Aufgaben:Aufgabe 2.2: Eigenschaften von Galoisfeldern: Unterschied zwischen den Versionen
(26 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{quiz-Header|Buchseite=Kanalcodierung/Einige Grundlagen der Algebra}} | {{quiz-Header|Buchseite=Kanalcodierung/Einige Grundlagen der Algebra}} | ||
− | [[Datei:P_ID2492__KC_A_2_2.png|right|frame| | + | [[Datei:P_ID2492__KC_A_2_2.png|right|frame|Addition / Multiplikation für $q = 5$ und $q = 6$]] |
Wir betrachten hier die Zahlenmengen | Wir betrachten hier die Zahlenmengen | ||
* $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\} \ \Rightarrow \ q = 5$, | * $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\} \ \Rightarrow \ q = 5$, | ||
+ | |||
* $Z_6 = \{0, \, 1, \, 2, \, 3, \, 4,\, 5\} \ \Rightarrow \ q = 6$. | * $Z_6 = \{0, \, 1, \, 2, \, 3, \, 4,\, 5\} \ \Rightarrow \ q = 6$. | ||
− | In nebenstehender Grafik sind die (teilweise unvollständigen) Additions– und Multiplikationstabellen für $q = 5$ und | + | In nebenstehender Grafik sind die (teilweise unvollständigen) Additions– und Multiplikationstabellen für $q = 5$ und $q = 6$ angegeben, wobei sowohl die Addition („$+$”) als auch die Multiplikation („$\hspace{0.05cm}\cdot\hspace{0.05cm}$”) modulo $q$ zu verstehen sind. |
− | Zu überprüfen ist, ob die Zahlenmengen $Z_5$ und $Z_6$ alle Bedingungen eines Galoisfeldes $\rm GF(5)$ bzw. $\rm GF(6)$ erfüllen. | + | Zu überprüfen ist, ob die Zahlenmengen $Z_5$ und $Z_6$ alle Bedingungen eines Galoisfeldes $\rm GF(5)$ bzw. $\rm GF(6)$ erfüllen. |
− | (D) Für alle Elemente gibt es eine | + | Im [[Kanalcodierung/Einige_Grundlagen_der_Algebra#Definition_eines_Galoisfeldes|"Theorieteil"]] werden acht Bedingungen genannt, die alle erfüllt sein müssen. Sie sollen nur zwei dieser Bedingungen überprüfen: |
− | :$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q): | + | |
− | + | $\rm(D)$ Für alle Elemente gibt es eine <b>additive Inverse</b> (Inverse for „$+$”): | |
+ | :$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i + {\rm Inv_A}(z_i) = 0 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} | ||
{\rm Inv_A}(z_i) = -z_i \hspace{0.05cm}.$$ | {\rm Inv_A}(z_i) = -z_i \hspace{0.05cm}.$$ | ||
− | (E) Alle Elemente haben eine | + | $\rm(E)$ Alle Elemente haben eine <b>multiplikative Inverse</b> (Inverse for „$\hspace{0.05cm}\cdot\hspace{0.05cm}$”): |
− | :$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne 0, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q): | + | :$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne 0, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i \cdot {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} |
− | |||
{\rm Inv_M}(z_i) = z_i^{-1}\hspace{0.05cm}.$$ | {\rm Inv_M}(z_i) = z_i^{-1}\hspace{0.05cm}.$$ | ||
− | Die weiteren Bedingungen für ein Galoisfeld, nämlich | + | Die weiteren Bedingungen für ein Galoisfeld, nämlich |
* Closure, | * Closure, | ||
* Existenz von Null– und Einselelement, | * Existenz von Null– und Einselelement, | ||
− | * Gültigkeit von Kommutativ– Assoziativ– und Distributivgesetz | + | * Gültigkeit von Kommutativ–, Assoziativ– und Distributivgesetz |
+ | |||
+ | |||
+ | werden sowohl von $Z_5$ als auch von $Z_6$ erfüllt. | ||
+ | |||
+ | |||
− | + | Hinweis: Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Einige_Grundlagen_der_Algebra| "Einige Grundlagen der Algebra"]]. | |
− | |||
− | |||
Zeile 36: | Zeile 40: | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Ergänzen Sie die Additionstabelle für $q = 5$. Geben Sie folgende Werte ein: |
+ | |type="{}"} | ||
+ | $A_{04} \ = \ ${ 4 } | ||
+ | $A_{14} \ = \ ${ 0. } | ||
+ | $A_{44} \ = \ ${ 3 } | ||
+ | |||
+ | {Ergänzen Sie die Multiplikationstabelle für $q = 5$. Geben Sie folgende Werte ein: | ||
+ | |type="{}"} | ||
+ | $M_{04} \ = \ ${ 0. } | ||
+ | $M_{14} \ = \ ${ 4. } | ||
+ | $M_{44} \ = \ ${ 1. } | ||
+ | |||
+ | {Erfüllt die Menge $Z_5$ die Bedingungen eines Galoisfeldes? | ||
|type="[]"} | |type="[]"} | ||
− | + | + | + Ja. |
− | - | + | - Nein, es gibt nicht für alle Elemente $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4)$ eine additive Inverse. |
+ | - Nein, die Elemente $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 4$ haben nicht alle eine multiplikative Inverse. | ||
− | { | + | {Erfüllt die Menge $Z_6$ die Bedingungen eines Galoisfeldes? |
− | |type="{} | + | |type="[]"} |
− | $ | + | - Ja. |
+ | - Nein, es gibt nicht für alle Elemente $(0, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5)$ eine additive Inverse. | ||
+ | + Nein, die Elemente $1, \hspace{0.05cm}\text{...} \hspace{0.1cm}, 5$ haben nicht alle eine multiplikative Inverse. | ||
+ | |||
+ | {Die Zahlenmengen $Z_2, \ Z_3, \ Z_5$ und $Z_7$ ergeben ein Galoisfeld, die Mengen $Z_4, \ Z_6, \ Z_8, \ Z_9$ dagegen nicht. Was folgern Sie daraus? | ||
+ | |type="[]"} | ||
+ | - $Z_{10} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9\}$ ist ein Galoisfeld? | ||
+ | + $Z_{11} = \{0, \, 1, \, 2, \, 3, \, 4, \,5, \, 6, \, 7, \, 8, \, 9, \, 10\}$ ist ein Galoisfeld? | ||
+ | - $Z_{12} = \{0, \, 1, \, 2, \, 3, \, 4, \, 5, \, 6, \, 7, \, 8, \, 9, \, 10, \, 11\}$ ist ein Galoisfeld? | ||
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Allgemein gilt für $0 ≤ \mu ≤ 4 \text{:} \hspace{0.2cm} A_{\mu 4} = (\mu + 4) \, {\rm mod} \, 5$. Daraus folgt: |
− | '''(2)''' | + | :$$A_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}A_{14}=(1+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}A_{24}=(2+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},$$ |
− | '''(3)''' | + | :$$A_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3+4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5= 2\hspace{0.05cm},\hspace{0.2cm}A_{44}=(4+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$ |
− | '''(4)''' | + | |
− | '''(5)''' | + | Aufgrund des Kommutativgesetzes der Addition, |
+ | :$$z_i + z_j = z_j + z_i \hspace{0.5cm} {\rm f\ddot{u}r \hspace{0.2cm}alle\hspace{0.2cm} } z_i, z_j \in Z_5\hspace{0.05cm},$$ | ||
+ | |||
+ | ist natürlich die letzte Spalte der Additionstabelle identisch mit der letzten Zeile der gleichen Tabelle. | ||
+ | |||
+ | |||
+ | |||
+ | '''(2)''' Nun gilt $M_{\mu 4} = (\mu \cdot 4) \, {\rm mod} \, 5$ und man erhält: | ||
+ | :$$M_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}M_{14}=(1\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}M_{24}=(2\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},$$ | ||
+ | :$$M_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3\cdot4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm}M_{44}=(4\cdot 4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$ | ||
+ | |||
+ | Da die Multiplikation ebenfalls kommutativ ist, stimmt auch in der Multiplikationstabelle die letzte Spalte wieder mit der letzten Zeile überein. | ||
+ | |||
+ | |||
+ | |||
+ | [[Datei:P_ID2493__KC_A_2_2c.png|right|frame|Tabellen für $q = 5$]] | ||
+ | '''(3)''' Die Grafik zeigt die vollständigen Additions– und Multiplikationstabellen für $q = 5$. Man erkennt: | ||
+ | * In der Additionstabelle gibt es in jeder Zeile (und auch in jeder Spalte) genau eine Null. | ||
+ | |||
+ | *Zu jedem $z_i ∈ Z_5$ gibt es also ein ${\rm Inv}_{\rm A} (z_i)$, das die Bedingung $[z_i + {\rm Inv}_{\rm A}(z_i)] \, {\rm mod} \, 5 = 0$ erfüllt: | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = 0 \hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4 \hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3 \hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-3) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2 \hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$ | ||
+ | |||
+ | * In der Multiplikationstabelle lassen wir das Nullelement (erste Zeile und erste Spalte) außer Betracht. | ||
+ | |||
+ | *In allen anderen Zeilen und Spalten der unteren Tabelle gibt es tatsächlich jeweils genau eine Eins. | ||
+ | |||
+ | *Aus der Bedingung $[z_i \cdot {\rm Inv}_{\rm M}(z_i)] \, {\rm mod} \, 5 = 1$ erhält man: | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$ | ||
+ | |||
+ | *Da sowohl die erforderlichen additiven als auch die multiplikativen Inversen existieren beschreibt $Z_5$ ein Galoisfeld $\rm GF(5)$ ⇒ Richtig ist der <u>Lösungsvorschlag 1</u>. | ||
+ | |||
+ | |||
+ | |||
+ | '''(4)''' Aus der blauen Additionstabelle auf der Angabenseite erkennt man, dass alle Zahlen $0, \, 1, \, 2, \, 3, \, 4, \, 5$ der Menge $Z_6$ eine additive Inverse besitzen ⇒ in jeder Zeile (und Spalte) gibt es genau eine Null. | ||
+ | |||
+ | *Eine multiplikative Inverse ${\rm Inv}_{\rm M}(z_i)$ gibt es dagegen nur für $z_i = 1$ und $z_i = 5$, nämlich | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$ | ||
+ | :$$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 25 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 6 = 1 \hspace{0.05cm}.$$ | ||
+ | |||
+ | *Für $z_i = 2, \ z_i = 3$ und $z_i = 4$ findet man dagegen kein Element $z_j$, so dass $(z_i \cdot z_j) \, {\rm mod} \, 6 = 1$ ergibt. | ||
+ | |||
+ | *Richtig ist also der <u>Lösungsvorschlag 3</u> ⇒ die blauen Tabellen für $q = 6$ ergeben <u>kein</u> Galoisfeld $\rm GF(6)$. | ||
+ | |||
+ | |||
+ | |||
+ | '''(5)''' Richtig ist der <u>Lösungsvorschlag 2</u>: | ||
+ | *Eine endliche Zahlenmenge $Z_q = \{0, \, 1, \hspace{0.05cm} \text{...} \hspace{0.1cm} , \, q-1\}$ natürlicher Zahlen führt nur dann zu einem „endlichen Zahlenkörper” (dies ist die deutsche Bezeichnung für ein Galoisfeld), wenn $q$ eine Primzahl ist. | ||
+ | |||
+ | *Von den oben genannten Zahlenmengen trifft dies nur für $Z_{11}$ zu. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
[[Category:Aufgaben zu Kanalcodierung|^2.1 Einige Grundlagen der Algebra^]] | [[Category:Aufgaben zu Kanalcodierung|^2.1 Einige Grundlagen der Algebra^]] |
Aktuelle Version vom 28. August 2022, 14:39 Uhr
Wir betrachten hier die Zahlenmengen
- $Z_5 = \{0, \, 1, \, 2, \, 3, \, 4\} \ \Rightarrow \ q = 5$,
- $Z_6 = \{0, \, 1, \, 2, \, 3, \, 4,\, 5\} \ \Rightarrow \ q = 6$.
In nebenstehender Grafik sind die (teilweise unvollständigen) Additions– und Multiplikationstabellen für $q = 5$ und $q = 6$ angegeben, wobei sowohl die Addition („$+$”) als auch die Multiplikation („$\hspace{0.05cm}\cdot\hspace{0.05cm}$”) modulo $q$ zu verstehen sind.
Zu überprüfen ist, ob die Zahlenmengen $Z_5$ und $Z_6$ alle Bedingungen eines Galoisfeldes $\rm GF(5)$ bzw. $\rm GF(6)$ erfüllen.
Im "Theorieteil" werden acht Bedingungen genannt, die alle erfüllt sein müssen. Sie sollen nur zwei dieser Bedingungen überprüfen:
$\rm(D)$ Für alle Elemente gibt es eine additive Inverse (Inverse for „$+$”):
- $$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i + {\rm Inv_A}(z_i) = 0 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_A}(z_i) = -z_i \hspace{0.05cm}.$$
$\rm(E)$ Alle Elemente haben eine multiplikative Inverse (Inverse for „$\hspace{0.05cm}\cdot\hspace{0.05cm}$”):
- $$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne 0, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}\hspace{0.5cm}z_i \cdot {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = z_i^{-1}\hspace{0.05cm}.$$
Die weiteren Bedingungen für ein Galoisfeld, nämlich
- Closure,
- Existenz von Null– und Einselelement,
- Gültigkeit von Kommutativ–, Assoziativ– und Distributivgesetz
werden sowohl von $Z_5$ als auch von $Z_6$ erfüllt.
Hinweis: Die Aufgabe bezieht sich auf das Kapitel "Einige Grundlagen der Algebra".
Fragebogen
Musterlösung
- $$A_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}A_{14}=(1+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}A_{24}=(2+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1\hspace{0.05cm},$$
- $$A_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3+4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5= 2\hspace{0.05cm},\hspace{0.2cm}A_{44}=(4+4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
Aufgrund des Kommutativgesetzes der Addition,
- $$z_i + z_j = z_j + z_i \hspace{0.5cm} {\rm f\ddot{u}r \hspace{0.2cm}alle\hspace{0.2cm} } z_i, z_j \in Z_5\hspace{0.05cm},$$
ist natürlich die letzte Spalte der Additionstabelle identisch mit der letzten Zeile der gleichen Tabelle.
(2) Nun gilt $M_{\mu 4} = (\mu \cdot 4) \, {\rm mod} \, 5$ und man erhält:
- $$M_{04} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 0}\hspace{0.05cm},\hspace{0.2cm}M_{14}=(1\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 4}\hspace{0.05cm},\hspace{0.2cm}M_{24}=(2\cdot4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3\hspace{0.05cm},$$
- $$M_{34} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (3\cdot4)\hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2\hspace{0.05cm},\hspace{0.2cm}M_{44}=(4\cdot 4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 \hspace{0.15cm}\underline{= 1}\hspace{0.05cm}.$$
Da die Multiplikation ebenfalls kommutativ ist, stimmt auch in der Multiplikationstabelle die letzte Spalte wieder mit der letzten Zeile überein.
(3) Die Grafik zeigt die vollständigen Additions– und Multiplikationstabellen für $q = 5$. Man erkennt:
- In der Additionstabelle gibt es in jeder Zeile (und auch in jeder Spalte) genau eine Null.
- Zu jedem $z_i ∈ Z_5$ gibt es also ein ${\rm Inv}_{\rm A} (z_i)$, das die Bedingung $[z_i + {\rm Inv}_{\rm A}(z_i)] \, {\rm mod} \, 5 = 0$ erfüllt:
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = 0 \hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 4 \hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 3 \hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-3) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 2 \hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Inv_A}(z_i) = (-4) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
- In der Multiplikationstabelle lassen wir das Nullelement (erste Zeile und erste Spalte) außer Betracht.
- In allen anderen Zeilen und Spalten der unteren Tabelle gibt es tatsächlich jeweils genau eine Eins.
- Aus der Bedingung $[z_i \cdot {\rm Inv}_{\rm M}(z_i)] \, {\rm mod} \, 5 = 1$ erhält man:
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 6 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 16 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 5 = 1 \hspace{0.05cm}.$$
- Da sowohl die erforderlichen additiven als auch die multiplikativen Inversen existieren beschreibt $Z_5$ ein Galoisfeld $\rm GF(5)$ ⇒ Richtig ist der Lösungsvorschlag 1.
(4) Aus der blauen Additionstabelle auf der Angabenseite erkennt man, dass alle Zahlen $0, \, 1, \, 2, \, 3, \, 4, \, 5$ der Menge $Z_6$ eine additive Inverse besitzen ⇒ in jeder Zeile (und Spalte) gibt es genau eine Null.
- Eine multiplikative Inverse ${\rm Inv}_{\rm M}(z_i)$ gibt es dagegen nur für $z_i = 1$ und $z_i = 5$, nämlich
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 1\hspace{0.05cm},$$
- $$z_i \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} {\rm Inv_M}(z_i) = 5 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_i \cdot {\rm Inv_M}(z_i) = 25 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 6 = 1 \hspace{0.05cm}.$$
- Für $z_i = 2, \ z_i = 3$ und $z_i = 4$ findet man dagegen kein Element $z_j$, so dass $(z_i \cdot z_j) \, {\rm mod} \, 6 = 1$ ergibt.
- Richtig ist also der Lösungsvorschlag 3 ⇒ die blauen Tabellen für $q = 6$ ergeben kein Galoisfeld $\rm GF(6)$.
(5) Richtig ist der Lösungsvorschlag 2:
- Eine endliche Zahlenmenge $Z_q = \{0, \, 1, \hspace{0.05cm} \text{...} \hspace{0.1cm} , \, q-1\}$ natürlicher Zahlen führt nur dann zu einem „endlichen Zahlenkörper” (dies ist die deutsche Bezeichnung für ein Galoisfeld), wenn $q$ eine Primzahl ist.
- Von den oben genannten Zahlenmengen trifft dies nur für $Z_{11}$ zu.