Aufgaben:Aufgabe 1.11Z: Nochmals Syndromdecodierung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 3: Zeile 3:
 
[[Datei:P_ID2399__KC_Z_1_10.png|right|frame|Schaubild: Prüfgleichungen]]
 
[[Datei:P_ID2399__KC_Z_1_10.png|right|frame|Schaubild: Prüfgleichungen]]
  
Betrachtet wird die gleiche Konstellation wie in der [[Aufgaben:1.11_Syndromdecodierung|Aufgabe 1.11]], nämlich die Decodierung eines $(7, 4, 3)$–Hamming–Codes mit der Prüfmatrix
+
Betrachtet wird die gleiche Konstellation wie in  [[Aufgaben:1.11_Syndromdecodierung|"Aufgabe 1.11"]],  nämlich die Decodierung eines  $(7, 4, 3)$–Hamming–Codes mit der Prüfmatrix
  
 
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
Dementsprechend lautet das Generatorpolynom:
+
Dementsprechend lautet die Generatormatrix:
  
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
  
Bei der [[Kanalcodierung/Decodierung_linearer_Blockcodes#Prinzip_der_Syndromdecodierung|Syndromdecodierung]] bildet man aus dem Empfangsvektor $\underline{y}$ das Syndrom $\underline{s}$ entsprechend der Gleichung
+
Bei der  [[Kanalcodierung/Decodierung_linearer_Blockcodes#Prinzip_der_Syndromdecodierung|"Syndromdecodierung"]]  bildet man aus dem Empfangsvektor  $\underline{y}$   das Syndrom  $\underline{s}$   entsprechend der Gleichung
  
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
  
 
Mit diesem Ergebnis lässt sich beim betrachteten Hamming–Code ein jeder Einzelfehler im Codewort korrigieren.  
 
Mit diesem Ergebnis lässt sich beim betrachteten Hamming–Code ein jeder Einzelfehler im Codewort korrigieren.  
*Im fehlerfreien Fall gilt $\underline{s} = \underline{s}_{0} = (0, 0, 0)$.  
+
*Im fehlerfreien Fall gilt  $\underline{s} = \underline{s}_{0} = (0, 0, 0)$.
*Aber auch bei drei Übertragungsfehlern kann sich unter Umständen $\underline{s}_{0} = (0, 0, 0)$ ergeben, so dass diese Fehler unerkannt bleiben.
+
 +
*Aber auch bei drei Übertragungsfehlern kann sich unter Umständen  $\underline{s}_{0} = (0, 0, 0)$  ergeben, so dass diese Fehler unerkannt bleiben.
  
  
  
  
''Hinweise:''
+
Hinweise:
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].  
+
* Die Aufgabe gehört zum Kapitel  [[Kanalcodierung/Decodierung_linearer_Blockcodes|"Decodierung linearer Blockcodes"]].
* Weitere Informationen zur Syndromdecodierung finden Sie im Angabenblatt zur [[Aufgaben:1.11_Syndromdecodierung|Aufgabe 1.11]].  
+
 +
* Weitere Informationen zur Syndromdecodierung finden Sie im Angabenblatt zur  [[Aufgaben:1.11_Syndromdecodierung|"Aufgabe 1.11"]].
 +
 
* Die Grafik verdeutlicht die drei Prüfgleichungen entsprechend der Prüfmatrix:
 
* Die Grafik verdeutlicht die drei Prüfgleichungen entsprechend der Prüfmatrix:
**erste Zeile: rote Gruppierung,
+
**erste Zeile:   rote Gruppierung,
**zweite Zeile: grüne Gruppierung,
+
**zweite Zeile:   grüne Gruppierung,
**dritte Zeile: blaue Gruppierung.
+
**dritte Zeile:   blaue Gruppierung.
  
  
Zeile 40: Zeile 43:
 
- Nein.
 
- Nein.
  
{Empfangen wurde $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$. Ist dies ein gültiges Codewort?
+
{Empfangen wurde  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$. Ist dies ein gültiges Codewort?
 
|type="()"}
 
|type="()"}
 
+ Ja,
 
+ Ja,
Zeile 51: Zeile 54:
 
- $\underline{s} = \underline{s}_{7} = (1, 1, 1).$
 
- $\underline{s} = \underline{s}_{7} = (1, 1, 1).$
  
{Welche Empfangsworte führen zum gleichen Syndrom wie in Teilaufgabe (3)?
+
{Welche Empfangsworte führen zum gleichen Syndrom wie in Teilaufgabe '''(3)'''?
 
|type="[]"}
 
|type="[]"}
 
-  $\underline{y} = (1, 1, 0, 1, 0, 1, 0),$
 
-  $\underline{y} = (1, 1, 0, 1, 0, 1, 0),$
Zeile 60: Zeile 63:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Antwort ist <u>JA</u>, wie man aus der vorgegebenen Prüfmatrix $\mathbf{H}$ erkennt. Diese beinhaltet am Ende eine $3×3$–Diagonalmatrix. Die Codeworte lauten demzufolge:
+
'''(1)'''&nbsp; Die Antwort ist&nbsp; <u>JA</u>,&nbsp; wie man aus der vorgegebenen Prüfmatrix&nbsp; $\mathbf{H}$&nbsp; erkennt:
 +
*Diese beinhaltet am Ende eine&nbsp; $3×3$–Diagonalmatrix.
 +
 +
*Die Codeworte lauten demzufolge:
  
 
:$$ \underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
 
:$$ \underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Mit diesem Empfangsvektor $y$ werden alle Prüfgleichungen erfüllt:
+
 
 +
'''(2)'''&nbsp; Mit diesem Empfangsvektor&nbsp; $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; werden alle Prüfgleichungen erfüllt:
  
 
:$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
 
:$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
Zeile 71: Zeile 78:
 
:$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm}.$$
 
:$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm}.$$
  
Richtig ist dementsprechend die Antwort <u>JA</u>.
+
Richtig ist dementsprechend die Antwort&nbsp; <u>JA</u>.
  
  
'''(3)'''&nbsp;  Es gilt $\underline{s} = \underline{y} · \boldsymbol{\rm H}^{\rm T}$:
+
 
 +
'''(3)'''&nbsp;  Es gilt&nbsp; $\underline{s} = \underline{y} · \boldsymbol{\rm H}^{\rm T}$:
  
 
:$$ \underline{s} = \begin{pmatrix} 1 &0 &0 &1 &0 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 0 &0 &0 \end{pmatrix} = \underline{s}_0 \hspace{0.2cm} \Rightarrow\hspace{0.2cm} \hspace{0.15cm} \underline{ \rm Antwort \hspace{0.15cm}1} \hspace{0.05cm}.$$
 
:$$ \underline{s} = \begin{pmatrix} 1 &0 &0 &1 &0 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 0 &0 &0 \end{pmatrix} = \underline{s}_0 \hspace{0.2cm} \Rightarrow\hspace{0.2cm} \hspace{0.15cm} \underline{ \rm Antwort \hspace{0.15cm}1} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Man könnte nun für jedes $\underline{y}$ die Gleichung $\underline{y} · \boldsymbol{\rm H}^{\rm T} = (0, 0, 0)$ überprüfen. Hier soll nun das Ergebnis auf anderem Wege gewonnen werden:
 
  
*$\underline{y}= (1, 1, 0, 1, 0, 1, 0)$ unterscheidet sich von $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$ im Bit $u_{2}$, das nur in den beiden ersten Prüfgleichungen verwendet wird, nicht jedoch in der letzten  ⇒  $\underline{s} = \underline{s}_{6} = (1, 1, 0)$.
+
'''(4)'''&nbsp; Man könnte nun für jedes&nbsp; $\underline{y}$&nbsp; die Gleichung&nbsp; $\underline{y} · \boldsymbol{\rm H}^{\rm T} = (0, 0, 0)$&nbsp; überprüfen.&nbsp; Hier soll nun das Ergebnis auf anderem Wege gewonnen werden:
  
*Wendet man die Prüfgleichungen auf $\underline{y} = (0, 1, 0, 1, 0, 0, 1)$ an, so erhält man $\underline{s} = \underline{s}_{0} = (0, 0, 0)$, wie die folgende Rechnung belegt:
+
*$\underline{y}= (1, 1, 0, 1, 0, 1, 0)$&nbsp; unterscheidet sich von&nbsp; $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; nur im Bit&nbsp; $u_{2}$,&nbsp;&nbsp; das nur in den beiden ersten Prüfgleichungen verwendet wird,&nbsp; nicht jedoch in der letzten  ⇒  $\underline{s} = \underline{s}_{6} = (1, 1, 0)$.
 +
 
 +
*Wendet man die Prüfgleichungen auf&nbsp; $\underline{y} = (0, 1, 0, 1, 0, 0, 1)$&nbsp; an,&nbsp; so erhält man&nbsp; $\underline{s} = \underline{s}_{0} = (0, 0, 0)$,&nbsp; wie die folgende Rechnung belegt:
  
 
:$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
 
:$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
Zeile 89: Zeile 98:
 
:$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm}.$$
 
:$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm}.$$
  
*Zum gleichen Ergebnis kommt man mit dem Empfangsvektor $\underline{y}  = (0, 1, 1, 0, 1, 0, 1),$ der sich vom Vektor $(1, 0, 0, 1, 0, 1, 0)$ in allen 7 Bitpositionen unterscheidet:
+
*Zum gleichen Ergebnis kommt man mit dem Empfangsvektor&nbsp; $\underline{y}  = (0, 1, 1, 0, 1, 0, 1),$&nbsp; der sich vom Vektor&nbsp; $(1, 0, 0, 1, 0, 1, 0)$&nbsp; in allen sieben Bitpositionen unterscheidet:
  
 
:$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm},$$
 
:$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm},$$
Zeile 95: Zeile 104:
 
:$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm}.$$
 
:$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm}.$$
  
Richtig sind also die <u>Antworten 2 und 3</u>.
+
Richtig sind also die&nbsp; <u>Antworten 2 und 3</u>.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Zeile 101: Zeile 110:
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.5 Decodierung linearer Blockcodes
+
[[Category:Aufgaben zu  Kanalcodierung|^1.5 Decodierung linearer Blockcodes^]]
 
 
 
 
^]]
 

Aktuelle Version vom 20. Juli 2022, 12:24 Uhr

Schaubild: Prüfgleichungen

Betrachtet wird die gleiche Konstellation wie in  "Aufgabe 1.11",  nämlich die Decodierung eines  $(7, 4, 3)$–Hamming–Codes mit der Prüfmatrix

$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

Dementsprechend lautet die Generatormatrix:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$

Bei der  "Syndromdecodierung"  bildet man aus dem Empfangsvektor  $\underline{y}$   das Syndrom  $\underline{s}$   entsprechend der Gleichung

$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$

Mit diesem Ergebnis lässt sich beim betrachteten Hamming–Code ein jeder Einzelfehler im Codewort korrigieren.

  • Im fehlerfreien Fall gilt  $\underline{s} = \underline{s}_{0} = (0, 0, 0)$.
  • Aber auch bei drei Übertragungsfehlern kann sich unter Umständen  $\underline{s}_{0} = (0, 0, 0)$  ergeben, so dass diese Fehler unerkannt bleiben.



Hinweise:

  • Weitere Informationen zur Syndromdecodierung finden Sie im Angabenblatt zur  "Aufgabe 1.11".
  • Die Grafik verdeutlicht die drei Prüfgleichungen entsprechend der Prüfmatrix:
    • erste Zeile:   rote Gruppierung,
    • zweite Zeile:   grüne Gruppierung,
    • dritte Zeile:   blaue Gruppierung.



Fragebogen

1

Handelt es sich um einen systematischen Code?

Ja,
Nein.

2

Empfangen wurde  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$. Ist dies ein gültiges Codewort?

Ja,
Nein.

3

Welches Syndrom ergibt sich mit diesem Empfangswort?

$\underline{s} = \underline{s}_{0} = (0, 0, 0),$
$\underline{s} = \underline{s}_{3} = (0, 1, 1),$
$\underline{s} = \underline{s}_{7} = (1, 1, 1).$

4

Welche Empfangsworte führen zum gleichen Syndrom wie in Teilaufgabe (3)?

$\underline{y} = (1, 1, 0, 1, 0, 1, 0),$
$\underline{y} = (0, 1, 0, 1, 0, 0, 1),$
$\underline{y} = (0, 1, 1, 0, 1, 0, 1).$


Musterlösung

(1)  Die Antwort ist  JA,  wie man aus der vorgegebenen Prüfmatrix  $\mathbf{H}$  erkennt:

  • Diese beinhaltet am Ende eine  $3×3$–Diagonalmatrix.
  • Die Codeworte lauten demzufolge:
$$ \underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$


(2)  Mit diesem Empfangsvektor  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$  werden alle Prüfgleichungen erfüllt:

$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm}.$$

Richtig ist dementsprechend die Antwort  JA.


(3)  Es gilt  $\underline{s} = \underline{y} · \boldsymbol{\rm H}^{\rm T}$:

$$ \underline{s} = \begin{pmatrix} 1 &0 &0 &1 &0 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 0 &0 &0 \end{pmatrix} = \underline{s}_0 \hspace{0.2cm} \Rightarrow\hspace{0.2cm} \hspace{0.15cm} \underline{ \rm Antwort \hspace{0.15cm}1} \hspace{0.05cm}.$$


(4)  Man könnte nun für jedes  $\underline{y}$  die Gleichung  $\underline{y} · \boldsymbol{\rm H}^{\rm T} = (0, 0, 0)$  überprüfen.  Hier soll nun das Ergebnis auf anderem Wege gewonnen werden:

  • $\underline{y}= (1, 1, 0, 1, 0, 1, 0)$  unterscheidet sich von  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$  nur im Bit  $u_{2}$,   das nur in den beiden ersten Prüfgleichungen verwendet wird,  nicht jedoch in der letzten ⇒ $\underline{s} = \underline{s}_{6} = (1, 1, 0)$.
  • Wendet man die Prüfgleichungen auf  $\underline{y} = (0, 1, 0, 1, 0, 0, 1)$  an,  so erhält man  $\underline{s} = \underline{s}_{0} = (0, 0, 0)$,  wie die folgende Rechnung belegt:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm}.$$
  • Zum gleichen Ergebnis kommt man mit dem Empfangsvektor  $\underline{y} = (0, 1, 1, 0, 1, 0, 1),$  der sich vom Vektor  $(1, 0, 0, 1, 0, 1, 0)$  in allen sieben Bitpositionen unterscheidet:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 1 \oplus 0 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm}.$$

Richtig sind also die  Antworten 2 und 3.