger"&nbsp; gleichwertig mit dem&nbsp; "Maximum–a–posteriori&ndash;Empfänger":
\hspace{0.05cm}.</math>
+
:$$\hat{m}_{\rm MAP} = \hat{m}_{\rm ML} =\hspace{-0.1cm} {\rm\hspace{0.05cm} arg} \max_i \hspace{0.1cm}
 +
  p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$}}
  
Da der Term im Nenner für alle <i>m<sub>i</sub></i> gleich ist, muss er für die Entscheidung nicht weiter berücksichtigt werden. Damit erhält man die folgenden Regeln:
 
  
{{Satz}} '''1:''' Die Entscheidungsregel des optimalen Empfängers, auch bekannt als MAP&ndash;Empfänger (die Abkürzung steht für Maximum&ndash;a&ndash;posteriori), lautet:
+
== Das Theorem der Irrelevanz==
 +
<br>
 +
[[Datei:P ID2003 Dig T 4 2 S3a version2.png|right|frame|Zum Theorem der Irrelevanz|class=fit]]
 +
Zu beachten ist,&nbsp; dass der auf der letzten Seite beschriebene Empfänger nur dann optimal ist,&nbsp; wenn auch der Detektor bestmöglich implementiert ist,&nbsp; das heißt,&nbsp; wenn durch den Übergang vom kontinuierlichen Signal&nbsp; $r(t)$&nbsp; zum Vektor&nbsp; $\boldsymbol{r}$&nbsp; keine Information verloren geht.<br>
  
:<math>\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} P_{m | \boldsymbol{ r} } (  m_i | \boldsymbol{\rho}) = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}|m } (\boldsymbol{\rho}|m_i )]\hspace{0.05cm}.</math>
+
Um zu klären,&nbsp; welche und wieviele Messungen am Empfangssignal&nbsp; $r(t)$&nbsp; nötig sind,&nbsp; um Optimalität zu garantieren,&nbsp; ist das&nbsp; "Theorem der Irrelevanz"&nbsp; hilfreich:&nbsp;
 +
*Dazu betrachten wir den skizzierten Empfänger,&nbsp; dessen Detektor aus dem Empfangssignal&nbsp; $r(t)$&nbsp; die zwei Vektoren&nbsp; $\boldsymbol{r}_1$&nbsp; und&nbsp; $\boldsymbol{r}_2$&nbsp; ableitet und dem Entscheider zur Verfügung stellt.&nbsp;
 +
 +
*Diese Größen stehen mit der Nachricht&nbsp; $ m \in \{m_i\}$&nbsp; über die Verbundwahrscheinlichkeitsdichte &nbsp; $p_{\boldsymbol{ r}_1, \hspace{0.05cm}\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}m }$ &nbsp; in Zusammenhang.<br>
  
Der Vorteil dieser Gleichung ist, dass die die Vorwärtsrichtung des Kanals beschreibende bedingte WDF <i>p<sub><b>r</b>|m</sub></i> (&bdquo;Ausgang unter der Bedingung Eingang&rdquo;) verwendet werden kann. Dagegen verwendet die erste Gleichung die Rückschlusswahrscheinlichkeiten <i>P</i><sub><i>m|<b>r</b></i></sub> (&bdquo;Eingang unter der Bedingung Ausgang&rdquo;).
+
*Die Entscheidungsregel des MAP&ndash;Empfängers lautet mit Anpassung an dieses Beispiel:
  
{{Satz}} <b>2:</b> Ein Maximum&ndash;Likelihood&ndash;Empfänger (ML&ndash;Empfänger) verwendet die Entscheidungsregel
+
:$$\hat{m}_{\rm MAP} \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 , \hspace{0.05cm}\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1, \hspace{0.05cm}\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) \big]=
 +
{\rm arg} \max_i \hspace{0.1cm}\big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 +
\hspace{0.05cm} \vert \hspace{0.05cm}m_i )
 +
\cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )\big]
 +
\hspace{0.05cm}.$$
  
:<math>\hat{m}_{\rm ML} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm}  p_{\boldsymbol{ r}|m } (\boldsymbol{\rho}|m_i )\hspace{0.05cm}.</math>
+
*Die Vektoren&nbsp; $\boldsymbol{r}_1$&nbsp; und &nbsp;$\boldsymbol{r}_2$&nbsp; sind Zufallsgrößen.&nbsp; Ihre Realisierungen werden hier und im Folgenden mit&nbsp; $\boldsymbol{\rho}_1$&nbsp; und &nbsp;$\boldsymbol{\rho}_2$&nbsp; bezeichnet.&nbsp; Zur Hervorhebung sind alle Vektoren in der Grafik rot eingetragen.
  
Bei diesem werden die möglicherweise unterschiedlichen Auftrittswahrscheinlichkeiten Pr(<i>m<sub>i</sub></i>) für den Entscheidungsprozess nicht herangezogen, zum Beispiel, weil sie dem Empfänger nicht bekannt sind.{{end}}{{end}}<br>
+
*Die Voraussetzungen für die Anwendung des&nbsp; "Theorems der Irrelevanz"&nbsp; sind die gleichen wie die an eine&nbsp; [[Stochastische_Signaltheorie/Markovketten#Betrachtetes_Szenario| "Markovkette"]]&nbsp; erster Ordnung.&nbsp; Die Zufallsvariablen&nbsp; $x$,&nbsp; $y$,&nbsp; $z$&nbsp; formen dann eine Markovkette erster Ordnung,&nbsp; falls die Verteilung von&nbsp; $z$&nbsp; bei gegebenem &nbsp;$y$&nbsp; unabhängig von&nbsp; $x$&nbsp; ist:
 +
:$$p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}y) \hspace{0.25cm} {\rm anstelle \hspace{0.15cm}von} \hspace{0.25cm}p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}x, y) \hspace{0.05cm}.$$
  
<b>Hinweis:</b> Im Kapitel 3.7 finden Sie eine andere Herleitung. Allgemein gilt: Bei gleichwahrscheinlichen Nachrichten {<i>m<sub>i</sub></i>}   &nbsp;&#8658;&nbsp; Pr(<i>m<sub>i</sub></i>) = 1/<i>M</i> ist der ML&ndash;Empfänger gleichwertig mit dem MAP&ndash;Empfänger:
+
*Der optimale Empfänger muss allgemein beide Vektoren&nbsp; $\boldsymbol{r}_1$&nbsp; und&nbsp; $\boldsymbol{r}_2$&nbsp; auswerten, da in obiger Entscheidungsregel beide Verbunddichten&nbsp; $p_{\boldsymbol{ r}_1\hspace{0.05cm} \vert \hspace{0.05cm}m }$&nbsp;  und&nbsp; $p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1, \hspace{0.05cm}m }$&nbsp;  auftreten.&nbsp; Dagegen kann der Empfänger ohne Informationseinbuße die zweite Messung vernachlässigen, falls&nbsp; $\boldsymbol{r}_2$&nbsp; bei gegebenem&nbsp; $\boldsymbol{r}_1$&nbsp; unabhängig von der Nachricht&nbsp; $m$&nbsp; ist:
 +
:$$p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
 +
p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1  } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  )
 +
\hspace{0.05cm}.$$
  
:<math>\hat{m}_{\rm MAP} = \hat{m}_{\rm ML} =\hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm}
+
*In diesem Fall lässt sich die Entscheidungsregel weiter vereinfachen:
  p_{\boldsymbol{ r}|m } (\boldsymbol{\rho}|m_i )\hspace{0.05cm}.</math>
+
:$$\hat{m}_{\rm MAP} =
 +
{\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 +
\hspace{0.05cm} \vert \hspace{0.05cm}m_i )
 +
\cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) \big]$$
 +
:$$\Rightarrow \hspace{0.3cm}\hat{m}_{\rm MAP} =
 +
{\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 +
\hspace{0.05cm} \vert \hspace{0.05cm}m_i )
 +
\cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  )\big]$$
 +
:$$\Rightarrow \hspace{0.3cm}\hat{m}_{\rm MAP} =
 +
{\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 +
\hspace{0.05cm} \vert \hspace{0.05cm}m_i )
 +
\big]\hspace{0.05cm}.$$
  
 +
{{GraueBox|TEXT=
 +
[[Datei:Dig_T_4_2_S3b_version2.png|right|frame|Zwei Beispiele zum Theorem der Irrelevanz|class=fit]] 
 +
$\text{Beispiel 2:}$&nbsp; Wir betrachten zur Verdeutlichung des soeben vorgestellten Theorems der Irrelevanz zwei verschiedene Systemkonfigurationen mit jeweils zwei Rauschtermen&nbsp; $\boldsymbol{ n}_1$&nbsp; und&nbsp; $\boldsymbol{ n}_2$.
 +
*In der Grafik sind alle vektoriellen Größen rot eingezeichnet.
  
== Das Theorem der Irrelevanz (1) ==
+
*Die Größen&nbsp; $\boldsymbol{s}$,&nbsp; $\boldsymbol{ n}_1$&nbsp; und &nbsp;$\boldsymbol{ n}_2$&nbsp; seien zudem jeweils unabhängig voneinander.<br>
<br>
 
Zu beachten ist, dass der auf der letzten Seite beschriebene Empfänger nur dann optimal ist, wenn auch der Detektor bestmöglich implementiert ist, das heißt, wenn durch den Übergang vom kontinuierlichen Signal <i>r</i>(<i>t</i>) zum Vektor <i><b>r</b></i>&nbsp; keine Information verloren geht.<br>
 
  
Um die Frage zu klären, welche und wieviele Messungen am Empfangssignal <i>r</i>(<i>t</i>) durchzuführen sind, um Optimalität zu garantieren, ist das <i>Theorem der Irrelevanz</i> hilfreich. Dazu betrachten wir den nachfolgend skizzierten Empfänger, dessen Detektor aus dem Empfangssignal <i>r</i>(<i>t</i>) die zwei Vektoren <i><b>r</b></i><sub>1</sub> und <i><b>r</b></i><sub>2</sub> ableitet und dem Entscheider zur Verfügung stellt. <i><b>r</b></i><sub>1</sub> und <i><b>r</b></i><sub>2</sub> stehen mit der Nachricht <i>m</i> &#8712; {<i>m<sub>i</sub></i>} über die Verbundwahrscheinlichkeitsdichte <i>p</i><sub><i><b>r</b></i><sub>1</sub>, <i><b>r</b></i><sub>2</sub>|<i>m</i></sub> in Zusammenhang.<br>
 
  
[[Datei:P ID2003 Dig T 4 2 S3a version2.png|Zum Theorem der Irrelevanz|class=fit]]<br>
+
Die Analyse dieser beiden Anordnungen liefert folgende Ergebnisse:
 +
*Der Entscheider muss in beiden Fällen die Komponente&nbsp; $\boldsymbol{ r}_1= \boldsymbol{ s}_i + \boldsymbol{ n}_1$&nbsp; berücksichtigen, da nur diese die Information über das Nutzsignal&nbsp; $\boldsymbol{ s}_i$&nbsp; und damit über die gesendete Nachricht&nbsp; $m_i$&nbsp; liefert.<br>
  
Die Entscheidungsregel des MAP&ndash;Empfängers lautet mit Anpassung an dieses Beispiel:
+
*Bei der oberen Konfiguration enthält&nbsp; $\boldsymbol{ r}_2$&nbsp; keine Information über&nbsp; $m_i$, die nicht bereits von &nbsp;$\boldsymbol{ r}_1$&nbsp; geliefert wurde.&nbsp; Vielmehr ist&nbsp; $\boldsymbol{ r}_2= \boldsymbol{ r}_1 + \boldsymbol{ n}_2$&nbsp; nur eine verrauschte Version von&nbsp; $\boldsymbol{ r}_1$&nbsp; und hängt nur vom Rauschen&nbsp; $\boldsymbol{ n}_2$&nbsp; ab, sobald&nbsp; $\boldsymbol{ r}_1$&nbsp; bekannt ist &nbsp; &#8658; &nbsp; $\boldsymbol{ r}_2$&nbsp; '''ist irrelevant''':
 +
:$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
 +
p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1  } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}_1  )=
 +
p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2 - \boldsymbol{\rho}_1  )\hspace{0.05cm}.$$
  
:<math>\hat{m}_{\rm MAP} \hspace{-0.1cm} \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 , \hspace{0.05cm}\boldsymbol{ r}_2 |m } \hspace{0.05cm} (\boldsymbol{\rho}_1, \hspace{0.05cm}\boldsymbol{\rho}_2|m_i )]=</math>
+
*Bei der unteren Konfiguration ist&nbsp; $\boldsymbol{ r}_2= \boldsymbol{ n}_1 + \boldsymbol{ n}_2$ für den Empfänger hilfreich, da ihm so ein Schätzwert für den Rauschterm $\boldsymbol{ n}_1$ geliefert wird &nbsp; &#8658; &nbsp; $\boldsymbol{ r}_2$ sollte hier nicht verworfen werden.&nbsp; Formal lässt sich dieses Resultat wie folgt ausdrücken:
:::<math>\hspace{-0.1cm} \hspace{-0.1cm}
+
:$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}  \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) = p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i)= p_{\boldsymbol{ n}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1 + \boldsymbol{s}_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i) = p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1 + \boldsymbol{s}_i )  
{\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  |m } \hspace{0.05cm} (\boldsymbol{\rho}_1
+
\hspace{0.05cm}.$$
|m_i )
 
\cdot p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )]
 
\hspace{0.05cm}.</math>
 
  
Hierzu ist anzumerken:
+
*Da nun im Argument dieser Funktion die Nachricht $\boldsymbol{ s}_i$ erscheint, ist $\boldsymbol{ r}_2$&nbsp; '''nicht irrelevant&rdquo;, sondern durchaus relevant'''.}}<br>
*Die Vektoren <i><b>r</b></i><sub>1</sub> und <i><b>r</b></i><sub>2</sub> sind Zufallsgrößen. Ihre Realisierungen werden hier und im Folgenden mit <i><b>&rho;</b></i><sub>1</sub> und <i><b>&rho;</b></i><sub>2</sub> bezeichnet. Zur Hervorhebung sind alle Vektoren in der Grafik rot eingetragen.
 
*Die Voraussetzungen für die Anwendung des &bdquo;Theorems der Irrelevanz&rdquo; sind die gleichen wie die an eine Markovkette erster Ordnung. Die Zufallsvariablen <i>x</i>, <i>y</i>, <i>z</i> formen dann eine solche, falls die Verteilung von <i>z</i> bei gegebenem <i>y</i> unabhängig von <i>x</i> ist:
 
  
::<math>p(x, y, z) = p(x) \cdot p(y|x) \cdot p(z|y) \hspace{0.25cm} {\rm anstelle \hspace{0.15cm}von} \hspace{0.25cm}p(x, y, z) = p(x) \cdot p(y|x) \cdot p(z|x, y) \hspace{0.05cm}.</math>
+
== Einige Eigenschaften des AWGN-Kanals==
 +
<br>
 +
Um weitere Aussagen über die Art der optimalen Messungen des Vektors&nbsp; $\boldsymbol{ r}$&nbsp; machen zu können,&nbsp; ist es notwendig,&nbsp; die den Kanal charakterisierende (bedingte) Wahrscheinlichkeitsdichtefunktion&nbsp; $p_{\hspace{0.02cm}r(t)\hspace{0.05cm} \vert \hspace{0.05cm}s(t)}$&nbsp; weiter zu spezifizieren.&nbsp; Im Folgenden wird die Kommunikation über den&nbsp; [[Modulationsverfahren/Qualit%C3%A4tskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell| "AWGN&ndash;Kanal"]]&nbsp; betrachtet,&nbsp; dessen wichtigste Eigenschaften hier nochmals kurz zusammengestellt werden:
 +
*Das Ausgangssignal des AWGN&ndash;Kanals ist&nbsp; $r(t) = s(t)+n(t)$,&nbsp; wobei&nbsp; $s(t)$&nbsp; das Sendesignal angibt und&nbsp; $n(t)$&nbsp; durch einen Gaußschen Rauschprozess dargestellt wird.<br>
  
*Der optimale Empfänger muss im allgemeinen Fall beide Vektoren <i><b>r</b></i><sub>1</sub> und <i><b>r</b></i><sub>2</sub> auswerten, da in obiger Entscheidungsregel beide Verbundwahrscheinlichkeitsdichten <i>p</i><sub><i><b>r</b></i><sub>1</sub>|<i>m</i></sub>  und <i>p</i><sub><i><b>r</b></i><sub>2</sub>| <i><b>r</b></i><sub>1</sub>, <i>m</i></sub>  auftreten.
+
*Einen Zufallsprozess&nbsp; $\{n(t)\}$&nbsp; bezeichnet man als gaußisch,&nbsp; wenn die Elemente der&nbsp; $k$&ndash;dimensionalen Zufallsvariablen&nbsp; $\{n_1(t)\hspace{0.05cm} \text{...} \hspace{0.05cm}n_k(t)\}$&nbsp; gemeinsam gaußverteilt sind &nbsp; &rArr; &nbsp; "jointly Gaussian".<br>
  
*Dagegen kann der Empfänger ohne Informationseinbuße die zweite Messung vernachlässigen, falls <i><b>r</b></i><sub>2</sub> bei gegebenem <i><b>r</b></i><sub>1</sub> unabhängig von der Nachricht <i>m</i> ist:
+
*Der Mittelwert des AWGN&ndash;Rauschens ist&nbsp; ${\rm E}\big[n(t)\big] = 0$.&nbsp; Außerdem ist&nbsp; $n(t)$&nbsp; "weiß",&nbsp; was bedeutet,&nbsp; dass das&nbsp; [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektrum]]&nbsp; $\rm (LDS)$&nbsp; für alle Frequenzen &nbsp;$($von &nbsp;$-\infty$ bis $+\infty)$&nbsp; konstant ist: &nbsp;
 +
:$${\it \Phi}_n(f) = {N_0}/{2}
 +
\hspace{0.05cm}.$$
  
::<math>p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
+
*Nach dem&nbsp; [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine |Wiener&ndash;Chintchine&ndash;Theorem]]&nbsp; ergibt sich die Autokorrelationsfunktion&nbsp; $\rm (AKF)$&nbsp; als die&nbsp; [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral| Fourierrücktransformierte]]&nbsp; von&nbsp; ${\it \Phi_n(f)}$:  
p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1  )
+
:$${\varphi_n(\tau)} = {\rm E}\big [n(t) \cdot n(t+\tau)\big  ] = {N_0}/{2} \cdot \delta(t)\hspace{0.3cm}  
\hspace{0.05cm}.</math>
+
\Rightarrow \hspace{0.3cm} {\rm E}\big [n(t) \cdot n(t+\tau)\big  ]  =
 +
\left\{ \begin{array}{c} \rightarrow \infty \\
 +
0  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}} \hspace{0.25cm} \tau = 0 \hspace{0.05cm},
 +
\\  {\rm f{\rm \ddot{u}r}} \hspace{0.25cm} \tau \ne 0 \hspace{0.05cm},\\ \end{array}$$
  
*In diesem Fall lässt sich die Entscheidungsregel weiter vereinfachen:
+
*$N_0$&nbsp; gibt dabei die physikalische&nbsp; $($nur für &nbsp;$f \ge 0$&nbsp; definierte$)$&nbsp; Rauschleistungsdichte an.&nbsp; Der konstante LDS&ndash;Wert&nbsp; $(N_0/2)$&nbsp; und das Gewicht der Diracfunktion in der AKF&nbsp; $($ebenfalls &nbsp;$N_0/2)$&nbsp; ergibt sich allein durch die zweiseitige Betrachtungsweise.<br><br>
  
::<math>\hat{m}_{\rm MAP} \hspace{-0.1cm}  =  \hspace{-0.1cm}
+
&rArr; &nbsp; Weitere Informationen zu diesem Thema liefert das Lernvideo&nbsp; [[Der_AWGN-Kanal_(Lernvideo)|"Der AWGN-Kanal"]]&nbsp; im zweiten Teil.<br>
{\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  |m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 
|m_i )
 
\cdot p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )]= </math>
 
::::<math> =  \hspace{-0.1cm}
 
{\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  |m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 
|m_i )
 
\cdot p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1  )]=</math>
 
::::<math> =  \hspace{-0.1cm}
 
{\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  |m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 
|m_i )
 
]
 
\hspace{0.05cm}.</math>
 
  
== Das Theorem der Irrelevanz (2) ==
+
== Beschreibung des AWGN-Kanals durch orthonormale Basisfunktionen==
 
<br>
 
<br>
Betrachten wir zur Verdeutlichung des soeben vorgestellten Theorems der Irrelevanz zwei verschiedene Systemkonfigurationen mit jeweils zwei Rauschtermen <i><b>n</b></i><sub>1</sub> und <i><b>n</b></i><sub>2</sub>. Anmerkung: Alle vektoriellen Größen sind rot eingezeichnet und <i><b>s</b></i>, <i><b>n</b></i><sub>1</sub> und <i><b>n</b></i><sub>2</sub> seien jeweils unabhängig voneinander.<br>
+
Aus dem vorletzten Statement auf der letzten Seite geht hervor,&nbsp; dass
 +
*reines AWGN&ndash;Rauschen&nbsp; $n(t)$&nbsp; stets eine unendliche Varianz (Leistung) aufweist: &nbsp; $\sigma_n^2 \to \infty$,<br>
  
[[Datei:P ID2004 Dig T 4 2 S3b version1.png|Zwei Beispiele zum Theorem der Irrelevanz|class=fit]]<br>
+
*in der Realität demzufolge nur gefiltertes Rauschen&nbsp; $n\hspace{0.05cm}'(t) = n(t) \star h_n(t)$&nbsp; auftreten kann.<br><br>
  
Die Analyse dieser beiden Anordnungen liefert folgende Ergebnisse:
+
Mit der Impulsantwort&nbsp; $h_n(t)$&nbsp; und dem&nbsp; Frequenzgang&nbsp; $H_n(f) = {\rm F}\big [h_n(t)\big ]$&nbsp; gelten dann folgende Gleichungen:<br>
*Der Entscheider muss in beiden Fällen die Komponente <i><b>r</b></i><sub>1</sub> = <i><b>s</b></i> + <i><b>n</b></i><sub>1</sub> berücksichtigen, da nur diese die Information über das Nutzsignal <i><b>s</b></i> und damit über die gesendete Nachricht <i>m</i> liefert.<br>
+
 
 +
:$${\rm E}\big[n\hspace{0.05cm}'(t)  \big] \hspace{0.15cm} =  \hspace{0.2cm} {\rm E}\big[n(t)  \big] = 0 \hspace{0.05cm},$$
 +
:$${\it \Phi_{n\hspace{0.05cm}'}(f)} \hspace{0.1cm}  =  \hspace{0.1cm} {N_0}/{2} \cdot |H_{n}(f)|^2 \hspace{0.05cm},$$
 +
:$$ {\it \varphi_{n\hspace{0.05cm}'}(\tau)} \hspace{0.1cm}  =  \hspace{0.1cm} {N_0}/{2}\hspace{0.1cm} \cdot \big [h_{n}(\tau) \star h_{n}(-\tau)\big  ]\hspace{0.05cm},$$
 +
:$$\sigma_n^2  \hspace{0.1cm}  =  \hspace{0.1cm} {  \varphi_{n\hspace{0.05cm}'}(\tau = 0)} =  {N_0}/{2} \cdot
 +
\int_{-\infty}^{+\infty}h_n^2(t)\,{\rm d} t ={N_0}/{2}\hspace{0.1cm} \cdot < \hspace{-0.1cm}h_n(t), \hspace{0.1cm} h_n(t) \hspace{-0.05cm} > \hspace{0.1cm} =
 +
\int_{-\infty}^{+\infty}{\it \Phi}_{n\hspace{0.05cm}'}(f)\,{\rm d} f = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|H_n(f)|^2\,{\rm d} f \hspace{0.05cm}.$$
 +
 
 +
Im Folgenden beinhaltet&nbsp; $n(t)$&nbsp; stets implizit eine&nbsp; '''Bandbegrenzung''';&nbsp; auf die Schreibweise&nbsp; $n'(t)$&nbsp; wird also zukünftig verzichtet.<br>
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Beachten Sie:}$&nbsp; Ähnlich wie das Sendesignal&nbsp; $s(t)$&nbsp; lässt sich auch der Rauschprozess&nbsp; $\{n(t)\}$&nbsp; als gewichtete Summe orthonormaler Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; schreiben.
 +
*Im Gegensatz zu&nbsp; $s(t)$&nbsp; ist nun allerdings eine Beschränkung auf eine endliche Anzahl an Basisfunktionen nicht möglich.
 +
 +
*Vielmehr gilt bei rein stochastischen Größen für die entsprechende Signaldarstellung stets
  
*Bei der oberen Konfiguration enthält <i><b>r</b></i><sub>2</sub> keine Information über <i>m</i>, die nicht bereits von <i><b>r</b></i><sub>1</sub> geliefert wurde. Vielmehr ist <i><b>r</b></i><sub>2</sub> = <i><b>r</b></i><sub>1</sub> + <i><b>n</b></i><sub>2</sub> nur eine verrauschte Version von <i><b>r</b></i><sub>1</sub> und hängt nur vom Rauschen <i><b>n</b></i><sub>2</sub> ab, sobald <i><b>r</b></i><sub>1</sub> bekannt ist &nbsp;&#8658;&nbsp; <i><b>r</b></i><sub>2</sub> ist irrelevant:
+
:$$n(t) = \lim_{N \rightarrow \infty} \sum\limits_{j = 1}^{N}n_j \cdot \varphi_j(t) \hspace{0.05cm},$$
  
::<math>p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
+
:wobei der Koeffizient&nbsp; $n_j$&nbsp; durch die Projektion von&nbsp; $n(t)$&nbsp; auf die Basisfunktion&nbsp; $\varphi_j(t)$&nbsp; bestimmt ist:
p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1  } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1  )=
 
p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2 - \boldsymbol{\rho}_1  )\hspace{0.05cm}.</math>
 
  
*Bei der unteren Konfiguration ist dagegen <i><b>r</b></i><sub>2</sub> = <i><b>n</b></i><sub>1</sub> + <i><b>n</b></i><sub>2</sub> für den Empfänger hilfreich, da dadurch dem Empfänger ein Schätzwert für den Rauschterm <i><b>n</b></i><sub>1</sub> geliefert wird &nbsp;&#8658;&nbsp; <i><b>r</b></i><sub>2</sub> sollte nicht verworfen werden. Formal lässt sich dieses Resultat wie folgt ausdrücken:
+
:$$n_j = \hspace{0.1cm} < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.05cm}.$$}}
  
::<math>p_{\boldsymbol{ r}_2 | \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2| \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )
 
\hspace{-0.1cm}  =  \hspace{-0.1cm}
 
p_{\boldsymbol{ r}_2  | \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2 | \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i)= </math>
 
:::::::<math> \hspace{0.5cm} \hspace{-0.1cm}  =  \hspace{-0.1cm}
 
p_{\boldsymbol{ n}_2 | \boldsymbol{ n}_1 , \hspace{0.05cm} m  } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1  + \boldsymbol{s}_i| \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i)= </math>
 
:::::::<math>\hspace{0.4cm}=\hspace{-0.1cm}
 
p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1  + \boldsymbol{s}_i )
 
\hspace{0.05cm}.</math>
 
  
:Da nun im Argument dieser Funktion die Nachricht (<i><b>s</b><sub>i</sub></i>) erscheint, ist <i><b>r</b></i><sub>2</sub> nicht irrelevant.<br>
+
<u>Hinweis:</u> &nbsp;  Um eine Verwechslung mit den Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; zu vermeiden, wird im Folgenden die AKF&nbsp; $\varphi_n(\tau)$&nbsp; des Rauschprozesses stets nur noch als der Erwartungswert&nbsp; &nbsp; ausgedrückt:<br>
 +
:$${\rm E}\big [n(t) \cdot n(t + \tau)\big ].$$
  
== Einige Eigenschaften des AWGN-Kanals (1) ==
+
== Optimaler Empfänger für den AWGN-Kanal==
 
<br>
 
<br>
Um weitere Aussagen über die Art der optimalen Messungen des Vektors <i><b>r</b></i>&nbsp; machen zu können, ist es notwendig, die den Kanal charakterisierende (bedingte) Wahrscheinlichkeitsdichtefunktion <i>p</i><sub><i>r</i>(<i>t</i>)|<i>s</i>(<i>t</i>)</sub> weiter zu spezifizieren. Im Folgenden wird die Kommunikation über den [http://www.lntwww.de/Modulationsverfahren/Qualit%C3%A4tskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell AWGN&ndash;Kanal] betrachtet, dessen wichtigste Eigenschaften hier nochmals kurz zusammengestellt werden:
+
[[Datei:P ID2005 Dig T 4 2 S5b version1.png|right|frame|Optimaler Empfänger beim AWGN-Kanal|class=fit]]
*Das Ausgangssignal des AWGN&ndash;Kanals ist <i>r</i>(<i>t</i>) = <i>s</i>(<i>t</i>) + <i>n</i>(<i>t</i>), wobei <i>s</i>(<i>t</i>) das Sendesignal angibt und <i>n</i>(<i>t</i>) durch einen Gaußschen Rauschprozess dargestellt wird.<br>
+
Auch das Empfangssignal&nbsp; $r(t) = s(t) + n(t)$&nbsp; lässt sich in bekannter Weise in Basisfunktionen zerlegen:
 +
 
 +
:$$r(t) = \sum\limits_{j = 1}^{\infty}r_j \cdot \varphi_j(t) \hspace{0.05cm}.$$
 +
 
 +
Zu berücksichtigen ist:
 +
*Die&nbsp; $M$&nbsp; möglichen Sendesignale&nbsp; $\{s_i(t)\}$&nbsp; spannen einen Signalraum mit insgesamt&nbsp;  $N$&nbsp; Basisfunktionen&nbsp; $\varphi_1(t)$, ... , $\varphi_N(t)$&nbsp; auf.<br>
  
*Ein Zufallsprozess {<i>n</i>(<i>t</i>)} ist gaußisch, falls die Elemente der <i>k</i>&ndash;dimensionalen Zufallsvariablen {<i>n</i>(<i>t</i><sub>1</sub>), ... , <i>n</i>(<i>t<sub>k</sub></i>)} gemeinsam gaußverteilt sind (<i>&bdquo;Jointly Gaussian&rdquo;</i>).<br>
+
*Diese&nbsp; $N$&nbsp; Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; werden gleichzeitig zur Beschreibung des Rauschsignals&nbsp; $n(t)$&nbsp; und des Empfangssignals&nbsp; $r(t)$&nbsp; verwendet.<br>
  
*Der Mittelwert des AWGN&ndash;Rauschens ist E[<i>n</i>(<i>t</i>)] = 0. Außerdem ist <i>n</i>(<i>t</i>) weiß, was bedeutet, dass das Leistungsdichtespektrum (LDS) für alle Frequenzen (von &ndash; &#8734; bis + &#8734;) konstant ist:
+
*Zur vollständigen Charakterisierung von&nbsp; $n(t)$&nbsp; bzw.&nbsp; $r(t)$&nbsp; werden nun aber auch noch unendlich viele weitere Basisfunktionen&nbsp; $\varphi_{N+1}(t)$,&nbsp; $\varphi_{N+2}(t)$,&nbsp; ... benötigt.<br>
  
::<math>{\it \Phi_n(f)} = {N_0}/{2}
 
\hspace{0.05cm}.</math>
 
  
*Nach dem [http://www.lntwww.de/Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine Wiener&ndash;Chintchine&ndash;Theorem] ergibt sich die Autokorrelationsfunktion (AKF) als die [http://www.lntwww.de/Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral Fourierrücktransformierte] von <i>&Phi;<sub>n</sub></i>(<i>f</i>):  
+
Damit ergeben sich die Koeffizienten des Empfangssignals&nbsp; $r(t)$&nbsp; gemäß folgender Gleichung.&nbsp; Hierbei ist berücksichtigt,&nbsp; dass die (möglichen) Sendesignale&nbsp; $s_i(t)$&nbsp; und das Rauschen&nbsp; $n(t)$&nbsp; voneinander unabhängig sind:
  
::<math>{\varphi_n(\tau)} = {\rm E}[n(t) \cdot n(t+\tau) ] = {N_0}/{2} \cdot \delta(t)</math>
+
:$$r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}=\hspace{0.1cm}
 +
\left\{ \begin{array}{c} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > + < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >  \hspace{0.1cm}= s_{ij}+ n_j\\
 +
< \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >  \hspace{0.1cm} = n_j \end{array} \right.\quad
 +
\begin{array}{*{1}c} {j = 1, 2, \hspace{0.05cm}\text{...}\hspace{0.05cm} \hspace{0.05cm}, N} \hspace{0.05cm},
 +
\\  {j > N}  \hspace{0.05cm}.\\ \end{array}$$
  
::<math>\Rightarrow \hspace{0.3cm} {\rm E}[n(t) \cdot n(t+\tau) ]  =
+
Somit ergibt sich für den optimalen Empfänger die oben skizzierte Struktur.<br>
\left\{ \begin{array}{c} \rightarrow \infty \\
+
<br>
  0  \end{array} \right.\quad
+
Betrachten wir zunächst den &nbsp; '''AWGN&ndash;Kanal'''.&nbsp; Hier kann auf das Vorfilter mit dem Frequenzgang&nbsp; $W(f)$&nbsp; verzichtet werden,&nbsp; das für farbiges Rauschen vorgesehen ist.<br>
\begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \tau = 0 \hspace{0.05cm},
 
\\  {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \tau \ne 0 \hspace{0.05cm},\\ \end{array}</math>
 
  
*<i>N</i><sub>0</sub> gibt dabei die physikalische (nur für <i>f</i> &#8805; 0 definierte) Rauschleistungsdichte an. Der konstante LDS&ndash;Wert (<i>N</i><sub>0</sub>/2) und das Gewicht der Diracfunktion in der AKF (ebenfalls <i>N</i><sub>0</sub>/2) ergibt sich allein durch die zweiseitige Betrachtungsweise.<br><br>
+
#Der Detektor des optimalen Empfängers bildet die Koeffizienten &nbsp; $r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t)\hspace{-0.05cm} >$ &nbsp; und reicht diese an den Entscheider weiter.  
 +
#Basiert die Entscheidung auf sämtlichen  Koeffizienten&nbsp; $r_j$,&nbsp; so ist die Wahrscheinlichkeit für eine Fehlentscheidung minimal und der Empfänger optimal.<br>
 +
#Die reellwertigen Koeffizienten&nbsp; $r_j$&nbsp; wurden oben wie folgt berechnet:
 +
::$$r_j = 
 +
\left\{ \begin{array}{c}  s_{ij} + n_j\\
 +
  n_j \end{array} \right.\quad
 +
\begin{array}{*{1}c} {j = 1, 2, \hspace{0.05cm}\text{...}\hspace{0.05cm}, N} \hspace{0.05cm},
 +
\\  {j > N}  \hspace{0.05cm}.\\ \end{array}$$
  
Weitere Informationen zum AWGN&ndash;Kanal liefert das Lernvideo [[:File:AWGN_2.swf|Der AWGN&ndash;Kanal &ndash; Teil 2.]]<br>
+
Nach dem&nbsp; [[Digitalsignalübertragung/Struktur_des_optimalen_Empfängers#Das_Theorem_der_Irrelevanz|"Theorem der Irrelevanz"]]&nbsp; lässt sich zeigen,&nbsp; dass für additives weißes Gaußsches Rauschen
 +
*die Optimalität nicht herabgesetzt wird,&nbsp; wenn man die Koeffizienten &nbsp;$r_{N+1}$,&nbsp; $r_{N+2}$,&nbsp;  ... &nbsp;,  die nicht von der Nachricht&nbsp; $(s_{ij})$&nbsp; abhängigen,&nbsp; nicht in den Entscheidungsprozess einbindet,&nbsp; und somit <br>
  
== Einige Eigenschaften des AWGN-Kanals (2) ==
+
*der Detektor nur die Projektionen des Empfangssignals&nbsp; $r(t)$&nbsp; auf die&nbsp; $N$&nbsp; durch das Nutzsignal&nbsp; $s(t)$&nbsp; vorgegebenen Basisfunktionen&nbsp; $\varphi_{1}(t)$, ... , $\varphi_{N}(t)$&nbsp; bilden muss.<br>
<br>
 
Aus dem vorletzten Statement auf der letzten Seite geht hervor, dass
 
*reines AWGN&ndash;Rauschen <i>n</i>(<i>t</i>) stets eine unendliche Varianz (Leistung) aufweist: <i>&sigma;<sub>n</sub></i><sup>2</sup> &#8594; &#8734;,<br>
 
*in der Realität demzufolge nur gefiltertes Rauschen <i>n</i>'(<i>t</i>) = <i>n</i>(<i>t</i>) &#8727; <i>h<sub>n</sub></i>(<i>t</i>) auftreten kann.<br><br>
 
  
Mit der Impulsantwort <i>h<sub>n</sub></i>(<i>t</i>) und dem Frequenzgang <i>H<sub>n</sub></i>(<i>f</i>) = F[<i>h<sub>n</sub></i>(<i>t</i>)] gelten dann folgende Gleichungen:<br>
 
  
:<math>{\rm E}[n'(t)  ] \hspace{0.15cm} =  \hspace{0.2cm} {\rm E}[n(t)  ] = 0 \hspace{0.05cm},</math>
+
In der Grafik ist diese signifikante Vereinfachung durch die graue Hinterlegung angedeutet.<br>
:<math>\hspace{0.4cm}{\it \Phi_{n'}(f)} \hspace{0.1cm}  =  \hspace{0.1cm} {N_0}/{2} \cdot |H_{n}(f)|^2 \hspace{0.05cm},</math>
 
:<math> \hspace{0.4cm}{\it \varphi_{n'}(\tau)} \hspace{0.1cm}  =  \hspace{0.1cm} {N_0}/{2}\hspace{0.1cm} \cdot [h_{n}(\tau) \star h_{n}(-\tau)]\hspace{0.05cm},</math>
 
::<math>\hspace{0.4cm}\sigma_n^2  \hspace{0.1cm}  =  \hspace{0.1cm} {  \varphi_{n'}(\tau = 0)} =  {N_0}/{2} \cdot
 
\int_{-\infty}^{+\infty}h_n^2(t)\,{\rm d} t ={N_0}/{2}\hspace{0.1cm} \cdot < \hspace{-0.1cm}h_n(t), \hspace{0.1cm} h_n(t) \hspace{-0.05cm} > \hspace{0.1cm}=</math>
 
:::<math>\hspace{0.6cm}\hspace{-0.1cm}  =  \hspace{0.1cm}  \int_{-\infty}^{+\infty}{\it \Phi_{n'}(f)}\,{\rm d} f = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|H_n(f)|^2\,{\rm d} f \hspace{0.05cm}.</math>
 
  
Im Folgenden beinhaltet <i>n</i>(<i>t</i>) stets implizit eine Bandbegrenzung; auf die Schreibweise <i>n</i>'(<i>t</i>) wird also zukünftig verzichtet.<br>
+
Bei &nbsp;'''farbigem Rauschen''' &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Leistungsdichtespektrum&nbsp; ${\it \Phi}_n(f) \ne {\rm const.}$&nbsp; ist lediglich zusätzlich ein Vorfilter mit Amplitudengang&nbsp; $|W(f)| = {1}/{\sqrt{\it \Phi}_n(f)}$&nbsp; erforderlich.
 +
#Man nennt dieses Filter auch&nbsp; "Whitening Filter",&nbsp; da die Rauschleistungsdichte am Ausgang wieder konstant &ndash; also &bdquo;weiß&rdquo; &ndash; ist.
 +
#Genaueres hierzu finden Sie im Kapitel&nbsp; [[Stochastische_Signaltheorie/Matched-Filter#Verallgemeinertes_Matched-Filter_f.C3.BCr_den_Fall_farbiger_St.C3.B6rungen|"Matched-Filter bei farbigen Störungen"]]&nbsp; des Buches &bdquo;Stochastische Signaltheorie&rdquo;.<br>
  
Ähnlich wie das Sendesignal <i>s</i>(<i>t</i>) lässt sich auch der Rauschprozess <i>n</i>(<i>t</i>) als gewichtete Summe von orthonormalen Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) schreiben. Im Gegensatz zu <i>s</i>(<i>t</i>) ist allerdings nun eine Beschränkung auf eine endliche Anzahl an Basisfunktionen nicht möglich. Vielmehr gilt bei rein stochastischen Größen
+
== Implementierungsaspekte ==
 +
<br>
 +
Wesentliche Bestandteile des optimalen Empfängers sind die Berechnungen der inneren Produkte gemäß den Gleichungen &nbsp; $r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >$.  
  
:<math>n(t) = \lim_{N \rightarrow \infty} \sum\limits_{j = 1}^{N}n_j \cdot \varphi_j(t) \hspace{0.05cm},</math>
+
{{BlaueBox|TEXT=
 +
$\text{Diese können auf verschiedene Art und Weise implementiert werden:}$&nbsp;
  
wobei der Koeffizient <i>n<sub>j</sub></i> durch die Projektion von <i>n</i>(<i>t</i>) auf die Basisfunktion <i>&phi;<sub>j</sub></i>(<i>t</i>) bestimmt ist:
+
*Beim &nbsp;'''Korrelationsempfänger'''&nbsp; $($Näheres zu dieser Implementierung finden Sie im&nbsp; [[Digitalsignal%C3%BCbertragung/Optimale Empf%C3%A4ngerstrategien#Korrelationsempf.C3.A4nger|gleichnamigen Kapitel]]$)$&nbsp; werden die inneren Produkte direkt entsprechend der Definition mit analogen Multiplizierern und Integratoren realisiert:
 +
:$$r_j = \int_{-\infty}^{+\infty}r(t) \cdot \varphi_j(t) \,{\rm d} t \hspace{0.05cm}.$$
  
:<math>n_j = \hspace{0.1cm} < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.05cm}.</math>
+
*Der &nbsp;'''Matched&ndash;Filter&ndash;Empfänger''',&nbsp; der  bereits im Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung#Optimaler_Bin.C3.A4rempf.C3.A4nger_-_Realisierung_mit_Matched-Filter|"Optimaler Binärempfänger"]]&nbsp; zu Beginn dieses Buches hergeleitet wurde,&nbsp; erzielt mit einem linearen Filter mit der Impulsantwort&nbsp;  $h_j(t) = \varphi_j(t) \cdot (T-t)$&nbsp;  und anschließender  Abtastung zum Zeitpunkt&nbsp; $t = T$&nbsp; das gleiche Ergebnis:
 +
:$$r_j = \int_{-\infty}^{+\infty}r(\tau) \cdot h_j(t-\tau) \,{\rm d} \tau
 +
= \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(T-t+\tau) \,{\rm d} \tau \hspace{0.3cm}  
 +
\Rightarrow \hspace{0.3cm} r_j (t = \tau) = \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(\tau) \,{\rm d} \tau = r_j
 +
\hspace{0.05cm}.$$
 +
[[Datei:P ID2008 Dig T 4 2 S6 version1.png|left|frame|Drei unterschiedliche Implementierungen des inneren Produktes|class=fit]]
 +
<br><br><br>
 +
Die Abbildung zeigt die beiden möglichen Realisierungsformen des optimalen Detektors.}}
  
<b>Hinweis:</b>  Um eine Verwechslung mit den Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) zu vermeiden, wird im Folgenden die AKF <i>&phi;<sub>n</sub></i>(<i>&tau;</i>) des Rauschprozesses stets nur noch als der Erwartungswert E[<i>n</i>(<i>t</i>) &middot; <i>n</i>(<i>t</i> + <i>&tau;</i>)] ausgedrückt.<br>
 
  
== Optimaler Empfänger für den AWGN-Kanal (1) ==
+
== Wahrscheinlichkeitsdichtefunktion der Empfangswerte ==
 
<br>
 
<br>
Auch das Empfangssignal <i>r</i>(<i>t</i>) = <i>s</i>(<i>t</i>) + <i>n</i>(<i>t</i>) lässt sich in bekannter Weise in Basisfunktionen zerlegen:
+
Bevor wir uns im folgenden Kapitel der optimalen Gestaltung des Entscheiders und der Berechnung und Annäherung der Fehlerwahrscheinlichkeit zuwenden,&nbsp; erfolgt zunächst eine für den AWGN&ndash;Kanal gültige statistische Analyse der Entscheidungsgrößen&nbsp; $r_j$.  
:<math>r(t) =  \sum\limits_{j = 1}^{\infty}r_j \cdot \varphi_j(t) \hspace{0.05cm}.</math>
 
  
Zu berücksichtigen ist:
+
[[Datei:P ID2009 Dig T 4 2 S7 version1.png|right|frame|Signalraumkonstellation und WDF des Empfangssignals|class=fit]]
*Die <i>M</i> möglichen Sendesignale {<i>s<sub>i</sub></i>(<i>t</i>)} spannen einen Signalraum mit insgesamt  <i>N</i> Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;<sub>N</sub></i>(<i>t</i>) auf.<br>
+
Dazu betrachten wir nochmals den optimalen Binärempfänger für die bipolare Basisbandübertragung über den AWGN&ndash;Kanal,&nbsp; wobei wir von der für das vierte Hauptkapitel gültigen Beschreibungsform ausgehen.
 +
 
 +
Mit den Parametern&nbsp; $N = 1$&nbsp; und&nbsp; $M = 2$&nbsp; ergibt sich für das Sendesignal die in der linken Grafik dargestellte Signalraumkonstellation
 +
*mit nur einer Basisfunktion&nbsp; $\varphi_1(t)$,&nbsp; wegen&nbsp; $N = 1$,<br>
 +
 
 +
*mit den beiden Signalraumpunkten&nbsp; $s_i \in \{s_0, \hspace{0.05cm}s_1\}$, wegen&nbsp; $M = 2$.
 +
<br clear=all>
 +
Für das Signal&nbsp; $r(t) = s(t) + n(t)$&nbsp; am Ausgang des AWGN&ndash;Kanals ergibt sich im rauschfreien Fall &nbsp; &#8658; &nbsp; $r(t) = s(t)$&nbsp; die genau gleiche Konstellation. Die Signalraumpunkte liegen somit bei
 +
:$$r_0 = s_0 = \sqrt{E}\hspace{0.05cm},\hspace{0.2cm}r_1 = s_1 = -\sqrt{E}\hspace{0.05cm}.$$
  
*Diese <i>N</i> Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) werden gleichzeitig zur Beschreibung des Rauschsignals <i>n</i>(<i>t</i>) und des Empfangssignals <i>r</i>(<i>t</i>) verwendet.<br>
+
*Bei Berücksichtigung des&nbsp; (bandbegrenzten)&nbsp; AWGN&ndash;Rauschens&nbsp; $n(t)$&nbsp; überlagern sich den beiden Punkten&nbsp; $r_0$&nbsp; und&nbsp; $r_1$&nbsp; jeweils Gaußkurven mit der Varianz&nbsp; $\sigma_n^2$ &nbsp;&#8658;&nbsp; Streuung&nbsp; $\sigma_n$&nbsp; $($siehe rechte Grafik$)$.  
  
*Zur vollständigen Charakterisierung von <i>n</i>(<i>t</i>) bzw. <i>r</i>(<i>t</i>) werden nun aber darüber hinaus noch unendlich viele weitere Basisfunktionen <i>&phi;</i><sub><i>N</i></sub><sub>+1</sub>(<i>t</i>), <i>&phi;</i><sub><i>N</i></sub><sub>+2</sub>(<i>t</i>), ... benötigt.<br>
+
*Die WDF der Rauschkomponente&nbsp; $n(t)$&nbsp; lautet dabei:
 +
:$$p_n(n) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {n^2}/(2 \sigma_n^2)}\hspace{0.05cm}.$$
  
*Damit ergeben sich die Koeffizienten des Empfangssignals <i>r</i>(<i>t</i>) gemäß folgender Gleichung, wobei berücksichtigt ist, dass die Signale <i>s<sub>i</sub></i>(<i>t</i>) und das Rauschen <i>n</i>(<i>t</i>) voneinander unabhängig sind:
+
Für die bedingte Wahrscheinlichkeitsdichte,&nbsp; dass der Empfangswert&nbsp; $\rho$&nbsp; anliegt, wenn&nbsp; $s_i$&nbsp; gesendet wurde,&nbsp; ergibt sich dann folgender Ausdruck:
  
::<math>r_j \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}=</math>
+
:$$p_{\hspace{0.02cm}r\hspace{0.05cm}|\hspace{0.05cm}s}(\rho\hspace{0.05cm}|\hspace{0.05cm}s_i) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {(\rho - s_i)^2}/(2 \sigma_n^2)} \hspace{0.05cm}.$$
:::<math> \hspace{-0.1cm} =  \hspace{-0.1cm}
 
\left\{ \begin{array}{c} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > + < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >  \hspace{0.1cm}= s_{ij}+ n_j\\
 
< \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >  \hspace{0.1cm} = n_j \end{array} \right.\quad
 
\begin{array}{*{1}c} {j = 1, 2, ... \hspace{0.05cm}, N} \hspace{0.05cm},
 
\\  {j > N}  \hspace{0.05cm}.\\ \end{array}</math>
 
  
Somit ergibt sich für den optimalen Empfänger die folgende Struktur.<br>
+
Zu den Einheiten der hier aufgeführten Größen ist zu bemerken:
 +
*$r_0 = s_0$&nbsp; und&nbsp; $r_1 = s_1$&nbsp; sowie&nbsp; $n$&nbsp; sind jeweils Skalare mit der Einheit &bdquo;Wurzel aus Energie&rdquo;.<br>
  
[[Datei:P ID2005 Dig T 4 2 S5b version1.png|Optimaler Empfänger beim AWGN-Kanal|class=fit]]<br>
+
*Damit ist offensichtlich,&nbsp; dass&nbsp; $\sigma_n$&nbsp; ebenfalls die Einheit &bdquo;Wurzel aus Energie&rdquo; besitzt und&nbsp; $\sigma_n^2$&nbsp; eine Energie darstellt.<br>
  
Die Bildbeschreibung folgt auf der nächsten Seite.<br>
+
*Beim AWGN&ndash;Kanal ist die Rauschvarianz&nbsp; $\sigma_n^2 = N_0/2$.&nbsp; Diese ist  also ebenfalls eine physikalische Größe mit der Einheit&nbsp; $\rm W/Hz = Ws$.<br><br>
  
 +
Die hier angesprochene Thematik wird in der&nbsp; [[Aufgaben:Aufgabe_4.06:_Optimale_Entscheidungsgrenzen|"Aufgabe 4.6"]]&nbsp; an Beispielen verdeutlicht.<br>
  
 +
== N–dimensionales Gaußsches Rauschen==
 +
<br>
 +
Liegt ein&nbsp; $N$&ndash;dimensionales Modulationsverfahren vor,&nbsp; das heißt,&nbsp; wenn mit&nbsp; $0 \le i \le M-1$&nbsp; und &nbsp;$1 \le j \le N$&nbsp;
 +
:$$s_i(t) = \sum\limits_{j = 1}^{N} s_{ij} \cdot \varphi_j(t) = s_{i1} \cdot \varphi_1(t)
 +
+ s_{i2} \cdot \varphi_2(t) + \hspace{0.05cm}\text{...}\hspace{0.05cm} + s_{iN} \cdot \varphi_N(t)\hspace{0.05cm}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} \boldsymbol{ s}_i = \left(s_{i1}, s_{i2}, \hspace{0.05cm}\text{...}\hspace{0.05cm},  s_{iN}\right )
 +
\hspace{0.05cm},$$
  
 +
gilt,&nbsp; dann muss der Rauschvektor&nbsp; $\boldsymbol{ n}$&nbsp; ebenfalls mit Dimension&nbsp; $N$&nbsp; angesetzt werden.&nbsp; Das gleiche gilt auch für den Empfangsvektor&nbsp;  $\boldsymbol{ r}$:
 +
:$$\boldsymbol{ n} = \left(n_{1}, n_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm},  n_{N}\right )
 +
\hspace{0.01cm},$$
 +
:$$\boldsymbol{ r} = \left(r_{1}, r_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm},  r_{N}\right )\hspace{0.05cm}.$$
  
 +
Die Wahrscheinlichkeitsdichtefunktion&nbsp; $\rm (WDF)$&nbsp; lautet dann für den AWGN&ndash;Kanal mit der Realisierung&nbsp; $\boldsymbol{ \eta}$&nbsp; des Rauschsignals
 +
:$$p_{\boldsymbol{ n}}(\boldsymbol{ \eta}) = \frac{1}{\left( \sqrt{2\pi}  \cdot \sigma_n \right)^N }  \cdot
 +
{\rm exp} \left [ - \frac{|| \boldsymbol{ \eta} ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm},$$
  
 +
und für die bedingte WDF in der Maximum&ndash;Likelihood&ndash;Entscheidungsregel ist anzusetzen:
  
 +
:$$p_{\hspace{0.02cm}\boldsymbol{ r}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_i) \hspace{-0.1cm}  =  \hspace{0.1cm}
 +
p_{\hspace{0.02cm} \boldsymbol{ n}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} - \boldsymbol{ s}_i \hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}_i) = \frac{1}{\left( \sqrt{2\pi}  \cdot \sigma_n \right)^2 } \cdot
 +
{\rm exp} \left [ - \frac{|| \boldsymbol{ \rho} - \boldsymbol{ s}_i  ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}.$$
  
 +
Die Gleichung ergibt sich
 +
*aus der allgemeinen Darstellung der $N$&ndash;dimensionalen Gaußschen WDF im Abschnitt&nbsp; [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgr%C3%B6%C3%9Fen#Korrelationsmatrix|"Korrelationsmatrix"]]&nbsp; des Buches &bdquo;Stochastische Signaltheorie&rdquo;
  
 +
*unter der Voraussetzung,&nbsp; dass die Komponenten unkorreliert&nbsp; (und somit  statistisch unabhängig)&nbsp; sind.
  
 +
*$||\boldsymbol{ \eta}||$&nbsp; bezeichnet man als die&nbsp; "Norm"&nbsp; (Länge)&nbsp; des Vektors &nbsp;$\boldsymbol{ \eta}$.<br>
  
  
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 3:}$&nbsp;
 +
Rechts dargestellt ist die zweidimensionale Gauß&ndash;WDF&nbsp; $p_{\boldsymbol{ n} } (\boldsymbol{ \eta})$&nbsp; der 2D&ndash;Zufallsgröße&nbsp; $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.&nbsp;  Beliebige Realisierungen der Zufallsgröße&nbsp; $\boldsymbol{ n}$&nbsp; werden mit&nbsp; $\boldsymbol{ \eta} = (\eta_1,\hspace{0.05cm}\eta_2)$&nbsp; bezeichnet.&nbsp; Die Gleichung der dargestellten Glockenkurve lautet:
 +
[[Datei:P ID2012 Dig T 4 2 S8 version1.png|right|frame|Zweidimensionale Gauß–WDF]]
 +
:$$p_{n_1, n_2}(\eta_1, \eta_2) = \frac{1}{\left( \sqrt{2\pi}  \cdot \sigma_n \right)^2 }  \cdot
 +
{\rm exp} \left [ - \frac{ \eta_1^2 + \eta_2^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}. $$
 +
*Das Maximum dieser Funktion liegt bei&nbsp; $\eta_1 = \eta_2 = 0$&nbsp; und hat den Wert &nbsp; $2\pi \cdot \sigma_n^2$.
 +
 +
*Mit&nbsp; $\sigma_n^2 = N_0/2$&nbsp; lässt sich die 2D&ndash;WDF in Vektorform auch wie folgt schreiben:
 +
:$$p_{\boldsymbol{ n} }(\boldsymbol{ \eta}) = \frac{1}{\pi \cdot N_0 }  \cdot
 +
{\rm exp} \left [ - \frac{\vert \vert \boldsymbol{ \eta} \vert \vert ^2}{N_0}\right ]\hspace{0.05cm}.$$
  
 +
*Diese rotationssymmetrische WDF eignet sich zum Beispiel für die Beschreibung/Untersuchung eines zweidimensionalen Modulationsverfahrens wie&nbsp; [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29|"M&ndash;QAM"]],&nbsp; [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29|"M&ndash;PSK"]]&nbsp; oder&nbsp; [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Binary_Frequency_Shift_Keying_.282.E2.80.93FSK.29|"2&ndash;FSK"]].<br>
  
 +
*Oft werden zweidimensionale reelle Zufallsgrößen aber auch eindimensional&ndash;komplex dargestellt, meist in der Form&nbsp; $n(t) = n_{\rm I}(t) + {\rm j} \cdot n_{\rm Q}(t)$. Die beiden Komponenten bezeichnet man dann als&nbsp; "Inphaseanteil"&nbsp; $n_{\rm I}(t)$&nbsp; und&nbsp; "Quadraturanteil"&nbsp; $n_{\rm Q}(t)$&nbsp; des Rauschens.<br>
  
 +
*Die Wahrscheinlichkeitsdichtefunktion hängt nur vom Betrag&nbsp; $\vert n(t) \vert$&nbsp; der Rauschvariablen ab und nicht von Winkel&nbsp; ${\rm arc} \ n(t)$.&nbsp; Das heißt: &nbsp; Komplexes Rauschen ist zirkulär symmetrisch&nbsp; (siehe Grafik).<br>
  
 +
*Zirkulär symmetrisch bedeutet auch,&nbsp; dass die Inphasekomponente&nbsp; $n_{\rm I}(t)$&nbsp; und die Quadraturkomponente&nbsp; $n_{\rm Q}(t)$&nbsp; die gleiche Verteilung aufweisen und damit auch gleiche Varianz&nbsp; (Streuung)&nbsp; besitzen:
  
 +
:$$ {\rm E} \big [ n_{\rm I}^2(t)\big  ]  = {\rm E}\big [ n_{\rm Q}^2(t) \big ] = \sigma_n^2 \hspace{0.05cm},\hspace{1cm}{\rm E}\big  [ n(t) \cdot n^*(t) \big  ]\hspace{0.1cm}  =  \hspace{0.1cm}  {\rm E}\big [ n_{\rm I}^2(t) \big ] + {\rm E}\big [ n_{\rm Q}^2(t)\big  ] = 2\sigma_n^2 \hspace{0.05cm}.$$}}
  
  
 +
Abschließend noch einige&nbsp; '''Bezeichnungsvarianten'''&nbsp; für Gaußsche Zufallsgrößen:
  
 +
:$$x ={\cal N}(\mu, \sigma^2) \hspace{-0.1cm}: \hspace{0.3cm}\text{reelle gaußverteilte Zufallsgröße, mit Mittelwert}\hspace{0.15cm}\mu \text                                          { und Varianz}\hspace{0.15cm}\sigma^2 \hspace{0.05cm},$$
 +
:$$y={\cal CN}(\mu, \sigma^2)\hspace{-0.1cm}: \hspace{0.12cm}\text{komplexe gaußverteilte Zufallsgröße} \hspace{0.05cm}.$$
  
 +
==  Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:4.4_Maximum–a–posteriori_und_Maximum–Likelihood|Aufgabe 4.4: Maximum–a–posteriori und Maximum–Likelihood]]
  
 +
[[Aufgaben:4.5 Theorem der Irrelevanz|Aufgabe 4.5: Theorem der Irrelevanz]]
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 18. Juli 2022, 15:31 Uhr

Blockschaltbild und Voraussetzungen


In diesem Kapitel wird die Struktur des optimalen Empfängers eines digitalen Übertragungssystems sehr allgemein hergeleitet,  wobei

  • das Modulationsverfahren und weitere Systemdetails nicht weiter spezifiziert werden,
Allgemeines Blockschaltbild eines Kommunikationssystems


Zum obigen Blockschaltbild ist anzumerken:

  • Der Symbolumfang der Quelle beträgt  $M$  und der Symbolvorrat ist  $\{m_i\}$  mit  $i = 0$, ... , $M-1$. 
  • Die zugehörigen Symbolwahrscheinlichkeiten  ${\rm Pr}(m = m_i)$  seien auch dem Empfänger bekannt.
  • Zur Nachrichtenübertragung stehen  $M$  Signalformen  $s_i(t)$  zur Verfügung;  auch für die Laufvariable gelte die Indizierung  $i = 0$, ... , $M-1$.
  • Es besteht eine feste Beziehung zwischen den Nachrichten und den Signalen.  Wird  $m =m_i$  übertragen, so ist das Sendesignal  $s(t) =s_i(t)$.
  • Lineare Kanalverzerrungen sind in der obigen Grafik durch die Impulsantwort  $h(t)$  berücksichtigt.  Außerdem ist ein  (irgendwie geartetes)  Rauschen  $n(t)$  wirksam.
  • Mit diesen beiden die Übertragung störenden Effekten lässt sich das am Empfänger ankommende Signal  $r(t)$  in folgender Weise angeben:
$$r(t) = s(t) \star h(t) + n(t) \hspace{0.05cm}.$$
  • Aufgabe des  (optimalen)  Empfängers ist es,  anhand seines Eingangssignals  $r(t)$  herauszufinden,  welche der  $M$  möglichen Nachrichten  $m_i$   ⇒   Signal  $s_i(t)$  gesendet wurde.  Der vom Empfänger gefundene Schätzwert für  $m$  wird durch ein  "Zirkumflex"  gekennzeichnet   ⇒   $\hat{m}$.


$\text{Definition:}$  Man spricht von einem  optimalen Empfänger,  wenn die Symbolfehlerwahrscheinlichkeit den für die Randbedingungen kleinstmöglichen Wert annimmt:

$$p_{\rm S} = {\rm Pr} ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm Minimum} \hspace{0.05cm}.$$


Hinweise:

  1. Im Folgenden wird meist der AWGN–Ansatz   ⇒   $r(t) = s(t) + n(t)$  vorausgesetzt,  was bedeutet,  dass  $h(t) = \delta(t)$  als verzerrungsfrei angenommen wird.
  2. Andernfalls können wir die Signale  $s_i(t)$  als  ${s_i}'(t) = s_i(t) \star h(t)$  neu definieren,  also die deterministischen Kanalverzerrungen dem Sendesignal beaufschlagen.

Fundamentaler Ansatz zum optimalen Empfängerentwurf


Gegenüber dem auf der vorherigen Seite gezeigten  "Blockschaltbild"  führen wir nun einige wesentliche Verallgemeinerungen durch:

Modell zur Herleitung des optimalen Empfängers
  • Der Übertragungskanal wird nun beschrieben durch die  "bedingte Wahrscheinlichkeitsdichtefunktion"   $p_{\hspace{0.02cm}r(t)\hspace{0.02cm} \vert \hspace{0.02cm}s(t)}$,   welche die Abhängigkeit des Empfangssignals  $r(t)$  vom Sendesignal  $s(t)$  festlegt.
  • Wurde nun ein ganz bestimmtes Signal  $r(t) = \rho(t)$  empfangen,  so hat der Empfänger die Aufgabe, die Wahrscheinlichkeitsdichtefunktionen auf der Grundlage dieser  "Signalrealisierung"   $\rho(t)$  und der  $M$  bedingten Wahrscheinlichkeitsdichtefunktionen zu bestimmen:
$$p_{\hspace{0.05cm}r(t) \hspace{0.05cm} \vert \hspace{0.05cm} s(t) } (\rho(t) \hspace{0.05cm} \vert \hspace{0.05cm} s_i(t))\hspace{0.5cm}{\rm mit}\hspace{0.5cm} i = 0, \text{...} \hspace{0.05cm}, M-1.$$
  • Ermittelt werden soll,  welche Nachricht  $\hat{m}$  am wahrscheinlichsten gesendet wurde,  unter Berücksichtigung aller möglichen Sendesignale  $s_i(t)$  und derenn Auftrittsswahrscheinlichkeiten  ${\rm Pr}(m = m_i)$.
  • Die Schätzung des optimalen Empfängers ist also ganz allgemein bestimmt durch die Gleichung
$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} p_{\hspace{0.02cm}s(t) \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } ( s_i(t) \hspace{0.05cm} \vert \hspace{0.05cm} \rho(t)) = {\rm arg} \max_i \hspace{0.1cm} p_{m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } ( \hspace{0.05cm}m_i\hspace{0.05cm} \vert \hspace{0.05cm}\rho(t))\hspace{0.05cm}.$$

$\text{In anderen Worten:}$  Der optimale Empfänger betrachtet diejenige Nachricht  $\hat{m} \in \{m_i\}$  als die am wahrscheinlichsten gesendete Nachricht,  deren bedingte Wahrscheinlichkeitsdichtefunktion  $p_{\hspace{0.02cm}m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) }$  für das anliegende Empfangssignal  $\rho(t)$  sowie unter der Annahme  $m=\hat{m}$  den größtmöglichen Wert annimmt.


Bevor wir die diese Entscheidungsregel näher diskutieren,  soll der optimale Empfänger entsprechend der Grafik noch in zwei Funktionsblöcke aufgeteilt werden:

  • Der  Detektor  nimmt am Empfangssignal  $r(t)$  verschiedene Messungen vor und fasst diese im Vektor  $\boldsymbol{r}$  zusammen.  Bei  $K$  Messungen entspricht  $\boldsymbol{r}$  einem Punkt im  $K$–dimensionalen Vektorraum.
  • Der  Entscheider  bildet abhängig von diesem Vektor den Schätzwert.  Bei einem gegebenen Vektor  $\boldsymbol{r} = \boldsymbol{\rho}$  lautet dabei die Entscheidungsregel:
$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } ( m_i\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) \hspace{0.05cm}.$$

Im Gegensatz zur oberen Entscheidungsregel tritt nun eine bedingte Wahrscheinlichkeit   $P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} }$   anstelle der bedingten Wahrscheinlichkeitskeitsdichtefunktion  $\rm (WDF)$   $p_{m\hspace{0.05cm} \vert \hspace{0.05cm}r(t)}$  auf.  Beachten Sie bitte die Groß– bzw. Kleinschreibung für die unterschiedlichen Bedeutungen.

$\text{Beispiel 1:}$  Wir betrachten nun die Funktion  $y = {\rm arg}\hspace{0.05cm} \max \ p(x)$,  wobei  $p(x)$  die Wahrscheinlichkeitsdichtefunktion  $\rm (WDF)$  einer wertkontinuierlichen oder wertdiskreten Zufallsgröße  $x$  beschreibt.  In der rechten Grafik besteht die WDF aus einer Summe von Diracfunktionen mit Wahrscheinlichkeiten als Impulsgewichte.

Zur Verdeutlichung der Funktion „arg max”

⇒   Die Grafik zeigt beispielhafte Funktionen.  In beiden Fällen liegt das WDF–Maximum  $(17)$  bei  $x = 6$:

$$\max_i \hspace{0.1cm} p(x) = 17\hspace{0.05cm},$$
$$y = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} p(x) = 6\hspace{0.05cm}.$$

⇒   Die  (bedingten)  Wahrscheinlichkeiten in der Gleichung

$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho})$$

sind  a–Posteriori–Wahrscheinlichkeiten.  Mit dem  Satz von Bayes  kann hierfür geschrieben werden:

$$P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) = \frac{ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )}{p_{\boldsymbol{ r} } (\boldsymbol{\rho})} \hspace{0.05cm}.$$


Der Nennerterm   $p_{\boldsymbol{ r} }(\boldsymbol{\rho})$ ist für alle Alternativen  $m_i$  gleich und muss für die Entscheidung nicht berücksichtigt werden.  Damit erhält man folgende Regeln:

$\text{Theorem:}$  Die Entscheidungsregel des optimalen Empfängers, auch bekannt als Maximum–a–posteriori–Empfänger  $($kurz:  MAP–Empfänger$)$  lautet:

$$\hat{m}_{\rm MAP} = {\rm \hspace{0.05cm} arg} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}) = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm} m_i )\big ]\hspace{0.05cm}.$$
  • Vorteil der zweiten Gleichung ist,  dass die Vorwärtsrichtung des Kanals Anwendung findet   ⇒   bedingte WDF  $p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m }$  $($"Ausgang unter der Bedingung Eingang"$)$.
  • Dagegen verwendet die erste Gleichung die Rückschlusswahrscheinlichkeiten  $P_{\hspace{0.05cm}m\hspace{0.05cm} \vert \hspace{0.02cm} \boldsymbol{ r} } $  $($"Eingang unter der Bedingung Ausgang"$)$.


$\text{Theorem:}$  Der  Maximum–Likelihood–Empfänger  $($kurz:  ML–Empfänger$)$  verwendet die Entscheidungsregel

$$\hat{m}_{\rm ML} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$
  • Bei diesem werden die möglicherweise unterschiedlichen Auftrittswahrscheinlichkeiten  ${\rm Pr}(m = m_i)$  für den Entscheidungsprozess nicht herangezogen.
  • Zum Beispiel,  weil diese dem Empfänger nicht bekannt sind.


Im früheren Kapitel   "Optimale Empfängerstrategien"   finden Sie auch andere Herleitungen für diese Empfängertypen.

$\text{Fazit:}$  Bei gleichwahrscheinlichen Nachrichten  $\{m_i\}$   ⇒   ${\rm Pr}(m = m_i) = 1/M$  ist der im Allgemeinen etwas schlechtere  "Maximum–Likelihood–Empfänger"  gleichwertig mit dem  "Maximum–a–posteriori–Empfänger":

$$\hat{m}_{\rm MAP} = \hat{m}_{\rm ML} =\hspace{-0.1cm} {\rm\hspace{0.05cm} arg} \max_i \hspace{0.1cm} p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$


Das Theorem der Irrelevanz


Zum Theorem der Irrelevanz

Zu beachten ist,  dass der auf der letzten Seite beschriebene Empfänger nur dann optimal ist,  wenn auch der Detektor bestmöglich implementiert ist,  das heißt,  wenn durch den Übergang vom kontinuierlichen Signal  $r(t)$  zum Vektor  $\boldsymbol{r}$  keine Information verloren geht.

Um zu klären,  welche und wieviele Messungen am Empfangssignal  $r(t)$  nötig sind,  um Optimalität zu garantieren,  ist das  "Theorem der Irrelevanz"  hilfreich: 

  • Dazu betrachten wir den skizzierten Empfänger,  dessen Detektor aus dem Empfangssignal  $r(t)$  die zwei Vektoren  $\boldsymbol{r}_1$  und  $\boldsymbol{r}_2$  ableitet und dem Entscheider zur Verfügung stellt. 
  • Diese Größen stehen mit der Nachricht  $ m \in \{m_i\}$  über die Verbundwahrscheinlichkeitsdichte   $p_{\boldsymbol{ r}_1, \hspace{0.05cm}\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}m }$   in Zusammenhang.
  • Die Entscheidungsregel des MAP–Empfängers lautet mit Anpassung an dieses Beispiel:
$$\hat{m}_{\rm MAP} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 , \hspace{0.05cm}\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1, \hspace{0.05cm}\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) \big]= {\rm arg} \max_i \hspace{0.1cm}\big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )\big] \hspace{0.05cm}.$$
  • Die Vektoren  $\boldsymbol{r}_1$  und  $\boldsymbol{r}_2$  sind Zufallsgrößen.  Ihre Realisierungen werden hier und im Folgenden mit  $\boldsymbol{\rho}_1$  und  $\boldsymbol{\rho}_2$  bezeichnet.  Zur Hervorhebung sind alle Vektoren in der Grafik rot eingetragen.
  • Die Voraussetzungen für die Anwendung des  "Theorems der Irrelevanz"  sind die gleichen wie die an eine  "Markovkette"  erster Ordnung.  Die Zufallsvariablen  $x$,  $y$,  $z$  formen dann eine Markovkette erster Ordnung,  falls die Verteilung von  $z$  bei gegebenem  $y$  unabhängig von  $x$  ist:
$$p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}y) \hspace{0.25cm} {\rm anstelle \hspace{0.15cm}von} \hspace{0.25cm}p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}x, y) \hspace{0.05cm}.$$
  • Der optimale Empfänger muss allgemein beide Vektoren  $\boldsymbol{r}_1$  und  $\boldsymbol{r}_2$  auswerten, da in obiger Entscheidungsregel beide Verbunddichten  $p_{\boldsymbol{ r}_1\hspace{0.05cm} \vert \hspace{0.05cm}m }$  und  $p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1, \hspace{0.05cm}m }$  auftreten.  Dagegen kann der Empfänger ohne Informationseinbuße die zweite Messung vernachlässigen, falls  $\boldsymbol{r}_2$  bei gegebenem  $\boldsymbol{r}_1$  unabhängig von der Nachricht  $m$  ist:
$$p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )= p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 ) \hspace{0.05cm}.$$
  • In diesem Fall lässt sich die Entscheidungsregel weiter vereinfachen:
$$\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) \big]$$
$$\Rightarrow \hspace{0.3cm}\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 )\big]$$
$$\Rightarrow \hspace{0.3cm}\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \big]\hspace{0.05cm}.$$
Zwei Beispiele zum Theorem der Irrelevanz

$\text{Beispiel 2:}$  Wir betrachten zur Verdeutlichung des soeben vorgestellten Theorems der Irrelevanz zwei verschiedene Systemkonfigurationen mit jeweils zwei Rauschtermen  $\boldsymbol{ n}_1$  und  $\boldsymbol{ n}_2$.

  • In der Grafik sind alle vektoriellen Größen rot eingezeichnet.
  • Die Größen  $\boldsymbol{s}$,  $\boldsymbol{ n}_1$  und  $\boldsymbol{ n}_2$  seien zudem jeweils unabhängig voneinander.


Die Analyse dieser beiden Anordnungen liefert folgende Ergebnisse:

  • Der Entscheider muss in beiden Fällen die Komponente  $\boldsymbol{ r}_1= \boldsymbol{ s}_i + \boldsymbol{ n}_1$  berücksichtigen, da nur diese die Information über das Nutzsignal  $\boldsymbol{ s}_i$  und damit über die gesendete Nachricht  $m_i$  liefert.
  • Bei der oberen Konfiguration enthält  $\boldsymbol{ r}_2$  keine Information über  $m_i$, die nicht bereits von  $\boldsymbol{ r}_1$  geliefert wurde.  Vielmehr ist  $\boldsymbol{ r}_2= \boldsymbol{ r}_1 + \boldsymbol{ n}_2$  nur eine verrauschte Version von  $\boldsymbol{ r}_1$  und hängt nur vom Rauschen  $\boldsymbol{ n}_2$  ab, sobald  $\boldsymbol{ r}_1$  bekannt ist   ⇒   $\boldsymbol{ r}_2$  ist irrelevant:
$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )= p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}_1 )= p_{\boldsymbol{ n}_2 } \hspace{0.05cm} (\boldsymbol{\rho}_2 - \boldsymbol{\rho}_1 )\hspace{0.05cm}.$$
  • Bei der unteren Konfiguration ist  $\boldsymbol{ r}_2= \boldsymbol{ n}_1 + \boldsymbol{ n}_2$ für den Empfänger hilfreich, da ihm so ein Schätzwert für den Rauschterm $\boldsymbol{ n}_1$ geliefert wird   ⇒   $\boldsymbol{ r}_2$ sollte hier nicht verworfen werden.  Formal lässt sich dieses Resultat wie folgt ausdrücken:
$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) = p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 - \boldsymbol{s}_i, \hspace{0.05cm}m_i)= p_{\boldsymbol{ n}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1 + \boldsymbol{s}_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 - \boldsymbol{s}_i, \hspace{0.05cm}m_i) = p_{\boldsymbol{ n}_2 } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1 + \boldsymbol{s}_i ) \hspace{0.05cm}.$$
  • Da nun im Argument dieser Funktion die Nachricht $\boldsymbol{ s}_i$ erscheint, ist $\boldsymbol{ r}_2$  nicht irrelevant”, sondern durchaus relevant.


Einige Eigenschaften des AWGN-Kanals


Um weitere Aussagen über die Art der optimalen Messungen des Vektors  $\boldsymbol{ r}$  machen zu können,  ist es notwendig,  die den Kanal charakterisierende (bedingte) Wahrscheinlichkeitsdichtefunktion  $p_{\hspace{0.02cm}r(t)\hspace{0.05cm} \vert \hspace{0.05cm}s(t)}$  weiter zu spezifizieren.  Im Folgenden wird die Kommunikation über den  "AWGN–Kanal"  betrachtet,  dessen wichtigste Eigenschaften hier nochmals kurz zusammengestellt werden:

  • Das Ausgangssignal des AWGN–Kanals ist  $r(t) = s(t)+n(t)$,  wobei  $s(t)$  das Sendesignal angibt und  $n(t)$  durch einen Gaußschen Rauschprozess dargestellt wird.
  • Einen Zufallsprozess  $\{n(t)\}$  bezeichnet man als gaußisch,  wenn die Elemente der  $k$–dimensionalen Zufallsvariablen  $\{n_1(t)\hspace{0.05cm} \text{...} \hspace{0.05cm}n_k(t)\}$  gemeinsam gaußverteilt sind   ⇒   "jointly Gaussian".
  • Der Mittelwert des AWGN–Rauschens ist  ${\rm E}\big[n(t)\big] = 0$.  Außerdem ist  $n(t)$  "weiß",  was bedeutet,  dass das  Leistungsdichtespektrum  $\rm (LDS)$  für alle Frequenzen  $($von  $-\infty$ bis $+\infty)$  konstant ist:  
$${\it \Phi}_n(f) = {N_0}/{2} \hspace{0.05cm}.$$
$${\varphi_n(\tau)} = {\rm E}\big [n(t) \cdot n(t+\tau)\big ] = {N_0}/{2} \cdot \delta(t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm E}\big [n(t) \cdot n(t+\tau)\big ] = \left\{ \begin{array}{c} \rightarrow \infty \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}} \hspace{0.25cm} \tau = 0 \hspace{0.05cm}, \\ {\rm f{\rm \ddot{u}r}} \hspace{0.25cm} \tau \ne 0 \hspace{0.05cm},\\ \end{array}$$
  • $N_0$  gibt dabei die physikalische  $($nur für  $f \ge 0$  definierte$)$  Rauschleistungsdichte an.  Der konstante LDS–Wert  $(N_0/2)$  und das Gewicht der Diracfunktion in der AKF  $($ebenfalls  $N_0/2)$  ergibt sich allein durch die zweiseitige Betrachtungsweise.

⇒   Weitere Informationen zu diesem Thema liefert das Lernvideo  "Der AWGN-Kanal"  im zweiten Teil.

Beschreibung des AWGN-Kanals durch orthonormale Basisfunktionen


Aus dem vorletzten Statement auf der letzten Seite geht hervor,  dass

  • reines AWGN–Rauschen  $n(t)$  stets eine unendliche Varianz (Leistung) aufweist:   $\sigma_n^2 \to \infty$,
  • in der Realität demzufolge nur gefiltertes Rauschen  $n\hspace{0.05cm}'(t) = n(t) \star h_n(t)$  auftreten kann.

Mit der Impulsantwort  $h_n(t)$  und dem  Frequenzgang  $H_n(f) = {\rm F}\big [h_n(t)\big ]$  gelten dann folgende Gleichungen:

$${\rm E}\big[n\hspace{0.05cm}'(t) \big] \hspace{0.15cm} = \hspace{0.2cm} {\rm E}\big[n(t) \big] = 0 \hspace{0.05cm},$$
$${\it \Phi_{n\hspace{0.05cm}'}(f)} \hspace{0.1cm} = \hspace{0.1cm} {N_0}/{2} \cdot |H_{n}(f)|^2 \hspace{0.05cm},$$
$$ {\it \varphi_{n\hspace{0.05cm}'}(\tau)} \hspace{0.1cm} = \hspace{0.1cm} {N_0}/{2}\hspace{0.1cm} \cdot \big [h_{n}(\tau) \star h_{n}(-\tau)\big ]\hspace{0.05cm},$$
$$\sigma_n^2 \hspace{0.1cm} = \hspace{0.1cm} { \varphi_{n\hspace{0.05cm}'}(\tau = 0)} = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}h_n^2(t)\,{\rm d} t ={N_0}/{2}\hspace{0.1cm} \cdot < \hspace{-0.1cm}h_n(t), \hspace{0.1cm} h_n(t) \hspace{-0.05cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}{\it \Phi}_{n\hspace{0.05cm}'}(f)\,{\rm d} f = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|H_n(f)|^2\,{\rm d} f \hspace{0.05cm}.$$

Im Folgenden beinhaltet  $n(t)$  stets implizit eine  Bandbegrenzung;  auf die Schreibweise  $n'(t)$  wird also zukünftig verzichtet.

$\text{Beachten Sie:}$  Ähnlich wie das Sendesignal  $s(t)$  lässt sich auch der Rauschprozess  $\{n(t)\}$  als gewichtete Summe orthonormaler Basisfunktionen  $\varphi_j(t)$  schreiben.

  • Im Gegensatz zu  $s(t)$  ist nun allerdings eine Beschränkung auf eine endliche Anzahl an Basisfunktionen nicht möglich.
  • Vielmehr gilt bei rein stochastischen Größen für die entsprechende Signaldarstellung stets
$$n(t) = \lim_{N \rightarrow \infty} \sum\limits_{j = 1}^{N}n_j \cdot \varphi_j(t) \hspace{0.05cm},$$
wobei der Koeffizient  $n_j$  durch die Projektion von  $n(t)$  auf die Basisfunktion  $\varphi_j(t)$  bestimmt ist:
$$n_j = \hspace{0.1cm} < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.05cm}.$$


Hinweis:   Um eine Verwechslung mit den Basisfunktionen  $\varphi_j(t)$  zu vermeiden, wird im Folgenden die AKF  $\varphi_n(\tau)$  des Rauschprozesses stets nur noch als der Erwartungswert    ausgedrückt:

$${\rm E}\big [n(t) \cdot n(t + \tau)\big ].$$

Optimaler Empfänger für den AWGN-Kanal


Optimaler Empfänger beim AWGN-Kanal

Auch das Empfangssignal  $r(t) = s(t) + n(t)$  lässt sich in bekannter Weise in Basisfunktionen zerlegen:

$$r(t) = \sum\limits_{j = 1}^{\infty}r_j \cdot \varphi_j(t) \hspace{0.05cm}.$$

Zu berücksichtigen ist:

  • Die  $M$  möglichen Sendesignale  $\{s_i(t)\}$  spannen einen Signalraum mit insgesamt  $N$  Basisfunktionen  $\varphi_1(t)$, ... , $\varphi_N(t)$  auf.
  • Diese  $N$  Basisfunktionen  $\varphi_j(t)$  werden gleichzeitig zur Beschreibung des Rauschsignals  $n(t)$  und des Empfangssignals  $r(t)$  verwendet.
  • Zur vollständigen Charakterisierung von  $n(t)$  bzw.  $r(t)$  werden nun aber auch noch unendlich viele weitere Basisfunktionen  $\varphi_{N+1}(t)$,  $\varphi_{N+2}(t)$,  ... benötigt.


Damit ergeben sich die Koeffizienten des Empfangssignals  $r(t)$  gemäß folgender Gleichung.  Hierbei ist berücksichtigt,  dass die (möglichen) Sendesignale  $s_i(t)$  und das Rauschen  $n(t)$  voneinander unabhängig sind:

$$r_j \hspace{0.1cm} = \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}=\hspace{0.1cm} \left\{ \begin{array}{c} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > + < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}= s_{ij}+ n_j\\ < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm} = n_j \end{array} \right.\quad \begin{array}{*{1}c} {j = 1, 2, \hspace{0.05cm}\text{...}\hspace{0.05cm} \hspace{0.05cm}, N} \hspace{0.05cm}, \\ {j > N} \hspace{0.05cm}.\\ \end{array}$$

Somit ergibt sich für den optimalen Empfänger die oben skizzierte Struktur.

Betrachten wir zunächst den   AWGN–Kanal.  Hier kann auf das Vorfilter mit dem Frequenzgang  $W(f)$  verzichtet werden,  das für farbiges Rauschen vorgesehen ist.

  1. Der Detektor des optimalen Empfängers bildet die Koeffizienten   $r_j \hspace{0.1cm} = \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t)\hspace{-0.05cm} >$   und reicht diese an den Entscheider weiter.
  2. Basiert die Entscheidung auf sämtlichen Koeffizienten  $r_j$,  so ist die Wahrscheinlichkeit für eine Fehlentscheidung minimal und der Empfänger optimal.
  3. Die reellwertigen Koeffizienten  $r_j$  wurden oben wie folgt berechnet:
$$r_j = \left\{ \begin{array}{c} s_{ij} + n_j\\ n_j \end{array} \right.\quad \begin{array}{*{1}c} {j = 1, 2, \hspace{0.05cm}\text{...}\hspace{0.05cm}, N} \hspace{0.05cm}, \\ {j > N} \hspace{0.05cm}.\\ \end{array}$$

Nach dem  "Theorem der Irrelevanz"  lässt sich zeigen,  dass für additives weißes Gaußsches Rauschen

  • die Optimalität nicht herabgesetzt wird,  wenn man die Koeffizienten  $r_{N+1}$,  $r_{N+2}$,  ...  , die nicht von der Nachricht  $(s_{ij})$  abhängigen,  nicht in den Entscheidungsprozess einbindet,  und somit
  • der Detektor nur die Projektionen des Empfangssignals  $r(t)$  auf die  $N$  durch das Nutzsignal  $s(t)$  vorgegebenen Basisfunktionen  $\varphi_{1}(t)$, ... , $\varphi_{N}(t)$  bilden muss.


In der Grafik ist diese signifikante Vereinfachung durch die graue Hinterlegung angedeutet.

Bei  farbigem Rauschen   ⇒   Leistungsdichtespektrum  ${\it \Phi}_n(f) \ne {\rm const.}$  ist lediglich zusätzlich ein Vorfilter mit Amplitudengang  $|W(f)| = {1}/{\sqrt{\it \Phi}_n(f)}$  erforderlich.

  1. Man nennt dieses Filter auch  "Whitening Filter",  da die Rauschleistungsdichte am Ausgang wieder konstant – also „weiß” – ist.
  2. Genaueres hierzu finden Sie im Kapitel  "Matched-Filter bei farbigen Störungen"  des Buches „Stochastische Signaltheorie”.

Implementierungsaspekte


Wesentliche Bestandteile des optimalen Empfängers sind die Berechnungen der inneren Produkte gemäß den Gleichungen   $r_j \hspace{0.1cm} = \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >$.

$\text{Diese können auf verschiedene Art und Weise implementiert werden:}$ 

  • Beim  Korrelationsempfänger  $($Näheres zu dieser Implementierung finden Sie im  gleichnamigen Kapitel$)$  werden die inneren Produkte direkt entsprechend der Definition mit analogen Multiplizierern und Integratoren realisiert:
$$r_j = \int_{-\infty}^{+\infty}r(t) \cdot \varphi_j(t) \,{\rm d} t \hspace{0.05cm}.$$
  • Der  Matched–Filter–Empfänger,  der bereits im Kapitel  "Optimaler Binärempfänger"  zu Beginn dieses Buches hergeleitet wurde,  erzielt mit einem linearen Filter mit der Impulsantwort  $h_j(t) = \varphi_j(t) \cdot (T-t)$  und anschließender Abtastung zum Zeitpunkt  $t = T$  das gleiche Ergebnis:
$$r_j = \int_{-\infty}^{+\infty}r(\tau) \cdot h_j(t-\tau) \,{\rm d} \tau = \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(T-t+\tau) \,{\rm d} \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} r_j (t = \tau) = \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(\tau) \,{\rm d} \tau = r_j \hspace{0.05cm}.$$
Drei unterschiedliche Implementierungen des inneren Produktes




Die Abbildung zeigt die beiden möglichen Realisierungsformen des optimalen Detektors.


Wahrscheinlichkeitsdichtefunktion der Empfangswerte


Bevor wir uns im folgenden Kapitel der optimalen Gestaltung des Entscheiders und der Berechnung und Annäherung der Fehlerwahrscheinlichkeit zuwenden,  erfolgt zunächst eine für den AWGN–Kanal gültige statistische Analyse der Entscheidungsgrößen  $r_j$.

Signalraumkonstellation und WDF des Empfangssignals

Dazu betrachten wir nochmals den optimalen Binärempfänger für die bipolare Basisbandübertragung über den AWGN–Kanal,  wobei wir von der für das vierte Hauptkapitel gültigen Beschreibungsform ausgehen.

Mit den Parametern  $N = 1$  und  $M = 2$  ergibt sich für das Sendesignal die in der linken Grafik dargestellte Signalraumkonstellation

  • mit nur einer Basisfunktion  $\varphi_1(t)$,  wegen  $N = 1$,
  • mit den beiden Signalraumpunkten  $s_i \in \{s_0, \hspace{0.05cm}s_1\}$, wegen  $M = 2$.


Für das Signal  $r(t) = s(t) + n(t)$  am Ausgang des AWGN–Kanals ergibt sich im rauschfreien Fall   ⇒   $r(t) = s(t)$  die genau gleiche Konstellation. Die Signalraumpunkte liegen somit bei

$$r_0 = s_0 = \sqrt{E}\hspace{0.05cm},\hspace{0.2cm}r_1 = s_1 = -\sqrt{E}\hspace{0.05cm}.$$
  • Bei Berücksichtigung des  (bandbegrenzten)  AWGN–Rauschens  $n(t)$  überlagern sich den beiden Punkten  $r_0$  und  $r_1$  jeweils Gaußkurven mit der Varianz  $\sigma_n^2$  ⇒  Streuung  $\sigma_n$  $($siehe rechte Grafik$)$.
  • Die WDF der Rauschkomponente  $n(t)$  lautet dabei:
$$p_n(n) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {n^2}/(2 \sigma_n^2)}\hspace{0.05cm}.$$

Für die bedingte Wahrscheinlichkeitsdichte,  dass der Empfangswert  $\rho$  anliegt, wenn  $s_i$  gesendet wurde,  ergibt sich dann folgender Ausdruck:

$$p_{\hspace{0.02cm}r\hspace{0.05cm}|\hspace{0.05cm}s}(\rho\hspace{0.05cm}|\hspace{0.05cm}s_i) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {(\rho - s_i)^2}/(2 \sigma_n^2)} \hspace{0.05cm}.$$

Zu den Einheiten der hier aufgeführten Größen ist zu bemerken:

  • $r_0 = s_0$  und  $r_1 = s_1$  sowie  $n$  sind jeweils Skalare mit der Einheit „Wurzel aus Energie”.
  • Damit ist offensichtlich,  dass  $\sigma_n$  ebenfalls die Einheit „Wurzel aus Energie” besitzt und  $\sigma_n^2$  eine Energie darstellt.
  • Beim AWGN–Kanal ist die Rauschvarianz  $\sigma_n^2 = N_0/2$.  Diese ist also ebenfalls eine physikalische Größe mit der Einheit  $\rm W/Hz = Ws$.

Die hier angesprochene Thematik wird in der  "Aufgabe 4.6"  an Beispielen verdeutlicht.

N–dimensionales Gaußsches Rauschen


Liegt ein  $N$–dimensionales Modulationsverfahren vor,  das heißt,  wenn mit  $0 \le i \le M-1$  und  $1 \le j \le N$ 

$$s_i(t) = \sum\limits_{j = 1}^{N} s_{ij} \cdot \varphi_j(t) = s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) + \hspace{0.05cm}\text{...}\hspace{0.05cm} + s_{iN} \cdot \varphi_N(t)\hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \boldsymbol{ s}_i = \left(s_{i1}, s_{i2}, \hspace{0.05cm}\text{...}\hspace{0.05cm}, s_{iN}\right ) \hspace{0.05cm},$$

gilt,  dann muss der Rauschvektor  $\boldsymbol{ n}$  ebenfalls mit Dimension  $N$  angesetzt werden.  Das gleiche gilt auch für den Empfangsvektor  $\boldsymbol{ r}$:

$$\boldsymbol{ n} = \left(n_{1}, n_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm}, n_{N}\right ) \hspace{0.01cm},$$
$$\boldsymbol{ r} = \left(r_{1}, r_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm}, r_{N}\right )\hspace{0.05cm}.$$

Die Wahrscheinlichkeitsdichtefunktion  $\rm (WDF)$  lautet dann für den AWGN–Kanal mit der Realisierung  $\boldsymbol{ \eta}$  des Rauschsignals

$$p_{\boldsymbol{ n}}(\boldsymbol{ \eta}) = \frac{1}{\left( \sqrt{2\pi} \cdot \sigma_n \right)^N } \cdot {\rm exp} \left [ - \frac{|| \boldsymbol{ \eta} ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm},$$

und für die bedingte WDF in der Maximum–Likelihood–Entscheidungsregel ist anzusetzen:

$$p_{\hspace{0.02cm}\boldsymbol{ r}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_i) \hspace{-0.1cm} = \hspace{0.1cm} p_{\hspace{0.02cm} \boldsymbol{ n}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} - \boldsymbol{ s}_i \hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}_i) = \frac{1}{\left( \sqrt{2\pi} \cdot \sigma_n \right)^2 } \cdot {\rm exp} \left [ - \frac{|| \boldsymbol{ \rho} - \boldsymbol{ s}_i ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}.$$

Die Gleichung ergibt sich

  • aus der allgemeinen Darstellung der $N$–dimensionalen Gaußschen WDF im Abschnitt  "Korrelationsmatrix"  des Buches „Stochastische Signaltheorie”
  • unter der Voraussetzung,  dass die Komponenten unkorreliert  (und somit statistisch unabhängig)  sind.
  • $||\boldsymbol{ \eta}||$  bezeichnet man als die  "Norm"  (Länge)  des Vektors  $\boldsymbol{ \eta}$.


$\text{Beispiel 3:}$  Rechts dargestellt ist die zweidimensionale Gauß–WDF  $p_{\boldsymbol{ n} } (\boldsymbol{ \eta})$  der 2D–Zufallsgröße  $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.  Beliebige Realisierungen der Zufallsgröße  $\boldsymbol{ n}$  werden mit  $\boldsymbol{ \eta} = (\eta_1,\hspace{0.05cm}\eta_2)$  bezeichnet.  Die Gleichung der dargestellten Glockenkurve lautet:

Zweidimensionale Gauß–WDF
$$p_{n_1, n_2}(\eta_1, \eta_2) = \frac{1}{\left( \sqrt{2\pi} \cdot \sigma_n \right)^2 } \cdot {\rm exp} \left [ - \frac{ \eta_1^2 + \eta_2^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}. $$
  • Das Maximum dieser Funktion liegt bei  $\eta_1 = \eta_2 = 0$  und hat den Wert   $2\pi \cdot \sigma_n^2$.
  • Mit  $\sigma_n^2 = N_0/2$  lässt sich die 2D–WDF in Vektorform auch wie folgt schreiben:
$$p_{\boldsymbol{ n} }(\boldsymbol{ \eta}) = \frac{1}{\pi \cdot N_0 } \cdot {\rm exp} \left [ - \frac{\vert \vert \boldsymbol{ \eta} \vert \vert ^2}{N_0}\right ]\hspace{0.05cm}.$$
  • Diese rotationssymmetrische WDF eignet sich zum Beispiel für die Beschreibung/Untersuchung eines zweidimensionalen Modulationsverfahrens wie  "M–QAM""M–PSK"  oder  "2–FSK".
  • Oft werden zweidimensionale reelle Zufallsgrößen aber auch eindimensional–komplex dargestellt, meist in der Form  $n(t) = n_{\rm I}(t) + {\rm j} \cdot n_{\rm Q}(t)$. Die beiden Komponenten bezeichnet man dann als  "Inphaseanteil"  $n_{\rm I}(t)$  und  "Quadraturanteil"  $n_{\rm Q}(t)$  des Rauschens.
  • Die Wahrscheinlichkeitsdichtefunktion hängt nur vom Betrag  $\vert n(t) \vert$  der Rauschvariablen ab und nicht von Winkel  ${\rm arc} \ n(t)$.  Das heißt:   Komplexes Rauschen ist zirkulär symmetrisch  (siehe Grafik).
  • Zirkulär symmetrisch bedeutet auch,  dass die Inphasekomponente  $n_{\rm I}(t)$  und die Quadraturkomponente  $n_{\rm Q}(t)$  die gleiche Verteilung aufweisen und damit auch gleiche Varianz  (Streuung)  besitzen:
$$ {\rm E} \big [ n_{\rm I}^2(t)\big ] = {\rm E}\big [ n_{\rm Q}^2(t) \big ] = \sigma_n^2 \hspace{0.05cm},\hspace{1cm}{\rm E}\big [ n(t) \cdot n^*(t) \big ]\hspace{0.1cm} = \hspace{0.1cm} {\rm E}\big [ n_{\rm I}^2(t) \big ] + {\rm E}\big [ n_{\rm Q}^2(t)\big ] = 2\sigma_n^2 \hspace{0.05cm}.$$


Abschließend noch einige  Bezeichnungsvarianten  für Gaußsche Zufallsgrößen:

$$x ={\cal N}(\mu, \sigma^2) \hspace{-0.1cm}: \hspace{0.3cm}\text{reelle gaußverteilte Zufallsgröße, mit Mittelwert}\hspace{0.15cm}\mu \text { und Varianz}\hspace{0.15cm}\sigma^2 \hspace{0.05cm},$$
$$y={\cal CN}(\mu, \sigma^2)\hspace{-0.1cm}: \hspace{0.12cm}\text{komplexe gaußverteilte Zufallsgröße} \hspace{0.05cm}.$$

Aufgaben zum Kapitel


Aufgabe 4.4: Maximum–a–posteriori und Maximum–Likelihood

Aufgabe 4.5: Theorem der Irrelevanz