Aufgaben:Aufgabe 3.2Z: Optimale Grenzfrequenz bei Gauß-Tiefpass: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(27 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
}}
 
}}
  
[[Datei:P_ID1383__Dig_Z_3_2.png|right|frame|Optimale Gauß–Grenzfrequenz]]
+
[[Datei:P_ID1383__Dig_Z_3_2_ret.png|right|frame|Augendiagramme &ndash;<br> ohne und mit Rauschen]]
Wie in Aufgabe A3.2 wird ein binäres bipolares redundanzfreies Binärsystem mit gaußförmigen Empfangsfilter $H_G(f)$ betrachtet. Dessen Grenzfrequenz $f_G$ soll so bestimmt werden, dass das ungünstigste S/N&ndash;Verhältnis
+
Wie in &nbsp;[[Aufgaben:3.2_Augendiagramm_nach_Gaußtiefpass|Aufgabe 3.2]]&nbsp; wird ein binäres bipolares redundanzfreies Binärsystem mit gaußförmigen Empfangsfilter &nbsp;$H_{\rm G}(f)$&nbsp; betrachtet. Dessen Grenzfrequenz &nbsp;$f_{\rm G}$&nbsp; ist so zu bestimmen, dass das ungünstigste S/N&ndash;Verhältnis
:$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
:$$\rho_{\rm U} = \frac{\big[\ddot{o}(T_{\rm D})/2 \big]^2}{ \sigma_d^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
 
   p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
 
   \right)$$
 
   \right)$$
  
maximal und damit die ungünsigste Fehlerwahrscheinlichkeit $p_U$ minimal wird. Die so optimierte Grenzfrequenz $f_{\rm G, \ opt}$ führt meist zur minimalen mittleren Symbolfehlerwahrscheinlichkeit $p_{\rm S, \ min}$.
+
maximal und damit die ungünsigste Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U}$&nbsp; minimal wird. Die so optimierte Grenzfrequenz &nbsp;$f_{\rm G, \ opt}$&nbsp; führt meist auch zur minimalen mittleren Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S, \ min}$.
  
 
In obiger Gleichung sind folgende Systemgrößen verwendet:
 
In obiger Gleichung sind folgende Systemgrößen verwendet:
* $\sigma_d^2$ ist die Detektionsrauschleistung. Bei gaußförmigen Empfangsfilter:
+
* $\sigma_d^2$&nbsp; ist die Detektionsrauschleistung. Bei gaußförmigen Empfangsfilter gilt:
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm
 
G}}{\sqrt{2}}\hspace{0.05cm}.$$
 
G}}{\sqrt{2}}\hspace{0.05cm}.$$
* $\ddot{o}(T_D)$ gibt die Augenöffnung an. Der Detektionszeitpunkt wird stets zu $T_D = 0$ angenommen.
+
* $\ddot{o}(T_{\rm D})$&nbsp; gibt die Augenöffnung an. Der Detektionszeitpunkt wird stets zu &nbsp;$T_{\rm D} = 0$&nbsp; angenommen.
* Bei einem gaußförmigen Empfangsfilter kann die vertikale Augenöffnung $\ddot{o}(T_D)$ allein durch die Amplitude $s_0$ des Sendegrundimpulses (obere Begrenzung im Auge ohne Rauschen) sowie durch den Maximalwert $g_0$ des Detektionsgrundimpulses ausgedrückt werden. Die Impulsamplitude $g_0$ ist dabei wie folgt zu berechnen:
+
* Bei einem gaußförmigen Empfangsfilter kann die vertikale Augenöffnung &nbsp;$\ddot{o}(T_{\rm D})$&nbsp; allein durch die Amplitude &nbsp;$s_0$&nbsp; des Sendegrundimpulses (obere Begrenzungslinie im Augendiagramm ohne Rauschen) und den Maximalwert &nbsp;$g_0$&nbsp; des Detektionsgrundimpulses ausgedrückt werden.  
:$$g_0 = g_d(t = 0) = s_0 \cdot \left [1- 2 \cdot {\rm Q} \left(
+
*Die Impulsamplitude $g_0$ ist dabei wie folgt zu berechnen:
 +
:$$g_0 = g_d(t = 0) = s_0 \cdot \big [1- 2 \cdot {\rm Q} \left(
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
   \right)\right]\hspace{0.05cm}.$$
+
   \right)\big]\hspace{0.05cm}.$$
  
Die Grafik zeigt die Augendiagramme der gesuchten Konfiguration mit optimaler Grenzfrequenz. Im oberen Diagramm sind die Rauschstörungen nicht berücksichtigt. Das untere Diagramm gilt dagegen mit AWGN&ndash;Rauschen für $10 \cdot \rm lg \ E_B/N_0 = 10 \ \rm dB$.
+
Die Grafik zeigt die Augendiagramme der gesuchten Konfiguration mit optimaler Grenzfrequenz.  
 +
*Im oberen Diagramm sind die Rauschstörungen nicht berücksichtigt.  
 +
*Das untere Diagramm gilt dagegen mit AWGN&ndash;Rauschen für &nbsp;$10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen|Fehlerwahrscheinlichkeit unter Berücksichtigung von Impulsinterferenzen]].
 +
* Verwenden Sie zur numerischen Auswertung der Q&ndash;Funktion das Interaktionsmodul &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]].
 +
  
''Hinweise:''
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Grundlagen_der_codierten_%C3%9Cbertragung|Grundlagen der codierten Übertragung]].
 
* Verwenden Sie zur numerischen Auswertung der Q&ndash;Funktion das folgende Interaktionsmodul: [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1706&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross| Komplementäre Gaußsche Fehlerfunktionen]
 
  
  
Zeile 33: Zeile 43:
 
|type="[]"}
 
|type="[]"}
 
+ Die Berechnung der Augenöffnung erfolgt ohne Rauschen.
 
+ Die Berechnung der Augenöffnung erfolgt ohne Rauschen.
- Bei gaußförmigem Empfangsfilter gilt $\ddot{o}(T_D)/2 = s_0 \ &ndash; \ g_0$.
+
- Bei gaußförmigem Empfangsfilter gilt &nbsp;$\ddot{o}(T_{\rm D})/2 = s_0 \ &ndash; \ g_0$.
+ Bei gaußförmigem Impulsformer gilt $\ddot{o}(T_D)/2 = 2 \cdot g_0 \ &ndash; \ s_0$
+
+ Bei gaußförmigem Impulsformer gilt &nbsp;$\ddot{o}(T_{\rm D})/2 = 2 \cdot g_0 \ &ndash; \ s_0$.
  
 
{Ab welcher Grenzfrequenz ergibt sich ein geschlossenes Auge?
 
{Ab welcher Grenzfrequenz ergibt sich ein geschlossenes Auge?
 
|type="{}"}
 
|type="{}"}
$f_{\rm G, \ min} \cdot T$ = { 0.27 3% }  
+
$f_{\rm G, \ min} \cdot T \ = \ $ { 0.27 3% }  
  
{Berechnen Sie das ungünstigste SNR für $10 \cdot {\rm lg} \ E_B/N_0 = 10 \ \rm dB$. Welche Werte ergeben sich für die nachgenannten Grenzfrequenzen?
+
{Berechnen Sie das ungünstigste SNR für &nbsp;$10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$. Welche Werte ergeben sich für die nachgenannten Grenzfrequenzen?
 
|type="{}"}
 
|type="{}"}
$f_G \cdot T = 0.6: \ 10 \cdot \rm lg \ \rho_U$ = { 11.04 3% } $\rm dB$
+
$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.04 3% } $\ \rm dB$
$f_G \cdot T = 0.8: \ 10 \cdot \rm lg \ \rho_U$ = { 11.66 3% } $\rm dB$
+
$f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm}  10 \cdot \rm lg \ \rho_{\rm U}\ = \ $ { 11.66 3% } $\ \rm dB$
$f_G \cdot T = 1.0: \ 10 \cdot \rm lg \ \rho_U$ = { 11.3 3% } $\rm dB$
+
$f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.3 3% } $\ \rm dB$
  
{Welche Aussagen bezüglich der optimalen Grenzfrequenz sind zutreffend?
+
{Welche Aussagen sind bezüglich der optimalen Grenzfrequenz zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Die Optimierung hinsichtlich $\rho_U$ (bzw. $\rho_U$) ergibt $f_{\rm G, \ opt} \cdot T \approx 0.8$.
+
+ Die Optimierung hinsichtlich &nbsp;$p_{\rm U}$&nbsp; $($bzw. &nbsp;$\rho_{\rm U})$&nbsp; ergibt $f_{\rm G, \ opt} \cdot T \approx 0.8$.
+ Dieses Optimierungsergebnis ist unabhängig von $E_B/N_0$.
+
+ Dieses Optimierungsergebnis ist unabhängig von &nbsp;$E_{\rm B}/N_0$.
- Die Optimierung hinsichtlich $p_S$ führt zum exakt gleichen Ergebnis.
+
- Die Optimierung hinsichtlich &nbsp;$p_{\rm S}$&nbsp; führt zum exakt gleichen Ergebnis.
  
{Berechnen Sie für die optimale Grenzfrequenz $f_{\rm G, \ opt}$ folgende Größen, wobei wieder $10 \cdot {\rm lg} \ (E_B/N_0) = 10 \ \rm dB$ gelten soll.
+
{Bestimmen Sie für die optimale Grenzfrequenz &nbsp;$f_{\rm G, \ opt}$&nbsp; folgende Größen, wobei wieder &nbsp;$10 \cdot {\rm lg} \ (E_{\rm B}/N_0) = 10 \ \rm dB$&nbsp; gelten soll.
 
|type="{}"}
 
|type="{}"}
$\ddot{o}(T_D)/s_0$ = { 1.824 3% }  
+
$\ddot{o}(T_{\rm D})/s_0 \ = \ $ { 1.824 3% }  
$\sigma_d/s_0$ = { 0.238 3% }  
+
$\sigma_d/s_0 \ = \ $ { 0.238 3% }  
$10 \cdot \rm lg \ \rho_U$ = { 11.66 3% } $\rm dB$  
+
$10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.66 3% } $\ \rm dB$  
$p_U$ = { 6.4 3% } $\cdot 10^{\rm &ndash;5}$
+
$p_{\rm U}\ = \ $ { 6.4 3% } $\ \cdot 10^{\rm -5}$
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Richtig sind der <u>erste und der dritte Lösungsvorschlag</u>:
'''(2)'''&nbsp;  
+
*Bei der Berechnung der vertikalen Augenöffnung darf der Rauschanteil nicht berücksichtigt werden. Dieser wird durch den Rauscheffektivwert $\sigma_d$ erfasst.
'''(3)'''&nbsp;  
+
*Würde man die Augenöffnung aus dem unteren Augendiagramm entnehmen, so würde die Rauschkomponente zweimal erfasst.
'''(4)'''&nbsp;  
+
*Die obere Begrenzung der inneren Augenlinie ergibt sich für die Symbolfolge &bdquo; $\text{ ...} \, \ -\hspace{-0.1cm}1 \ -\hspace{-0.1cm}1, +1, -\hspace{-0.1cm}1, \ -\hspace{-0.1cm}1, \text{ ...}  $ &rdquo; .
'''(5)'''&nbsp;  
+
*Die lange &bdquo;$-1$&rdquo;&ndash;Folge würde zum Wert $-s_0$ führen.
 +
*Dagegen führt die &bdquo;worst&ndash;case&rdquo;&ndash;Folge zur Augenlinie $-s_0 + 2 \cdot g_d(t)$.
 +
*Zum Detektionszeitpunkt $T_{\rm D} = 0$ gilt somit mit der Entscheiderschwelle $E = 0$:
 +
:$${\ddot{o}(T_{\rm D})}/{ 2}= 2 \cdot g_0 - s_0
 +
  \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; Für die halbe vertikale Augenöffnung gilt:
 +
:$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ 2 \cdot g_0 - s_0 = 2 \cdot s_0
 +
  \cdot\left [ 1- 2 \cdot {\rm Q} \left(
 +
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 +
  \right)\right] - s_0 =  s_0
 +
  \cdot\left [ 1- 4 \cdot {\rm Q} \left(
 +
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 +
  \right)\right]
 +
  \hspace{0.05cm}.$$
 +
 
 +
Ein geschlossenes Auge ergibt sich gemäß dem angegebenen Interaktionsmodul für
 +
:$${\rm Q} \left(
 +
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 +
  \right) \ge 0.25 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \sqrt{2\pi} \cdot f_{\rm G} \cdot
 +
  T< 0.675\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  f_{\rm G, min} \cdot
 +
  T \approx \frac{0.675}{2.5}\hspace{0.15cm}\underline {  \approx 0.27}
 +
  \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Mit den Gleichungen auf der Angabenseite und den bisherigen Berechnungen ergibt sich
 +
[[Datei:P_ID1395__Dig_Z_3_2_c.png|right|frame|$\rho_{\rm U}$ als Funktion der (normierten) Grenzfrequenz]]
 +
:$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2} =
 +
  \frac{s_0^2
 +
  \cdot\left [ 1- 4 \cdot {\rm Q} \left(
 +
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 +
  \right)\right]^2}{ N_0 \cdot f_{\rm G} / \sqrt{2}}$$
 +
 
 +
Mit der Angabe $E_{\rm B}/N_0 = 10 \ \rm dB $ erhält man folgende Bestimmungsgleichung:
 +
:$$10 \cdot {\rm lg}\hspace{0.1cm}  {E_{\rm B}}/{ N_0} = 10 \, {\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
  {E_{\rm B}}/{ N_0} = {s_0^2 \cdot T}/{ N_0} = 10$$
 +
:$$\Rightarrow \hspace{0.3cm} \rho_{\rm U} = 10 \cdot \sqrt{2}
 +
  \cdot
 +
  \frac{ \left [ 1- 4 \cdot {\rm Q} \left(
 +
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 +
  \right)\right]^2}{  f_{\rm G} \cdot T}\hspace{0.05cm}.$$
 +
Die Abbildung zeigt diesen Funktionsverlauf in Abhängigkeit der (normierten) Grenzfrequenz. Für die vorgegebenen Grenzfrequenzen gilt:
 +
* $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 12.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.04 \ \rm dB},$
 +
* $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 14.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.66 \ \rm dB},$
 +
* $f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 13.5 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.30 \ \rm dB}.$
 +
 
 +
Aus obiger Grafik erkennt man auch die minimale Grenzfrequenz &nbsp; &rArr; &nbsp; Teilaufgabe '''(2)'''.
 +
 
 +
 
 +
'''(4)'''&nbsp; Richtig sind die <u>beiden ersten Lösungsvorschläge</u>:
 +
*Die Gültigkeit der ersten Aussage ergibt sich aus obiger Grafik.
 +
*Da in der obigen Gleichung für $\rho_{\rm U}$ das Verhältnis $E_{\rm B}/N_0$ nur als Faktor auftritt, führt die Optimierung (Nullsetzen der Ableitung) unabhängig von $E_{\rm B}/N_0$ stets zum gleichen Ergebnis.
 +
*Die optimale Grenzfrequenz hinsichtlich $p_{\rm U}$ ist näherungsweise auch hinsichtlich $p_{\rm S}$ optimal, aber nicht exakt.
 +
*Für sehr große Werte von $E_{\rm B}/N_0$ (kleines Rauschen) stimmt diese Näherung sehr gut und es gilt $p_{\rm S} \ \approx \ p_{\rm U}/4$.
 +
*Dagegen ergibt sich bei großem Rauschen, beispielsweise $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 0 \ \rm dB$ eine kleinere optimale Grenzfrequenz, wenn die Optimierung auf $p_{\rm S}$ basiert:
 +
:: $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} p_{\rm U} = 0.113, p_{\rm S} = 0.102,$
 +
:: $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} p_{\rm U} = 0.129, p_{\rm S} = 0.094.$
 +
*Die Fehlerwahrscheinlichkeiten sind dann aber so groß, dass diese Ergebnisse nicht praxisrelevant sind.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Mit dem Ergebnis der Teilaufgabe '''(2)''' &nbsp; &rArr; &nbsp;  $E_{\rm B}/N_0 = 10$ und $f_{\rm G} \cdot T = 0.8$ gilt:
 +
:$${\ddot{o}(T_{\rm D})}/{ s_0} = 2 \cdot \left [ 1- 4 \cdot {\rm Q} \left(
 +
\sqrt{2\pi} \cdot 0.8 \right)\right] =  2 \cdot \left [ 1- 4
 +
\cdot 0.022\right]\hspace{0.15cm}\underline { = 1.824}
 +
  \hspace{0.05cm},$$
 +
:$${\sigma_d^2}/{ s_0^2} = \frac{N_0 \cdot f_{\rm G} }{\sqrt{2}\cdot
 +
  s_0^2}= \frac{N_0  }{s_0^2 \cdot T} \cdot \frac{f_{\rm G} \cdot
 +
  T}{\sqrt{2}} = 0.1 \cdot \frac{0.8}{\sqrt{2}} \approx 0.0566
 +
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\sigma_d}/{
 +
  s_0}\hspace{0.15cm}\underline { \approx 0.238}
 +
  \hspace{0.05cm},$$
 +
:$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})]^2}{ 4 \cdot \sigma_d^2} = \frac{1.824^2}{ 4 \cdot
 +
  0.0566}\approx 14.7 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
  10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}\hspace{0.15cm}\underline {\approx 11.66\, {\rm dB}} \hspace{0.05cm}.$$
 +
:$$p_{\rm U} = {\rm Q} \left(
 +
\sqrt{\rho_{\rm U}}
 +
  \right) =  {\rm Q} \left(
 +
\sqrt{14.7}
 +
  \right)  \hspace{0.15cm}\underline { \approx 6.4 \cdot 10^{-5}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.2 Bitfehlerrate mit Impulsinterferenzen^]]
+
[[Category:Aufgaben zu Digitalsignalübertragung|^3.2 BER mit Impulsinterferenzen^]]

Aktuelle Version vom 10. Oktober 2022, 12:28 Uhr

Augendiagramme –
ohne und mit Rauschen

Wie in  Aufgabe 3.2  wird ein binäres bipolares redundanzfreies Binärsystem mit gaußförmigen Empfangsfilter  $H_{\rm G}(f)$  betrachtet. Dessen Grenzfrequenz  $f_{\rm G}$  ist so zu bestimmen, dass das ungünstigste S/N–Verhältnis

$$\rho_{\rm U} = \frac{\big[\ddot{o}(T_{\rm D})/2 \big]^2}{ \sigma_d^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}} \right)$$

maximal und damit die ungünsigste Fehlerwahrscheinlichkeit  $p_{\rm U}$  minimal wird. Die so optimierte Grenzfrequenz  $f_{\rm G, \ opt}$  führt meist auch zur minimalen mittleren Symbolfehlerwahrscheinlichkeit  $p_{\rm S, \ min}$.

In obiger Gleichung sind folgende Systemgrößen verwendet:

  • $\sigma_d^2$  ist die Detektionsrauschleistung. Bei gaußförmigen Empfangsfilter gilt:
$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}}\hspace{0.05cm}.$$
  • $\ddot{o}(T_{\rm D})$  gibt die Augenöffnung an. Der Detektionszeitpunkt wird stets zu  $T_{\rm D} = 0$  angenommen.
  • Bei einem gaußförmigen Empfangsfilter kann die vertikale Augenöffnung  $\ddot{o}(T_{\rm D})$  allein durch die Amplitude  $s_0$  des Sendegrundimpulses (obere Begrenzungslinie im Augendiagramm ohne Rauschen) und den Maximalwert  $g_0$  des Detektionsgrundimpulses ausgedrückt werden.
  • Die Impulsamplitude $g_0$ ist dabei wie folgt zu berechnen:
$$g_0 = g_d(t = 0) = s_0 \cdot \big [1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\big]\hspace{0.05cm}.$$

Die Grafik zeigt die Augendiagramme der gesuchten Konfiguration mit optimaler Grenzfrequenz.

  • Im oberen Diagramm sind die Rauschstörungen nicht berücksichtigt.
  • Das untere Diagramm gilt dagegen mit AWGN–Rauschen für  $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$.




Hinweise:



Fragebogen

1

Welche Aussagen sind für das Augendiagramm zutreffend?

Die Berechnung der Augenöffnung erfolgt ohne Rauschen.
Bei gaußförmigem Empfangsfilter gilt  $\ddot{o}(T_{\rm D})/2 = s_0 \ – \ g_0$.
Bei gaußförmigem Impulsformer gilt  $\ddot{o}(T_{\rm D})/2 = 2 \cdot g_0 \ – \ s_0$.

2

Ab welcher Grenzfrequenz ergibt sich ein geschlossenes Auge?

$f_{\rm G, \ min} \cdot T \ = \ $

3

Berechnen Sie das ungünstigste SNR für  $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$. Welche Werte ergeben sich für die nachgenannten Grenzfrequenzen?

$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $

$\ \rm dB$
$f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U}\ = \ $

$\ \rm dB$
$f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $

$\ \rm dB$

4

Welche Aussagen sind bezüglich der optimalen Grenzfrequenz zutreffend?

Die Optimierung hinsichtlich  $p_{\rm U}$  $($bzw.  $\rho_{\rm U})$  ergibt $f_{\rm G, \ opt} \cdot T \approx 0.8$.
Dieses Optimierungsergebnis ist unabhängig von  $E_{\rm B}/N_0$.
Die Optimierung hinsichtlich  $p_{\rm S}$  führt zum exakt gleichen Ergebnis.

5

Bestimmen Sie für die optimale Grenzfrequenz  $f_{\rm G, \ opt}$  folgende Größen, wobei wieder  $10 \cdot {\rm lg} \ (E_{\rm B}/N_0) = 10 \ \rm dB$  gelten soll.

$\ddot{o}(T_{\rm D})/s_0 \ = \ $

$\sigma_d/s_0 \ = \ $

$10 \cdot \rm lg \ \rho_{\rm U} \ = \ $

$\ \rm dB$
$p_{\rm U}\ = \ $

$\ \cdot 10^{\rm -5}$


Musterlösung

(1)  Richtig sind der erste und der dritte Lösungsvorschlag:

  • Bei der Berechnung der vertikalen Augenöffnung darf der Rauschanteil nicht berücksichtigt werden. Dieser wird durch den Rauscheffektivwert $\sigma_d$ erfasst.
  • Würde man die Augenöffnung aus dem unteren Augendiagramm entnehmen, so würde die Rauschkomponente zweimal erfasst.
  • Die obere Begrenzung der inneren Augenlinie ergibt sich für die Symbolfolge „ $\text{ ...} \, \ -\hspace{-0.1cm}1 \ -\hspace{-0.1cm}1, +1, -\hspace{-0.1cm}1, \ -\hspace{-0.1cm}1, \text{ ...} $ ” .
  • Die lange „$-1$”–Folge würde zum Wert $-s_0$ führen.
  • Dagegen führt die „worst–case”–Folge zur Augenlinie $-s_0 + 2 \cdot g_d(t)$.
  • Zum Detektionszeitpunkt $T_{\rm D} = 0$ gilt somit mit der Entscheiderschwelle $E = 0$:
$${\ddot{o}(T_{\rm D})}/{ 2}= 2 \cdot g_0 - s_0 \hspace{0.05cm}.$$


(2)  Für die halbe vertikale Augenöffnung gilt:

$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ 2 \cdot g_0 - s_0 = 2 \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right] - s_0 = s_0 \cdot\left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right] \hspace{0.05cm}.$$

Ein geschlossenes Auge ergibt sich gemäß dem angegebenen Interaktionsmodul für

$${\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right) \ge 0.25 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \sqrt{2\pi} \cdot f_{\rm G} \cdot T< 0.675\hspace{0.3cm}\Rightarrow \hspace{0.3cm} f_{\rm G, min} \cdot T \approx \frac{0.675}{2.5}\hspace{0.15cm}\underline { \approx 0.27} \hspace{0.05cm}.$$


(3)  Mit den Gleichungen auf der Angabenseite und den bisherigen Berechnungen ergibt sich

$\rho_{\rm U}$ als Funktion der (normierten) Grenzfrequenz
$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2} = \frac{s_0^2 \cdot\left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]^2}{ N_0 \cdot f_{\rm G} / \sqrt{2}}$$

Mit der Angabe $E_{\rm B}/N_0 = 10 \ \rm dB $ erhält man folgende Bestimmungsgleichung:

$$10 \cdot {\rm lg}\hspace{0.1cm} {E_{\rm B}}/{ N_0} = 10 \, {\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {E_{\rm B}}/{ N_0} = {s_0^2 \cdot T}/{ N_0} = 10$$
$$\Rightarrow \hspace{0.3cm} \rho_{\rm U} = 10 \cdot \sqrt{2} \cdot \frac{ \left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]^2}{ f_{\rm G} \cdot T}\hspace{0.05cm}.$$

Die Abbildung zeigt diesen Funktionsverlauf in Abhängigkeit der (normierten) Grenzfrequenz. Für die vorgegebenen Grenzfrequenzen gilt:

  • $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 12.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.04 \ \rm dB},$
  • $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 14.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.66 \ \rm dB},$
  • $f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 13.5 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.30 \ \rm dB}.$

Aus obiger Grafik erkennt man auch die minimale Grenzfrequenz   ⇒   Teilaufgabe (2).


(4)  Richtig sind die beiden ersten Lösungsvorschläge:

  • Die Gültigkeit der ersten Aussage ergibt sich aus obiger Grafik.
  • Da in der obigen Gleichung für $\rho_{\rm U}$ das Verhältnis $E_{\rm B}/N_0$ nur als Faktor auftritt, führt die Optimierung (Nullsetzen der Ableitung) unabhängig von $E_{\rm B}/N_0$ stets zum gleichen Ergebnis.
  • Die optimale Grenzfrequenz hinsichtlich $p_{\rm U}$ ist näherungsweise auch hinsichtlich $p_{\rm S}$ optimal, aber nicht exakt.
  • Für sehr große Werte von $E_{\rm B}/N_0$ (kleines Rauschen) stimmt diese Näherung sehr gut und es gilt $p_{\rm S} \ \approx \ p_{\rm U}/4$.
  • Dagegen ergibt sich bei großem Rauschen, beispielsweise $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 0 \ \rm dB$ eine kleinere optimale Grenzfrequenz, wenn die Optimierung auf $p_{\rm S}$ basiert:
$f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} p_{\rm U} = 0.113, p_{\rm S} = 0.102,$
$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} p_{\rm U} = 0.129, p_{\rm S} = 0.094.$
  • Die Fehlerwahrscheinlichkeiten sind dann aber so groß, dass diese Ergebnisse nicht praxisrelevant sind.


(5)  Mit dem Ergebnis der Teilaufgabe (2)   ⇒   $E_{\rm B}/N_0 = 10$ und $f_{\rm G} \cdot T = 0.8$ gilt:

$${\ddot{o}(T_{\rm D})}/{ s_0} = 2 \cdot \left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 0.8 \right)\right] = 2 \cdot \left [ 1- 4 \cdot 0.022\right]\hspace{0.15cm}\underline { = 1.824} \hspace{0.05cm},$$
$${\sigma_d^2}/{ s_0^2} = \frac{N_0 \cdot f_{\rm G} }{\sqrt{2}\cdot s_0^2}= \frac{N_0 }{s_0^2 \cdot T} \cdot \frac{f_{\rm G} \cdot T}{\sqrt{2}} = 0.1 \cdot \frac{0.8}{\sqrt{2}} \approx 0.0566 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\sigma_d}/{ s_0}\hspace{0.15cm}\underline { \approx 0.238} \hspace{0.05cm},$$
$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})]^2}{ 4 \cdot \sigma_d^2} = \frac{1.824^2}{ 4 \cdot 0.0566}\approx 14.7 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}\hspace{0.15cm}\underline {\approx 11.66\, {\rm dB}} \hspace{0.05cm}.$$
$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}} \right) = {\rm Q} \left( \sqrt{14.7} \right) \hspace{0.15cm}\underline { \approx 6.4 \cdot 10^{-5}}\hspace{0.05cm}.$$