Aufgaben:Aufgabe 4.3: Iterative Decodierung beim BSC: Unterschied zwischen den Versionen
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 97: | Zeile 97: | ||
*Das Empfangswort $\underline{y}_2 = (0, 1, 0)$ ist kein gültiges Codewort des <i>Single Parity–check Codes</i> SPC (3, 2). Somit ist die erste Aussage falsch. | *Das Empfangswort $\underline{y}_2 = (0, 1, 0)$ ist kein gültiges Codewort des <i>Single Parity–check Codes</i> SPC (3, 2). Somit ist die erste Aussage falsch. | ||
*Da der SPC (3, 2) zudem nur die minimale Distanz $d_{\rm min} = 2$ aufweist, kann auch kein Fehler korrigiert werden. | *Da der SPC (3, 2) zudem nur die minimale Distanz $d_{\rm min} = 2$ aufweist, kann auch kein Fehler korrigiert werden. | ||
+ | |||
Zeile 103: | Zeile 104: | ||
*Die minimale Distanz dieses Codes beträgt $d_{\rm min} = 3$, so dass $t = (d_{\rm min} \, - 1)/2 = 1$ Fehler korrigiert werden kann. | *Die minimale Distanz dieses Codes beträgt $d_{\rm min} = 3$, so dass $t = (d_{\rm min} \, - 1)/2 = 1$ Fehler korrigiert werden kann. | ||
*Neben $\underline{y}_0 = (0, 0, 0)$ werden auch $\underline{y}_1 = (0, 0, 1), \ \underline{y}_2 = (0, 1, 0)$ und $\underline{y}_4 = (1, 0, 0)$ dem Decodierergebnis $\underline{x}_0 = (0, 0, 0)$ zugeordnet. | *Neben $\underline{y}_0 = (0, 0, 0)$ werden auch $\underline{y}_1 = (0, 0, 1), \ \underline{y}_2 = (0, 1, 0)$ und $\underline{y}_4 = (1, 0, 0)$ dem Decodierergebnis $\underline{x}_0 = (0, 0, 0)$ zugeordnet. | ||
+ | |||
Zeile 108: | Zeile 110: | ||
:$${\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_0 ) = (1-\varepsilon)^2 \cdot \varepsilon\hspace{0.05cm}.$$ | :$${\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_0 ) = (1-\varepsilon)^2 \cdot \varepsilon\hspace{0.05cm}.$$ | ||
− | Der erste Term $(1 \, –\varepsilon)^2$ gibt dabei die Wahrscheinlichkeit dafür an, dass das erste und das dritte Bit richtig übertragen wurden und $\varepsilon$ berücksichtigt die Verfälschungswahrscheinlichkeit für das zweite Bit. | + | *Der erste Term $(1 \, –\varepsilon)^2$ gibt dabei die Wahrscheinlichkeit dafür an, dass das erste und das dritte Bit richtig übertragen wurden und $\varepsilon$ berücksichtigt die Verfälschungswahrscheinlichkeit für das zweite Bit. |
− | Entsprechend gilt für das zweite mögliche Codewort $\underline{x}_1 = (1, 1, 1)$: | + | *Entsprechend gilt für das zweite mögliche Codewort $\underline{x}_1 = (1, 1, 1)$: |
:$${\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_1 ) = \varepsilon^2 \cdot (1-\varepsilon) \hspace{0.05cm}.$$ | :$${\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_1 ) = \varepsilon^2 \cdot (1-\varepsilon) \hspace{0.05cm}.$$ | ||
− | Nach dem Satz von Bayes gilt dann für die Rückschlusswahrscheinlichkeiten: | + | *Nach dem Satz von Bayes gilt dann für die Rückschlusswahrscheinlichkeiten: |
:$${\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y} = \underline{y}_2 ) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_0 ) \cdot \frac{{\rm Pr}(\underline{x} = \underline{x}_0)} | :$${\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y} = \underline{y}_2 ) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_0 ) \cdot \frac{{\rm Pr}(\underline{x} = \underline{x}_0)} | ||
{{\rm Pr}(\underline{y} = \underline{y}_2)} \hspace{0.05cm},$$ | {{\rm Pr}(\underline{y} = \underline{y}_2)} \hspace{0.05cm},$$ | ||
Zeile 121: | Zeile 123: | ||
{{\rm Pr(falsche \hspace{0.15cm}Entscheidung) }} = \frac{(1-\varepsilon)^2 \cdot \varepsilon}{\varepsilon^2 \cdot (1-\varepsilon)}= \frac{(1-\varepsilon)}{\varepsilon}\hspace{0.05cm}.$$ | {{\rm Pr(falsche \hspace{0.15cm}Entscheidung) }} = \frac{(1-\varepsilon)^2 \cdot \varepsilon}{\varepsilon^2 \cdot (1-\varepsilon)}= \frac{(1-\varepsilon)}{\varepsilon}\hspace{0.05cm}.$$ | ||
− | Mit $\varepsilon = 0.269$ erhält man folgende Zahlenwerte: | + | *Mit $\varepsilon = 0.269$ erhält man folgende Zahlenwerte: |
:$$S = {0.731}/{0.269}\hspace{0.15cm}\underline {= 2.717}\hspace{0.3cm}\Rightarrow | :$$S = {0.731}/{0.269}\hspace{0.15cm}\underline {= 2.717}\hspace{0.3cm}\Rightarrow | ||
\hspace{0.3cm}{\rm ln}\hspace{0.15cm}(S)\hspace{0.15cm} \underline {= 1}\hspace{0.05cm}.$$ | \hspace{0.3cm}{\rm ln}\hspace{0.15cm}(S)\hspace{0.15cm} \underline {= 1}\hspace{0.05cm}.$$ | ||
− | '''(4)''' Das Vorzeichen des Kanal–$L$–Wertes $L_{\rm K}(i)$ ist positiv, falls $y_i = 0$, und negativ für $y_i = 1$. Der Betrag gibt die Zuverlässigkeit von $y_i$ an. Beim BSC–Modell gilt $|L_{\rm K}(i)| = \ln {(1 \, – \ | + | |
+ | '''(4)''' Das Vorzeichen des Kanal–$L$–Wertes $L_{\rm K}(i)$ ist positiv, falls $y_i = 0$, und negativ für $y_i = 1$. | ||
+ | *Der Betrag gibt die Zuverlässigkeit von $y_i$ an. Beim BSC–Modell gilt $|L_{\rm K}(i)| = \ln {(1 \, – \varepsilon)/\varepsilon} = 1$ für alle $i$. Also: | ||
+ | [[Datei:P_ID2988__KC_A_4_3e_v1.png|rightr|frame| Iterative Decodierung von $(+1, –1, +1)$]] | ||
:$$\underline {L_{\rm K}}(1)\hspace{0.15cm} \underline {= +1}\hspace{0.05cm},\hspace{0.5cm} | :$$\underline {L_{\rm K}}(1)\hspace{0.15cm} \underline {= +1}\hspace{0.05cm},\hspace{0.5cm} | ||
\underline {L_{\rm K}}(2)\hspace{0.15cm} \underline {= -1}\hspace{0.05cm},\hspace{0.5cm} | \underline {L_{\rm K}}(2)\hspace{0.15cm} \underline {= -1}\hspace{0.05cm},\hspace{0.5cm} | ||
Zeile 132: | Zeile 137: | ||
− | + | ||
'''(5)''' Die nebenstehende Tabelle verdeutlicht die iterative symbolweise Decodierung ausgehend von $\underline{y}_2 = (0, \, 1, \, 0)$. | '''(5)''' Die nebenstehende Tabelle verdeutlicht die iterative symbolweise Decodierung ausgehend von $\underline{y}_2 = (0, \, 1, \, 0)$. | ||
<br clear=all> | <br clear=all> | ||
Zeile 150: | Zeile 155: | ||
*Mit jeder weiteren Iteration nimmt der Zuverlässigkeitswert und damit die Wahrscheinlichkeit ${\rm Pr}(\underline{x}_0 | \underline{y}_2)$ drastisch zu ⇒ <u>Alle Lösungsvorschläge</u> sind richtig. | *Mit jeder weiteren Iteration nimmt der Zuverlässigkeitswert und damit die Wahrscheinlichkeit ${\rm Pr}(\underline{x}_0 | \underline{y}_2)$ drastisch zu ⇒ <u>Alle Lösungsvorschläge</u> sind richtig. | ||
+ | |||
Zeile 157: | Zeile 163: | ||
*Der Decoder entscheidet sich nun für die Folge $\underline{x}_1 = (1, \, 1, \, 1)$. | *Der Decoder entscheidet sich nun für die Folge $\underline{x}_1 = (1, \, 1, \, 1)$. | ||
− | *Der Fall „$\underline{y}_3 = (1, \, 1, \, 0)$ empfangen unter der Voraussetzung $\underline{x}_1 = (1, \, 1, \, 1)$ gesendet” würde genau der in der letzten Teilaufgabe betrachteten Konstellation „$\underline{y}_2 = ( | + | *Der Fall „$\underline{y}_3 = (1, \, 1, \, 0)$ empfangen unter der Voraussetzung $\underline{x}_1 = (1, \, 1, \, 1)$ gesendet” würde genau der in der letzten Teilaufgabe betrachteten Konstellation „$\underline{y}_2 = (0, \, 1, \, 0)$ empfangen und $\underline{x}_0 = (0, \, 0, \, 0)$ gesendet” entsprechen. |
*Da aber $\underline{x}_0 = (0, \, 0, \, 0)$ gesendet wurde, gibt es nun zwei Bitfehler mit folgender Konsequenz: | *Da aber $\underline{x}_0 = (0, \, 0, \, 0)$ gesendet wurde, gibt es nun zwei Bitfehler mit folgender Konsequenz: | ||
:* Der iterative Decoder entscheidet falsch. | :* Der iterative Decoder entscheidet falsch. |
Aktuelle Version vom 29. November 2022, 17:39 Uhr
Wir betrachten in dieser Aufgabe zwei Codes:
- den Single Parity–Code ⇒ $\text{SPC (3, 2, 2)}$:
- $$\underline{x} = \big (\hspace{0.05cm}(0, 0, 0), \hspace{0.1cm} (0, 1, 1), \hspace{0.1cm} (1, 0, 1), \hspace{0.1cm} (1, 1, 0) \hspace{0.05cm} \big ) \hspace{0.05cm}, $$
- den Wiederholungscode ⇒ $\text{RC (3, 1, 3)}$:
- $$\underline{x} = \big (\hspace{0.05cm}(0, 0, 0), \hspace{0.1cm} (1, 1, 1) \hspace{0.05cm} \big ) \hspace{0.05cm}.$$
Der Kanal wird auf Bitebene durch das BSC–Modell beschrieben. Entsprechend der Grafik gilt dabei:
- $${\rm Pr}(y_i \ne x_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}\varepsilon = 0.269\hspace{0.05cm},$$
- $${\rm Pr}(y_i = x_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1-\varepsilon = 0.731\hspace{0.05cm}.$$
Hierbei bezeichnet $\varepsilon$ die Verfälschungswahrscheinlichkeit des BSC–Modells.
Bis auf die letzte Teilaufgabe wird stets von folgendem Empfangswert ausgegangen:
- $$\underline{y} = (0, 1, 0) =\underline{y}_2 \hspace{0.05cm}. $$
Die hier gewählte Indizierung aller möglichen Empfangsvektoren kann der Grafik entnommen werden.
- Der meistens betrachtete Vektor $\underline{y}_2$ ist hierbei rot hervorgehoben.
- Für die Teilaufgabe (6) gilt dann:
- $$\underline{y} = (1, 1, 0) =\underline{y}_6 \hspace{0.05cm}. $$
Zur Decodierung sollen in der Aufgabe untersucht werden:
- die Syndromdecodierung, die bei den betrachteten Codes dem Konzept Hard Decision Maximum Likelihood Detection (HD–ML) folgt
(Softwerte liegen beim BSC nicht vor), - die symbolweise Soft–in Soft–out Decodierung (SISO) entsprechend dieses Abschnitts.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel Soft–in Soft–out Decoder.
- Bezug genommen wird insbesondere auf die Seiten
- Das vom Decoder ausgewählte Codewort wird in den Fragen mit $\underline{z}$ bezeichnet.
Fragebogen
Musterlösung
- Das Empfangswort $\underline{y}_2 = (0, 1, 0)$ ist kein gültiges Codewort des Single Parity–check Codes SPC (3, 2). Somit ist die erste Aussage falsch.
- Da der SPC (3, 2) zudem nur die minimale Distanz $d_{\rm min} = 2$ aufweist, kann auch kein Fehler korrigiert werden.
(2) Richtig ist der Lösungsvorschlag 2:
- Die möglichen Codeworte beim RP (3, 1) sind $\underline{x}_0 = (0, 0, 0)$ und $\underline{x}_1 = (1, 1, 1)$.
- Die minimale Distanz dieses Codes beträgt $d_{\rm min} = 3$, so dass $t = (d_{\rm min} \, - 1)/2 = 1$ Fehler korrigiert werden kann.
- Neben $\underline{y}_0 = (0, 0, 0)$ werden auch $\underline{y}_1 = (0, 0, 1), \ \underline{y}_2 = (0, 1, 0)$ und $\underline{y}_4 = (1, 0, 0)$ dem Decodierergebnis $\underline{x}_0 = (0, 0, 0)$ zugeordnet.
(3) Entsprechend dem BSC–Modell gilt für die bedingte Wahrscheinlichkeit, dass $\underline{y}_2 = (0, 1, 0)$ empfangen wird, unter der Voraussetzung, dass $\underline{x}_0 = (0, 0, 0)$ gesendet wurde:
- $${\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_0 ) = (1-\varepsilon)^2 \cdot \varepsilon\hspace{0.05cm}.$$
- Der erste Term $(1 \, –\varepsilon)^2$ gibt dabei die Wahrscheinlichkeit dafür an, dass das erste und das dritte Bit richtig übertragen wurden und $\varepsilon$ berücksichtigt die Verfälschungswahrscheinlichkeit für das zweite Bit.
- Entsprechend gilt für das zweite mögliche Codewort $\underline{x}_1 = (1, 1, 1)$:
- $${\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_1 ) = \varepsilon^2 \cdot (1-\varepsilon) \hspace{0.05cm}.$$
- Nach dem Satz von Bayes gilt dann für die Rückschlusswahrscheinlichkeiten:
- $${\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y} = \underline{y}_2 ) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_0 ) \cdot \frac{{\rm Pr}(\underline{x} = \underline{x}_0)} {{\rm Pr}(\underline{y} = \underline{y}_2)} \hspace{0.05cm},$$
- $${\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_1 \hspace{0.1cm}| \hspace{0.1cm}\underline{y} = \underline{y}_2 ) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{y} = \underline{y}_2 \hspace{0.1cm}| \hspace{0.1cm}\underline{x} = \underline{x}_1 ) \cdot \frac{{\rm Pr}(\underline{x} = \underline{x}_1)} {{\rm Pr}(\underline{y} = \underline{y}_2)} $$
- $$\Rightarrow \hspace{0.3cm} S = \frac{{\rm Pr(richtige \hspace{0.15cm}Entscheidung)}} {{\rm Pr(falsche \hspace{0.15cm}Entscheidung) }} = \frac{(1-\varepsilon)^2 \cdot \varepsilon}{\varepsilon^2 \cdot (1-\varepsilon)}= \frac{(1-\varepsilon)}{\varepsilon}\hspace{0.05cm}.$$
- Mit $\varepsilon = 0.269$ erhält man folgende Zahlenwerte:
- $$S = {0.731}/{0.269}\hspace{0.15cm}\underline {= 2.717}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm ln}\hspace{0.15cm}(S)\hspace{0.15cm} \underline {= 1}\hspace{0.05cm}.$$
(4) Das Vorzeichen des Kanal–$L$–Wertes $L_{\rm K}(i)$ ist positiv, falls $y_i = 0$, und negativ für $y_i = 1$.
- Der Betrag gibt die Zuverlässigkeit von $y_i$ an. Beim BSC–Modell gilt $|L_{\rm K}(i)| = \ln {(1 \, – \varepsilon)/\varepsilon} = 1$ für alle $i$. Also:
- $$\underline {L_{\rm K}}(1)\hspace{0.15cm} \underline {= +1}\hspace{0.05cm},\hspace{0.5cm} \underline {L_{\rm K}}(2)\hspace{0.15cm} \underline {= -1}\hspace{0.05cm},\hspace{0.5cm} \underline {L_{\rm K}}(3)\hspace{0.15cm} \underline {= +1}\hspace{0.05cm}.$$
(5) Die nebenstehende Tabelle verdeutlicht die iterative symbolweise Decodierung ausgehend von $\underline{y}_2 = (0, \, 1, \, 0)$.
Diese Ergebnisse lassen sich wie folgt interpretieren:
- Die Vorbelegung (Iteration $I = 0$) geschieht entsprechend $\underline{L}_{\rm APP} = \underline{L}_{\rm K}$. Eine harte Entscheidung ⇒ „$\sign {\underline{L}_{\rm APP}(i)}$” würde zum Decodierergebnis $(0, \, 1, \, 0)$ führen. Die Zuverlässigkeit dieses offensichtlich falschen Ergebnisses wird mit $|{\it \Sigma}| = 1$ angegeben. Dieser Wert stimmt mit dem in Teilaufgaben (3) berechneten „$\ln (S)$” überein.
- Nach der ersten Iteration $(I = 1)$ sind alle Aposteriori–$L$–Werte $L_{\rm APP}(i) = +1$. Eine harte Entscheidung würde hier das (voraussichtlich) richtige Ergebnis $\underline{x}_{\rm APP} = (0, \, 0, \, 0)$ liefern. Die Wahrscheinlichkeit, dass dieses Ergebnis richtig ist, wird durch $|{\it \Sigma}_{\rm APP}| = 3$ quantifiziert:
- $${\rm ln}\hspace{0.25cm}\frac{{\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2)}{1-{\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2)} = 3 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2)}{1-{\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2)} = {\rm e}^3 \approx 20$$
- $$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2) = {20}/{21} {\approx 95.39\%}\hspace{0.05cm}.$$
- Die zweite Iteration bestätigt das Decodierergebnis der ersten Iteration. Die Zuverlässigkeit wird hier sogar mit „$9$” beziffert. Dieser Wert kann wie folgt interpretiert werden:
- $$\frac{{\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2)}{1-{\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2)} = {\rm e}^9 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm Pr}(\hspace{0.1cm}\underline{x} = \underline{x}_0 \hspace{0.1cm}| \hspace{0.1cm}\underline{y}=\underline{y}_2) = {{\rm e}^9}/{({\rm e}^9+1)} \approx 99.99\% \hspace{0.05cm}.$$
- Mit jeder weiteren Iteration nimmt der Zuverlässigkeitswert und damit die Wahrscheinlichkeit ${\rm Pr}(\underline{x}_0 | \underline{y}_2)$ drastisch zu ⇒ Alle Lösungsvorschläge sind richtig.
(6) Richtig sind die Lösungsvorschläge 2 und 3:
- Für den Empfangsvektor $\underline{y}_6 = (1, \, 1, \, 0)$ gilt die zweite Tabelle.
- Der Decoder entscheidet sich nun für die Folge $\underline{x}_1 = (1, \, 1, \, 1)$.
- Der Fall „$\underline{y}_3 = (1, \, 1, \, 0)$ empfangen unter der Voraussetzung $\underline{x}_1 = (1, \, 1, \, 1)$ gesendet” würde genau der in der letzten Teilaufgabe betrachteten Konstellation „$\underline{y}_2 = (0, \, 1, \, 0)$ empfangen und $\underline{x}_0 = (0, \, 0, \, 0)$ gesendet” entsprechen.
- Da aber $\underline{x}_0 = (0, \, 0, \, 0)$ gesendet wurde, gibt es nun zwei Bitfehler mit folgender Konsequenz:
- Der iterative Decoder entscheidet falsch.
- Mit jeder weiteren Iteration wird die falsche Entscheidung als zuverlässiger deklariert.