Wahrscheinlichkeit und WDF (Lernvideo): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 19: Zeile 19:
  
 
In diesem Lernvideo bezeichnet $f_x(x)$ ebenso wie im gesamten Lerntutorial „LNTwww” die Wahrscheinlichkeitsdichtefunktion (WDF) der Zufallsgröße $x$. Die englische Bezeichnung ist ''Probability Density Function'' (PDF).
 
In diesem Lernvideo bezeichnet $f_x(x)$ ebenso wie im gesamten Lerntutorial „LNTwww” die Wahrscheinlichkeitsdichtefunktion (WDF) der Zufallsgröße $x$. Die englische Bezeichnung ist ''Probability Density Function'' (PDF).
 +
 
In der Literatur findet man aber auch häufig die Notation $f_X(x)$, wobei $X$ die Zufallsgröße angibt und $x$ eine Realisierung. Es gilt $x \in X$.  
 
In der Literatur findet man aber auch häufig die Notation $f_X(x)$, wobei $X$ die Zufallsgröße angibt und $x$ eine Realisierung. Es gilt $x \in X$.  
 
   
 
   
Zeile 25: Zeile 26:
 
Buch und Regie: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]],   Fachliche Beratung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Thomas_Stockhammer_.28am_LNT_von_1996-2004.29|Thomas Stockhammer]],   Sprecher: Joachim Schenk,   Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Franz_Kohl_.28Diplomarbeit_LB_2004.2C_danach_freie_Mitarbeit_bis_2006.29|Franz Kohl]].
 
Buch und Regie: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]],   Fachliche Beratung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Thomas_Stockhammer_.28am_LNT_von_1996-2004.29|Thomas Stockhammer]],   Sprecher: Joachim Schenk,   Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Franz_Kohl_.28Diplomarbeit_LB_2004.2C_danach_freie_Mitarbeit_bis_2006.29|Franz Kohl]].
  
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.
+
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.

Aktuelle Version vom 26. Oktober 2023, 10:31 Uhr

Teil 1

Definition von Wahrscheinlichkeit und Wahrscheinlichkeitsdichtefunktion (WDF) – WDF wertkontinuierlicher Signale – WDF wertdiskreter Signale (Dauer 5:36).

Teil 2

WDF von Audiosignalen – Berücksichtigung von Sprachpausen – Einfluss der Lautstärke (Dauer 6:35).

Anmerkungen zur Nomenklatur

In diesem Lernvideo bezeichnet $f_x(x)$ ebenso wie im gesamten Lerntutorial „LNTwww” die Wahrscheinlichkeitsdichtefunktion (WDF) der Zufallsgröße $x$. Die englische Bezeichnung ist Probability Density Function (PDF).

In der Literatur findet man aber auch häufig die Notation $f_X(x)$, wobei $X$ die Zufallsgröße angibt und $x$ eine Realisierung. Es gilt $x \in X$.


Dieses Lernvideo wurde 2004 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder,   Fachliche Beratung: Thomas Stockhammer,   Sprecher: Joachim Schenk,   Realisierung: Franz Kohl.

Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.