Klassische Definition der Wahrscheinlickeit (Lernvideo): Unterschied zwischen den Versionen
Höfler (Diskussion | Beiträge) |
|||
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
=== Inhalt === | === Inhalt === | ||
− | Die Klassische Definition der Wahrscheinlichkeit geht von $M$ Elementarergebnissen $E_\mu$ aus, die alle gleichwahrscheinlich sind und zusammen ein vollständiges System bilden. Das heißt: Alle | + | Die Klassische Definition der Wahrscheinlichkeit geht von $M$ Elementarergebnissen $E_\mu$ aus, die alle gleichwahrscheinlich sind und zusammen ein vollständiges System bilden. Das heißt: Alle Ergebnisse $E_\mu$ sind paarweise disjunkt und die Vereinigungsmenge über alle $E_\mu$ ergibt die Grundmenge $G$. Die Wahrscheinlichkeit für ein solches Elementarergebnis ist somit ${\rm Pr}(E_\mu) = 1/M.$ |
− | + | Dann ist die Wahrscheinlichkeit für das Ereignis $A$, das sich aus $K$ solcher Elementarergebnissen zusammensetzt, nach der Klassischen Definition: ${\rm Pr}(A) = K/M.$ | |
− | |||
− | |||
− | |||
− | |||
+ | Dieses Lernvideo (Dauer 5:18) verdeutlicht den hier genannten Zusammenhang und zeigt an je einem Beispiel, wann die Anwendung der Klassischen Wahrscheinlichkeits-Definition gerechtfertigt ist und wann nicht. | ||
Zeile 20: | Zeile 17: | ||
Buch, Regie und Sprecher: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]], Fachliche Beratung: Ioannis Oikokonomidis, Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Franz_Kohl_.28Diplomarbeit_LB_2004.2C_danach_freie_Mitarbeit_bis_2006.29|Franz Kohl]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Winfried_Kretzinger_.28am_LNT_von_1973-2004.29|Winfried Kretzinger]]. | Buch, Regie und Sprecher: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]], Fachliche Beratung: Ioannis Oikokonomidis, Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Franz_Kohl_.28Diplomarbeit_LB_2004.2C_danach_freie_Mitarbeit_bis_2006.29|Franz Kohl]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Winfried_Kretzinger_.28am_LNT_von_1973-2004.29|Winfried Kretzinger]]. | ||
− | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/ | + | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können. |
Aktuelle Version vom 26. Oktober 2023, 10:32 Uhr
Inhalt
Die Klassische Definition der Wahrscheinlichkeit geht von $M$ Elementarergebnissen $E_\mu$ aus, die alle gleichwahrscheinlich sind und zusammen ein vollständiges System bilden. Das heißt: Alle Ergebnisse $E_\mu$ sind paarweise disjunkt und die Vereinigungsmenge über alle $E_\mu$ ergibt die Grundmenge $G$. Die Wahrscheinlichkeit für ein solches Elementarergebnis ist somit ${\rm Pr}(E_\mu) = 1/M.$
Dann ist die Wahrscheinlichkeit für das Ereignis $A$, das sich aus $K$ solcher Elementarergebnissen zusammensetzt, nach der Klassischen Definition: ${\rm Pr}(A) = K/M.$
Dieses Lernvideo (Dauer 5:18) verdeutlicht den hier genannten Zusammenhang und zeigt an je einem Beispiel, wann die Anwendung der Klassischen Wahrscheinlichkeits-Definition gerechtfertigt ist und wann nicht.
Dieses Lernvideo wurde 2004 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch, Regie und Sprecher: Günter Söder, Fachliche Beratung: Ioannis Oikokonomidis, Realisierung: Franz Kohl und Winfried Kretzinger.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.