Applets:Dämpfung von Kupferkabeln: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(30 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{LntAppletLink|kabeldaempfung}}
+
{{LntAppletLink|attenuationCopperCables_en}}         [https://en.lntwww.de/Applets:Attenuation_of_Copper_Cables '''English Applet with English WIKI description''']
  
 
==Programmbeschreibung==
 
==Programmbeschreibung==
 
<br>
 
<br>
Dieses Applet berechnet die Dämpfungsfunktion $a_{\rm K}(f)$ von leitungsgebundene Übertragungsmedien (jeweils der der Länge $l$):
+
Dieses Applet berechnet die Dämpfungsfunktion $a_{\rm K}(f)$ von leitungsgebundenen Übertragungsmedien (jeweils mit der Kabellänge $l$):
 
*Für Koaxialkabel verwendet man meist die Gleichung $a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l$.
 
*Für Koaxialkabel verwendet man meist die Gleichung $a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l$.
 
*Dagegen werden Zweidrahtleitungen oft in der Form $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$ dargestellt.
 
*Dagegen werden Zweidrahtleitungen oft in der Form $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$ dargestellt.
*Realisiert ist auch die Umrechnung der $(k_1, \ k_2, \ k_3)$&ndash;Darstellung in die $(\alpha_0, \ \alpha_1, \ \alpha_2)$&ndash;Form für $B = 30 \ \rm MHz$ (und umgekehrt).
+
*Realisiert ist auch die Umrechnung der $(k_1, \ k_2, \ k_3)$&ndash;Darstellung in die $(\alpha_0, \ \alpha_1, \ \alpha_2)$&ndash;Form für $B = 30 \ \rm MHz$ und umgekehrt.
  
  
Zeile 15: Zeile 15:
  
  
Das Integral über $\left | H_{\rm E}(f)\right |^2 $ ist ein Maß für die Rauschüberhöhung des ausgewählten Nyquist&ndash;Gesamtfrequenzgangs und damit auch für zu erwartende Bitfehlerwahrscheinlichkeit.  
+
Das Integral über $\left | H_{\rm E}(f)\right |^2 $ ist ein Maß für die Rauschüberhöhung des ausgewählten Nyquist&ndash;Gesamtfrequenzgangs und damit auch für zu erwartende Fehlerwahrscheinlichkeit. Aus dieser wird der ''Gesamt&ndash;Wirkungsgrad'' &nbsp;$\eta_\text{K+E}$ für '''K'''anal und '''E'''ntzerrer berechnet, der im Applet in $\rm dB$ ausgegeben wird.
  
  
und graphische Darstellung
+
Durch Optimierung des Roll-off&ndash;Faktors $r$ des Cosinus&ndash;Roll-off&ndash;Frequenzgangs $ H_{\rm CRO}(f) $ kommt man zum ''Kanal&ndash;Wirkungsgrad'' &nbsp;$ \eta_\text{K}$. Dieser gibt also die Verschlechterung des Gesamtsystems aufgrund der Dämpfungsfunktion $a_{\rm K}(f)$ des Übertragungsmediums an.  
*der Wahrscheinlichkeiten ${\rm Pr}(z=\mu)$ einer diskreten Zufallsgröße $z \in \{\mu \} =  \{0, 1, 2, 3, \text{...} \}$, welche die ''Wahrscheinlichkeitsdichtefunktion'' (WDF) &ndash; im Englischen ''Probability Density Function'' (PDF) &ndash; der Zufallsgröße $z$ bestimmen &ndash; hier Darstellung mit Diracfunktionen ${\rm \delta}( z-\mu)$:
 
:$$f_{z}(z)=\sum_{\mu=1}^{M}{\rm Pr}(z=\mu)\cdot {\rm \delta}( z-\mu),$$
 
*der Wahrscheinlichkeiten ${\rm Pr}(z \le \mu)$ der Verteilungsfunktion (VTF)  &ndash; im Englischen ''Cumulative Distribution Function'' (CDF):
 
:$$F_{z}(\mu)={\rm Pr}(z\le\mu).$$
 
  
  
Als diskrete Verteilungen stehen in zwei Parametersätzen zur Auswahl:
 
* die Binomialverteilung mit den Parametern $I$ und $p$ &nbsp; &rArr; &nbsp; $z \in  \{0, 1, \text{...} \ , I \}$ &nbsp; &rArr; &nbsp; $M = I+1$ mögliche Werte,
 
*die Poissonverteilung mit Parameter $\lambda$ &nbsp; &rArr; &nbsp; $z \in  \{0, 1, 2, 3, \text{...}\}$ &nbsp; &rArr; &nbsp; $M \to \infty$.
 
  
 
In der Versuchsdurchführung sollen Sie miteinander vergleichen:
 
* je zwei Binomialverteilungen mit unterschiedlichen Parameterwerten $I$ und $p$,
 
* je zwei Poissonverteilungen mit unterschiedlicher Rate $\lambda$,
 
*jeweils eine Binomial&ndash; und eine Poissonverteilung.
 
  
 
==Theoretischer Hintergrund==
 
==Theoretischer Hintergrund==
Zeile 49: Zeile 37:
 
Die Dämpfungsfunktion eines Koaxialkabels der Länge $l$ wird in [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> wie folgt angegeben:
 
Die Dämpfungsfunktion eines Koaxialkabels der Länge $l$ wird in [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> wie folgt angegeben:
 
:$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
 
:$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
*Beachten Sie bitte den Unterschied zwischen der Dämpfungsfunktion $a_{\rm K}(f)$ in $\rm dB$ und den &bdquo;alpha&rdquo;&ndash;Koeffizienten mit anderen Pseudo&ndash;Einheiten.
+
*Beachten Sie bitte den Unterschied zwischen der Dämpfungsfunktion $a_{\rm K}(f)$ in $\rm dB$ und den &bdquo;alpha&rdquo;&ndash;Koeffizienten $\alpha_{\rm K}(f)=a_{\rm K}(f)/l$ mit anderen Pseudo&ndash;Einheiten.
 
*Die Dämpfungsfunktion $a_{\rm K}(f)$ ist direkt proportional zur Kabellänge $l$. Man bezeichnet den Quotienten $a_{\rm K}(f)/l$ als &bdquo;Dämpfungsmaß&rdquo; oder &bdquo;kilometrische Dämpfung&rdquo;.  
 
*Die Dämpfungsfunktion $a_{\rm K}(f)$ ist direkt proportional zur Kabellänge $l$. Man bezeichnet den Quotienten $a_{\rm K}(f)/l$ als &bdquo;Dämpfungsmaß&rdquo; oder &bdquo;kilometrische Dämpfung&rdquo;.  
 
*Der frequenzunabhängige Anteil $α_0$ des Dämpfungsmaßes berücksichtigt die Ohmschen Verluste (&bdquo;Leitungsverluste&rdquo;).  
 
*Der frequenzunabhängige Anteil $α_0$ des Dämpfungsmaßes berücksichtigt die Ohmschen Verluste (&bdquo;Leitungsverluste&rdquo;).  
Zeile 94: Zeile 82:
 
Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrundegelegten Bandbreite $B$ abhängig und lauten:
 
Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrundegelegten Bandbreite $B$ abhängig und lauten:
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot  {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot  {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 +
 +
In der Gegenrichtung lautet die Umrechnungsvorschrift für den Exponenten:
 +
 +
:$$k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Hilfsgröße:  }A = \frac{2} {3} \cdot  \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$
 +
 +
Mit diesem Ergebnis lässt sich $k_2$ mit jeder der oberen Gleichungen angeben.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;
+
$\text{Beispiel 1:}$&nbsp; Im Folgenden verwenden wir die Normierunggröße $f_0 = 1 \ \rm MHz$.
 
*Für $k_3 = 1$ (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
 
*Für $k_3 = 1$ (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
 
*Für $k_3 = 0.5$  (entsprechend Skineffekt) erhält man folgende Koeffizienten: &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
 
*Für $k_3 = 0.5$  (entsprechend Skineffekt) erhält man folgende Koeffizienten: &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
 
*Für $k_3 < 0.5$ ergibt sich ein negatives $\alpha_1$. Umrechnung ist nur für $0.5 \le k_3 \le 1$ möglich.
 
*Für $k_3 < 0.5$ ergibt sich ein negatives $\alpha_1$. Umrechnung ist nur für $0.5 \le k_3 \le 1$ möglich.
*Für $0.5 \le k_3 \le$ ergeben sich Koeffizienten $\alpha_1 > 0$ und $\alpha_2 > 0$, die  auch von $B/f_0$ abhängen.}}
+
*Für $0.5 \le k_3 \le$ ergeben sich Koeffizienten $\alpha_1 > 0$ und $\alpha_2 > 0$, die  auch von $B/f_0$ abhängen.
 +
*Aus $\alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz$ folgt $k_3 = 0.63$ und $k_2 = 2.9 \ \rm dB/km$.}}
  
  
'''Umrechnung in Gegenrichtung'''
+
 +
 
  
'''Fehlt noch'''
 
  
 
===Zum Kanaleinfluss  auf die binäre Nyquistentzerrung=== 
 
===Zum Kanaleinfluss  auf die binäre Nyquistentzerrung=== 
[[Datei:Applet_Kabeldämpfung_1.png|right|frame|Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers|class=fit]]
+
[[Datei:Applet_Kabeldaempfung_1_version3.png|right|frame|Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers|class=fit]]
 
Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender &nbsp;&rArr;&nbsp; $H_{\rm S}(f)$,  Kanal &nbsp;&rArr;&nbsp; $H_{\rm K}(f)$ und Empfänger &nbsp; &rArr;&nbsp; $H_{\rm E}(f)$.
 
Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender &nbsp;&rArr;&nbsp; $H_{\rm S}(f)$,  Kanal &nbsp;&rArr;&nbsp; $H_{\rm K}(f)$ und Empfänger &nbsp; &rArr;&nbsp; $H_{\rm E}(f)$.
  
 
In diesem Applet  
 
In diesem Applet  
 
*vernachlässigen wir den Einfluss der Sendeimpulsform &nbsp; &rArr; &nbsp; $H_{\rm S}(f) \equiv 1$ &nbsp; &rArr; &nbsp; diracförmiges Sendesignal $s(t)$,
 
*vernachlässigen wir den Einfluss der Sendeimpulsform &nbsp; &rArr; &nbsp; $H_{\rm S}(f) \equiv 1$ &nbsp; &rArr; &nbsp; diracförmiges Sendesignal $s(t)$,
*setzen ein binäres Nyquistsystem mit Cosinus&ndash;Roll-off um die Nyquistfrequenz $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ voraus:   
+
*setzen ein binäres Nyquistsystem mit Cosinus&ndash;Roll-off um die Nyquistfrequenz $f_{\rm Nyq} = [f_1 + f_2]/2 =1/(2T)$ voraus:   
 
:$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$  
 
:$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$  
  
[[Datei:Applet_Kabeldämpfung_2.png|right|frame|Frequenzgang mit Cosinus–Roll-off|class=fit]]
+
[[Datei:Applet_Kabeldaempfung_2_version2.png|right|frame|Frequenzgang mit Cosinus–Roll-off|class=fit]]
  
Das bedeutet: Das [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|erste Nyquistkriterium]] wird erfüllt&nbsp; &rArr; &nbsp; <br>Zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig  &nbsp; ⇒  &nbsp; es gibt keine [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]] (englisch: ''Intersymbol Interference'', ISI).  
+
Das bedeutet: Das [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|erste Nyquistkriterium]] wird erfüllt&nbsp; &rArr; &nbsp; zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig  &nbsp; ⇒  &nbsp; es gibt keine [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]] (englisch: ''Intersymbol Interference'', ISI).  
  
 
Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:
 
Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:
  
 
:$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
 
:$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
 +
<br clear=all>
 +
Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal &nbsp; &rArr; &nbsp; $H_{\rm K}(f) \equiv 1$ und gleichzeitig dem Frequenzgang  $H_{\rm CRO}(f)$ mit Roll-off&ndash;Faktor $r = 1$ im Bereich $|f| \le 2 \cdot f_{\rm Nyq}$ (siehe Skizze):
  
Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal &nbsp; &rArr; &nbsp; $H_{\rm K}(f) \equiv 1$ und rechteckfömigem $H_{\rm CRO}(f) \equiv 1$ im Bereich $|f| \le f_{\rm Nyq}$:
+
:$$P_\text{N, min} =  P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1; \ \text{ Roll-off&ndash;Faktor } r=r_{\rm opt} =1 \big ] = N_0 \cdot 3/4 \cdot f_{\rm Nyq} .$$
 
 
:$$P_\text{N, min} =  P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .$$
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definitionen:}$&nbsp;   
 
$\text{Definitionen:}$&nbsp;   
*Als Gütekriterium für ein gegebenes System verwenden wir den '''Gesamt&ndash;Wirkungsgrad''':
+
*Als Gütekriterium für ein gegebenes System verwenden wir den '''Gesamt&ndash;Wirkungsgrad''':  
  
:$$\eta_\text{K+E} =  \frac{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]}{P_{\rm N} \ \big [\text{gegebenes System:  Kanal  }H_{\rm K}(f), \ \text{Roll-off-Faktor  }r \big ]} =\left [ \frac{1}{f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$
+
:$$\eta_\text{K+E} =  \frac{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{gegebenes System:  Kanal  }H_{\rm K}(f), \ \text{Roll-off-Faktor  }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$
  
Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: &nbsp; $10 \cdot \lg \ \eta_\text{K+R} \le 0 \ \rm dB$.
+
:Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: &nbsp; $10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB$.
  
 
*Durch Variation und Optimierung des Roll-off-Faktors $r$ erhält man den '''Kanal&ndash;Wirkungsgrad''':
 
*Durch Variation und Optimierung des Roll-off-Faktors $r$ erhält man den '''Kanal&ndash;Wirkungsgrad''':
Zeile 140: Zeile 135:
 
:$$\eta_\text{K} = \max_{0 \le r \le 1} \ \eta_\text{K+E} .$$}}
 
:$$\eta_\text{K} = \max_{0 \le r \le 1} \ \eta_\text{K+E} .$$}}
  
[[Datei:Applet_Kabeldämpfung_3.png|right|frame|Frequenzgang mit Cosinus–Roll-off|class=fit]]
 
  
'''Ab hier bis zum Beginn der Versuchsdurchführung ist alles Mist - eine Art Vorratsspeicher'''
+
[[Datei:Applet_Kabeldaempfung_3_version2.png|right|frame|Betrags&ndash;Quadrat&ndash;Frequenzgang $\left \vert H_{\rm E}(f)\right \vert ^2 $|class=fit]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;
 +
Die Grafik zeigt den Betrags&ndash;Quadrat&ndash;Frequenzgang $\left \vert H_{\rm E}(f)\right \vert ^2 $ mit $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f)  /  \left \vert H_{\rm K}(f)\right \vert$ für folgende Randbedingungen:
 +
*Dämpfungsfunktion des Kanals: &nbsp; $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,
 +
*Nyquist&ndash;Frequenz: : &nbsp; $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off-Faktor $r = 0.5$
 +
 
 +
 
 +
Daraus ergeben sich folgende Konsequenzen:
 +
*Im Bereich bis $f_{1} = 10 \ {\rm MHz}$ ist $H_{\rm CRO}(f)  = 1$ &nbsp; &rArr; &nbsp; $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (siehe gelbe Hinterlegung).
 +
*Erst im Bereich von $f_{1}$ bis $f_{2} = 30 \ {\rm MHz}$  ist die Flanke von $H_{\rm CRO}(f)$ wirksam und $\left \vert H_{\rm E}(f)\right \vert ^2$ wird immer kleiner.
 +
*Das Maximum von  $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ bei $f_{\rm max} \approx 11.5 \ {\rm MHz}$  ist mehr als doppelt so groß wie $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
 +
*Das Integral über  $\left \vert H_{\rm E}(f)\right \vert ^2$ ist ein Maß für die wirksame Rauschleistung. Diese ist im Beispiel um den Faktor $4.6$ größer als die minimale Rauschleistung (für $a_{\rm K}(f) = 0 \ {\rm dB}$ und $r=1$) &nbsp; &rArr; &nbsp; $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$}}
  
  
*Bei UMTS ist das Empfangsfilter $H_{\rm E}f) = H_{\rm S}(f)$ an den Sender angepasst (''Matched–Filter'') und der Gesamtfrequenzgang $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ erfüllt
+
==Versuchsdurchführung==
:$$ H(f) = H_{\rm CRO}(f)  =   \left\{ \begin{array}{c}    1 \\  0 \\  \cos^2 \left( \frac {\pi \cdot (|f| - f_1)}{2 \cdot (f_2 - f_1)} \right)\end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\  {\rm sonst }\hspace{0.05cm}.  \end{array}
 
\begin{array}{*{20}c} |f| \le f_1,  \\ |f| \ge f_2,\\  \\\end{array}$$
 
 
Die zugehörige Zeitfunktion lautet:
 
  
:$$h(t) = h_{\rm CRO}(t) ={\rm si}(\pi \cdot t/ T_{\rm C}) \cdot \frac{\cos(r \cdot \pi t/T_{\rm C})}{1- (2r \cdot  t/T_{\rm C})^2}. $$
+
*Wählen Sie zunächst die Nummer '''1''' ... '''11''' der zu bearbeitenden Aufgabe.&nbsp; Der Aufgabentext wird angezeigt.&nbsp; Die Parameterwerte sind angepasst.
+
*Die Nummer '''0''' entspricht einem &bdquo;Reset&rdquo;:&nbsp; Gleiche Einstellung wie beim Programmstart.&nbsp; Ausgabe eines &bdquo;Reset&ndash;Textes&rdquo; mit weiteren Erläuterungen zum Applet.
„CRO” steht hierbei für [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus–Rolloff]] (englisch: ''Raised Cosine''). Die Summe $f_1 + f_2$ ist gleich dem Kehrwert der Chipdauer $T_{\rm C} = 260 \ \rm ns$, also gleich $3.84 \ \rm MHz$. Der ''Rolloff–Faktor'' (wir bleiben bei der in $\rm LNTwww$ gewählten Bezeichnung $r$, im UMTS–Standard wird hierfür $\alpha$ verwendet)
+
*Die Applet&ndash;Sprache ist Englisch, auch Aufgabenstellung und Lösung im Gegensatz zu dieser Wiki&ndash;Beschreibungsdatei.&nbsp; Lösung nach Drücken von &bdquo;Hide solution&rdquo;.
  
:$$r =  \frac{f_2 - f_1}{f_2 + f_1} $$
 
 
wurde bei UMTS zu $r = 0.22$ festgelegt. Die beiden Eckfrequenzen sind somit
 
  
:$$f_1 = {1}/(2 T_{\rm C}) \cdot (1-r) \approx 1.5\,{\rm MHz}, \hspace{0.2cm}
+
In der folgenden Beschreibung bezeichnet '''Blue''' den linken Parametersatz (im Applet blau markiert) '''Red''' den rechten Parametersatz (im Applet rot markiert). Alle Angaben mit Hochkomma sind ohne Einheit, zum Beispiel steht ${\alpha_2}' =2$ &nbsp; für &nbsp; $\alpha_2 =2\, {\rm dB} / ({\rm km \cdot \sqrt{MHz} })$.
f_2 ={1}/(2 T_{\rm C}) \cdot (1+r) \approx 2.35\,{\rm MHz}.$$
 
 
Die erforderliche Bandbreite beträgt $B = 2 · f_2 = 4.7 \ \rm MHz$. Für jeden UMTS–Kanal steht somit mit $5 \ \rm MHz$ ausreichend Bandbreite zur Verfügung.
 
  
[[Datei:P_ID1547__Bei_T_4_3_S5b_v1.png|right|frame|Cosinus–Rolloff–Spektrum und Impulsantwort]]
 
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;  Die Grafik zeigt
+
'''(1)'''&nbsp; Setzen Sie '''Blue''' zunächst auf $\text{Coax (1.2/4.4 mm)}$ und anschließend auf $\text{Coax (2.6/9.5 mm)}$. Die Kabellänge sei jeweils $l_{\rm Blue}= 5\ \rm km$.  
*links das (normierte) Nyquistspektrum $H(f)$, und  
+
:Betrachten und Interpretieren Sie  $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$, insbesondere die Funktionswerte $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ und $\vert H_{\rm K}(f = 0) \vert$.}}
*rechts den zugehörigen Nyquistimpuls $h(t)$, dessen Nulldurchgänge im Abstand $T_{\rm C}$ äquidistant sind.  
 
<br clear=all>
 
$\text{Es ist zu beachten:}$
 
* Das Sendefilter $H_{\rm S}(f)$ und Matched–Filter $H_{\rm E}(f)$ sind jeweils  [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme|Wurzel–Cosinus–Rolloff–förmig]] (englisch: ''Root Raised Cosine''). Erst das Produkt $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ den Cosinus–Rolloff.
 
*Das bedeutet auch: Die Impulsantworten $h_{\rm S}(t)$ und $h_{\rm E}(t)$ erfüllen für sich allein die erste Nyquistbedingung nicht. Erst die Kombination aus beiden (im Zeitbereich die Faltung) führt zu den gewünschten äquidistanten Nulldurchgängen.}}
 
  
  
 +
$\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};$
  
$$a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski &amp; Wellhausen.}$$
+
$\hspace{1.15cm}\text{Coax (1.2/4.4 mm):    }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$
*Umrechnung der $k$-Parameter in die $a$-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite $B$ minimal sein soll:
 
$$a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.$$
 
*Kontrolle: $k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.$
 
*Der Gesamtfrequenzgang $H(f)$ ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor $r$, wobei stets $B=f_2$ und $r=\frac{f_2-f_1}{f_2+f_1}$ gelten soll.
 
*Ohne Berücksichtigung des Sendespektrums gilt $H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}$.
 
*Der angegebene Integralwert $=\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f$ ist ein Maß für die Rauschleistung des Systems, wenn der Kanal $H_K(f)$ durch das Empfangsfilter $H_E(f)$ in weiten Bereichen bis $f_1$ vollständig entzerrt  wird.
 
 
  
{{Beispiel}}
+
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm):    }a_{\rm K}(f =  f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$
  
*idealer Kanal ($a_0=a_1=a_2=0$ dB), $B=20$ MHz, $r=0$: Integralwert = $40$ MHz.
 
*schwach verzerrender Kanal ($a_2=5$ dB), $B=20$ MHz, $r=0.5$: Integralwert $\approx 505$ MHz.
 
  
{{end}}
+
{{BlaueBox|TEXT=
 +
'''(2)'''&nbsp; Für '''Blue''' gelte $\text{Coax (2.6/9.5 mm)}$ und $l_{\rm Blue} = 5\ \rm km$. Wie wird $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ von $\alpha_0$,  $\alpha_1$ und  $\alpha_2$ beeinflusst?}}
  
==Versuchsdurchführung==
 
  
[[Datei:Exercises_binomial_fertig.png|right]]
+
$\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{  (Skineffekt). Die Beitrag von } \alpha_0\text{ ist nur ca. 0.1 dB und der von }\alpha_1 \text{  nur ca. 0.6 dB.}$
*Wählen Sie zunächst die Nummer '''1''' ... '''6''' der zu bearbeitenden Aufgabe.
 
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
 
*Lösung nach Drücken von &bdquo;Hide solution&rdquo;.
 
*Aufgabenstellung und Lösung in Englisch.  
 
  
  
Die Nummer '''0''' entspricht einem &bdquo;Reset&rdquo;:
+
{{BlaueBox|TEXT=
*Gleiche Einstellung wie beim Programmstart.
+
'''(3)'''&nbsp; Setzen Sie zusätzlich '''Red''' auf $\text{Two&ndash;wired Line (0.5 mm)}$ und $l_{\rm Red} = 1\ \rm km$. Welcher Wert ergibt sich für $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?
*Ausgabe eines &bdquo;Reset&ndash;Textes&rdquo; mit weiteren Erläuterungen zum Applet.
+
:Bis zu welcher Länge $l_{\rm Red}$ ist die rote Dämpfungsfunktion vergleichbar mit der blauen?}}
  
  
In der folgenden Beschreibung bedeutet '''Blue''' den linken Parametersatz (im Applet blau markiert) '''Red''' den rechten Parametersatz (im Applet rot markiert). Alle Angaben mit Hochkomma sind ohne Einheit, zum Beispiel steht ${\alpha_2}' =2$ &nbsp; für &nbsp; $\alpha_2 =2\{\rm dB} / ({\rm km \cdot \sqrt{MHz} })$.
+
$\Rightarrow\hspace{0.3cm}\text{Für die rote Kurve gilt:    }a_{\rm K}(f f_\star) = 87.5 {\ \rm dB} \text{. Obige Bedingung wird erfüllt für }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f =  f_\star) = 61.3 {\ \rm dB}.$
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''&nbsp; Setzen Sie '''Blau''' zunächst auf $\text{Coax (2.6/9.5 mm)}$ und anschließend auf $\text{Coax (1.2/4.4 mm)}$. Die Kabellänge sei jeweils $l_{\rm Blau}= 3\ \rm km$.  
+
'''(4)'''&nbsp; Setzen Sie '''Red''' auf ${k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km$ und variieren Sie den Parameter $0.5 \le k_3 \le 1$.  
:Betrachten und Interpretieren Sie $a_{\rm K}(f)$ und  $\vert H_{\rm K}(f) \vert$, insbesondere die Funktionswerte $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ und $\vert H_{\rm K}(f = 0) \vert$.}}
+
:Was erkennt man anhand von $a_{\rm K}(f)$ und  $\vert H_{\rm K}(f) \vert$?  }}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Bei festem }k_2\text {wird }a_{\rm K}(f)\text{ mit größerem }k_3\text{ immer größer und  }\vert H_{\rm K}(f) \vert \text{ nimmt immer schneller ab. Mit }k_3 =1: a_{\rm K}(f)\text{ steigt linear.}$
 +
 
 +
$\hspace{1.15cm}\text{Mit }k_3 \to 0.5\text{ wird die Dämpfungsfunktion wie beim Koaxialkabel immer mehr durch den Skineffekt bestimmt.}$
  
  
$\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};$
+
{{BlaueBox|TEXT=
 +
'''(5)'''&nbsp; Setzen Sie '''Red''' auf $\text{Two&ndash;wired Line (0.5 mm)}$ und '''Blue''' auf $\text{Conversion of Red}$. Es gelte $l_{\rm Red} = l_{\rm Blue} = 1\ \rm km$.
 +
:Betrachten und interpretieren Sie die dargestellten Funktionsverläufe für $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$.}}
  
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm):    }a_{\rm K}(f =  f_\star) = 39.2\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9951;$
 
  
$\hspace{1.15cm}\text{Coax (1.2/4.4 mm):    }a_{\rm K}(f =  f_\star) = 86.0\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9768.$
+
$\Rightarrow\hspace{0.3cm}\text{Sehr gute Approximation der Zweidrahtleitung durch den blauen Parametersatz, sowohl bezüglich }a_{\rm K}(f) \text{ als auch }\vert H_{\rm K}(f) \vert.$
 +
 
 +
$\hspace{1.15cm}\text{Die errechneten Parameterwerte nach der Konvertierung sind }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.$
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Für '''Blau''' gelte $\text{Coax (1.2/4.4 mm)}$ und $l_{\rm Blau} = 3\ \rm km$. Wie wird $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ von $\alpha_0$, $\alpha_1$ und  $\alpha_2$ beeinflusst?}}
+
'''(6)'''&nbsp; Es gelten die Einstellungen von '''(5)'''. Welche Anteile der Dämpfungsfunktion gehen auf Ohmschen Verlust, Querverluste und Skineffekt zurück? }}
  
  
$\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{ (Skineffekt). Die Beiträge von } \alpha_0\text{ (Ohmsche Verluste) und }\alpha_1 \text{ (Querverluste) sind jeweils nur ca. 0.2 dB.}$
+
$\Rightarrow\hspace{0.3cm}\text{Lösung anhand '''Blue''':  }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0\text{:    }83.7\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0 \text{ und } \alpha_1\text{:    }60.9\ {\rm dB}.$
 +
 
 +
$\hspace{1.15cm}\text{Bei einer Zweidrahtleitung ist der Einfluss der Längs&ndash; und der Querverluste signifikant größer als bei einem Koaxialkabel.}$
 +
 
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)'''&nbsp; Setzen Sie zusätzlich '''Rot''' auf $\text{Two&ndash;wired Line (0.5 mm)}$ und $l_{\rm Rot} = 3\ \rm km$. Welcher Wert ergibt sich für $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?
+
'''(7)'''&nbsp; Setzen Sie '''Blue''' auf ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ und '''Red''' auf ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km$. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.5$.
:Bis zu welcher Länge $l_{\rm Rot}$ liegt die rote Dämfungsfunktion unter der blauen?}}
+
:Wie groß ist jeweils der Gesamt&ndash;Wirkungsgrad $\eta_\text{K+E}$ und der Kanal&ndash;Wirkungsgrad $\eta_\text{K}$?}}
 +
 
  
 +
$\Rightarrow\hspace{0.3cm}\text{Es gilt }10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideales System) und }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: nur Gleichsignaldämpfung)}$.
  
$\Rightarrow\hspace{0.3cm}\text{Für die rote Kurve gilt:    }a_{\rm K}(f = f_\star) = 262.5 {\ \rm dB} \text{. Obige Bedingung wird erfüllt für }l_{\rm Rot} = 0.95\ {\rm km} \ \Rightarrow \ a_{\rm K}(f f_\star) = ??? {\ \rm dB}.$
+
$\hspace{0.95cm}\text{Der bestmögliche Rolloff&ndash;Faktor ist }r = 1.\text{ Somit  ist }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) bzw. }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.$
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Setzen Sie '''Rot''' auf $\text{Two&ndash;wired Line (0.5 mm)}$ und '''Blau''' auf $\text{Conversion of Red}$. Es gelte $l_{\rm Rot} = l_{\rm Blau} = 1\ \rm km$.
+
'''(8)'''&nbsp; Es gilt die Einstellung von '''(7)'''. Mit welcher Sendeleistung  $P_{\rm red}$ in Bezug zu $P_{\rm blue}$ erreichen beide Systeme  gleiche Fehlerwahrscheinlichkeit? }}
:Betrachten und Interpretieren Sie die dargestellten Funktionsverläufe für $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$.}}
 
  
  
$\Rightarrow\hspace{0.3cm}\text{Sehr gute Approximation der Zweidrahtleitung durch den blauen Parametersatz, sowohl bezüglich }a_{\rm K}(f) \text{ als auch }\vert H_{\rm K}(f) \vert.$
+
$\Rightarrow\hspace{0.3cm}\text{Es muss gelten:  }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ &rArr; } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.$
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Es gelten die Einstellungen von '''(4)'''. Welche Anteile der Dämpfungsfunktion gehen auf Ohmschen Verlust, Querverluste und Skineffekt zurück? }}
+
'''(9)'''&nbsp; Setzen Sie '''Blue''' auf ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ und '''Red''' auf &bdquo;Inactive&rdquo;. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.7$.
 +
:Welchen Verlauf hat $\vert H_{\rm E}(f) \vert$? Wie groß ist sind Gesamt&ndash;Wirkungsgrad $\eta_\text{K+E}$ und Kanal&ndash;Wirkungsgrad $\eta_\text{K}$?}}
  
  
$\Rightarrow\hspace{0.3cm}\text{Lösung anhand '''Blau''':  }\alpha_0(f =  f_\star= 30 \ {\rm MHz}) = 4 \ {\rm dB/km}, \hspace{0.2cm}\alpha_1(f =  f_\star) = 12.8 \ {\rm dB/km}, \hspace{0.2cm}\alpha_2(f = f_\star) = 60.9 \ {\rm dB/km};$
+
$\Rightarrow\hspace{0.3cm}\text{Für } f < 7.5 {\ \rm MHz}\text{ ist } \vert H_{\rm E}(f) \vert  = \vert H_{\rm K}(f) \vert ^{-1}.\text{ Für }(f > 22.5 {\ \rm MHz)}\text{ ist: }\vert H_{\rm E}(f) \vert = 0.\text{ Dazwischen Einfluss der CRO&ndash;Flanke.}$
  
$\hspace{1.15cm}\text{Bei einer Zweidrahtleitung ist der Einfluss der Längs&ndash; und der Querverluste signifikant größer als bei einem Koaxialkabel.}$
+
$\hspace{0.95cm}\text{Der bestmögliche Rolloff&ndash;Faktor }r = 0.7\text{ ist bereits eingestellt: }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(6)'''&nbsp; Variieren Sie ausgehend von der bisherigen Einstellung den Parameter $0.5 \le k_3 \le 1$. Was erkennt man anhand von  $a_{\rm K}(f)$ und  $\vert H_{\rm K}(f) \vert$? }}
+
'''(10)'''&nbsp; Setzen Sie '''Blue''' auf ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ sowie '''Red''' auf &bdquo;Inactive&rdquo;. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.7$.  
 +
:Welchen Wert hat $\vert H_{\rm E}(f = 0) \vert$? Was ist der Maximalwert von $\vert H_{\rm E}(f) \vert$? Wie groß ist ist der Kanal&ndash;Wirkungsgrad $\eta_\text{K}$?}}
  
  
$\Rightarrow\hspace{0.3cm}\text{Bei festem }k_2\text {wird }a_{\rm K}(f)\text{ immer größer und es ergibt sich für }k_3 = 1\text{ ein linearer Verlauf; }\vert H_{\rm K}(f) \vert \text{ nimmt immer schneller ab;}$
+
$\Rightarrow\hspace{0.3cm}\text{Es gilt }\vert H_{\rm E}(f = 0) \vert =  \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ und das Maximum von } \vert H_{\rm E}(f) \vert \text{ ist ca. }37500\text{ für }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},$
  
$\hspace{1.15cm}\text{Mit }k_3 \to 0.5\text{ nähert sich die Dämpfungsfunktion der Zweidrahtleitung der eines Koaxialkabels immer mehr an.}$
+
$\hspace{0.95cm}\text{weil das Intergral über }\vert H_{\rm E}(f) \vert^2\text{sehr groß ist. Nach Optimierung von }r=0.17 \text{ erhält man }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)'''&nbsp; Setzen Sie '''Blue''' auf ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ und '''Red''' auf ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} }' = 1$. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.5$.
+
'''(11)'''&nbsp; Es gelten die Einstellungen von '''(10) und $r= 0.17$. Variieren Sie die Kabellänge bis $l_{\rm blue} =10 \ \rm km$.
:Wie groß ist jeweils der Gesamt&ndash;Wirkungsgrad $\eta_\text{K+E}$ und der Kanal&ndash;Wirkungsgrad $\eta_\text{K}$?}}
+
:Wie ändert sich der Maximalwert von $\vert H_{\rm E}(f) \vert$, der Kanal&ndash;Wirkungsgrad $\eta_\text{K}$ und der optimale Roll&ndash;off&ndash;Faktor $r_{\rm opt}$?}}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Der  Maximalwert von } \vert H_{\rm E}(f) \vert \text{wird immer größer und }10 \cdot \lg \ \eta_\text{K}\text{ immer kleiner.}$
 +
 
 +
$\hspace{0.95cm}\text{Bei 10 km Länge ist  } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ und } r_{\rm opt}=0.14\text{. Für }f_\star \approx 14.5\ {\rm MHz} \text{ ist } \vert H_{\rm E}(f = f_\star) = 352000 \cdot  \approx \vert H_{\rm E}(f =0)\vert$.
 +
 
 +
 
 +
 
 +
==Zur Handhabung des Applets==
 +
[[Datei:Applet_Kabeldaempfung_5_version2.png|left|600px]]
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Vorauswahl für blauen Parametersatz
  
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Eingabe der $\alpha$&ndash;Parameter per Slider
  
$\Rightarrow\hspace{0.3cm}\text{Es gilt }10 \cdot \lg \ \eta_\text{K+E} = -1.2\ \ {\rm dB}\text{ (Blue) und }10 \cdot \lg \ \eta_\text{K+E} = -3.2\ \ {\rm dB}\text{ (Red). Der bestmögliche Rolloff&ndash;Fakor ist hier }r=0$.
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Vorauswahl für roten Parametersatz
  
$\hspace{0.95cm}\text{Der Kanal&ndash;Wirkungsgrad  ist somit }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue: ideales System) bzw. }10 \cdot \lg \ \eta_\text{K} = -2\  {\rm dB}\text{ (Red: Nur Gleichsignaldämpfung)}.$
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Eingabe der $k$&ndash;Parameter per Slider
  
== Lesezeichen==
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Eingabe der Parameter $f_{\rm Nyq}$ und $r$
  
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Auswahl für die graphische Darstellung
  
{{BlaueBox|TEXT=
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellung $a_\text{K}(f)$, $|H_\text{K}(f)|$, $|H_\text{E}(f)|$, ...
'''(8)'''&nbsp; Es gilt die Einstellung von '''(7)'''. Mit welcher Sendeleistung  $P_{\rm red}$ in Bezug zu $P_{\rm blue}$ erreichen beide Systeme  gleiche Fehlerwahrscheinlichkeit?  }}
 
  
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Skalierungsfaktor $H_0$ für $|H_\text{E}(f)|$, $|H_\text{E}(f)|^2$
  
$\Rightarrow\hspace{0.3cm}\text{Es muss gelten:  }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ &rArr; } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.$
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Auswahl der Frequenz $f_\star$ für Numerikausgabe
  
 +
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numerikausgabe für blauen Parametersatz
  
{{BlaueBox|TEXT=
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Numerikausgabe für roten Parametersatz
'''(9)'''&nbsp; Setzen Sie '''Blue''' auf ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ und '''Red''' auf ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} }' = 1$. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.5$.
 
:Wie groß ist jeweils der Gesamt&ndash;Wirkungsgrad $\eta_\text{K+E}$ und der Kanal&ndash;Wirkungsgrad $\eta_\text{K}$?}}
 
  
 +
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Ausgabe Systemwirkungsgrad $\eta_\text{K+E}$ in dB
  
 +
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Store & Recall von Einstellungen
  
 +
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung 
  
 +
&nbsp; &nbsp; '''(O)''' &nbsp; &nbsp; Variation der grafischen Darstellung:$\hspace{0.5cm}$&bdquo;$+$&rdquo; (Vergrößern),
  
 +
$\hspace{0.5cm}$ &bdquo;$-$&rdquo; (Verkleinern)
  
 +
$\hspace{0.5cm}$ &bdquo;$\rm o$&rdquo; (Zurücksetzen)
  
 +
$\hspace{0.5cm}$ &bdquo;$\leftarrow$&rdquo; (Verschieben nach links),  usw.
  
 +
'''Andere Möglichkeiten zur Variation der grafischen Darstellung''':
 +
*Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
 +
*Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
  
==Quellenverzeichnis==
+
==Über die Autoren==
 +
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 +
*Die erste Version wurde 2009 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Sebastian_Seitz_.28Diplomarbeit_LB_2009.29|Sebastian Seitz]] im Rahmen seiner Diplomarbeit erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_Übertragungstechnik#Dr.-Ing._Bernhard_G.C3.B6bel_.28bei_L.C3.9CT_von_2004-2010.29|Bernhard Göbel]]).
 +
*2018 wurde das Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]]  (Bachelorarbeit, Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]] )  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
  
{{LntAppletLink|kabeldaempfung}}
+
{{LntAppletLink|attenuationCopperCables_en}}

Aktuelle Version vom 26. Oktober 2023, 10:46 Uhr

Applet in neuem Tab öffnen         English Applet with English WIKI description

Programmbeschreibung


Dieses Applet berechnet die Dämpfungsfunktion $a_{\rm K}(f)$ von leitungsgebundenen Übertragungsmedien (jeweils mit der Kabellänge $l$):

  • Für Koaxialkabel verwendet man meist die Gleichung $a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l$.
  • Dagegen werden Zweidrahtleitungen oft in der Form $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$ dargestellt.
  • Realisiert ist auch die Umrechnung der $(k_1, \ k_2, \ k_3)$–Darstellung in die $(\alpha_0, \ \alpha_1, \ \alpha_2)$–Form für $B = 30 \ \rm MHz$ und umgekehrt.


Außer der Dämpfungsfunktion $a_{\rm K}(f)$ können graphisch dargestellt werden:

  • der zugehörige Betragsfrequenzgang $\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20},$
  • der Entzerrer–Frequenzgang $\left | H_{\rm E}(f)\right | = \left | H_{\rm CRO}(f) / H_{\rm K}(f)\right | $, der zu einem Nyquist–Gesamtfrequenzgang $ H_{\rm CRO}(f) $ führt,
  • der entsprechende Betrags–Quadrat–Frequenzgang $\left | H_{\rm E}(f)\right |^2 $.


Das Integral über $\left | H_{\rm E}(f)\right |^2 $ ist ein Maß für die Rauschüberhöhung des ausgewählten Nyquist–Gesamtfrequenzgangs und damit auch für zu erwartende Fehlerwahrscheinlichkeit. Aus dieser wird der Gesamt–Wirkungsgrad  $\eta_\text{K+E}$ für Kanal und Entzerrer berechnet, der im Applet in $\rm dB$ ausgegeben wird.


Durch Optimierung des Roll-off–Faktors $r$ des Cosinus–Roll-off–Frequenzgangs $ H_{\rm CRO}(f) $ kommt man zum Kanal–Wirkungsgrad  $ \eta_\text{K}$. Dieser gibt also die Verschlechterung des Gesamtsystems aufgrund der Dämpfungsfunktion $a_{\rm K}(f)$ des Übertragungsmediums an.



Theoretischer Hintergrund


Betragsfrequenzgang und Dämpfungsfunktion

Es besteht folgender Zusammenhang zwischen dem Betragsfrequenzgang und der Dämpfungsfunktion:

$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
  • Der Index „K” soll deutlich machen, dass das betrachtete LZI–System ein Kabel ist.
  • Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K}(f)$ in $\rm dB$ (Dezibel) einzusetzen.
  • Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K, Np}(f)$ in $\rm Np$ (Neper) einzusetzen.
  • Es gelten folgende Umrechnungen $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ bzw. $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
  • In diesem Applet werden ausschließlich die dB–Werte verwendet.

Dämpfungsfunktion eines Koaxialkabels

Die Dämpfungsfunktion eines Koaxialkabels der Länge $l$ wird in [Wel77][1] wie folgt angegeben:

$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
  • Beachten Sie bitte den Unterschied zwischen der Dämpfungsfunktion $a_{\rm K}(f)$ in $\rm dB$ und den „alpha”–Koeffizienten $\alpha_{\rm K}(f)=a_{\rm K}(f)/l$ mit anderen Pseudo–Einheiten.
  • Die Dämpfungsfunktion $a_{\rm K}(f)$ ist direkt proportional zur Kabellänge $l$. Man bezeichnet den Quotienten $a_{\rm K}(f)/l$ als „Dämpfungsmaß” oder „kilometrische Dämpfung”.
  • Der frequenzunabhängige Anteil $α_0$ des Dämpfungsmaßes berücksichtigt die Ohmschen Verluste („Leitungsverluste”).
  • Der frequenzproportionale Anteil $α_1 · f$ des Dämpfungsmaßes ist auf die Ableitungsverluste („Querverluste”) zurückzuführen.
  • Der dominante Anteil $α_2$ geht auf den Skineffekt zurück, der bewirkt, dass bei höherfrequentem Wechselstrom die Stromdichte im Leiterinneren niedriger ist als an der Oberfläche. Dadurch steigt der Widerstandsbelag einer elektrischen Leitung mit der Wurzel aus der Frequenz an.


Die Konstanten für das Normalkoaxialkabel mit 2.6 mm Innendurchmesser und 9.5 mm Außendurchmesser   ⇒  kurz Coax (2.6/9.5 mm) lauten:

$$\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$

Entsprechend gilt für das Kleinkoaxialkabel   ⇒  kurz Coax (1.2/4.4 mm):

$$\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$


Diese Werte können aus den geometrischen Abmessungen der Kabel berechnet werden und wurden durch Messungen am Fernmeldetechnischen Zentralamt in Darmstadt bestätigt – siehe [Wel77][1] . Sie gelten für eine Temperatur von 20°C (293 K) und Frequenzen größer als 200 kHz.


Dämpfungsfunktion einer Zweidrahtleitung

Die Dämpfungsfunktion einer Zweidrahtleitung (englisch: Two–wired Line) der Länge $l$ wird in [PW95][2] wie folgt angegeben:

$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$

Dieser Funktionsverlauf ist nicht direkt interpretierbar, sondern es handelt sich um eine phänomenologische Beschreibungsform.

Ebenfalls in [PW95][2]findet man die aus Messergebnissen ermittelten Konstanten für verschiedene Leitungsdurchmesser $d$:

  • $d = 0.35 \ {\rm mm}$:   $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
  • $d = 0.40 \ {\rm mm}$:   $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
  • $d = 0.50 \ {\rm mm}$:   $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$,
  • $d = 0.60 \ {\rm mm}$:   $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$.


Man erkennt aus diesen Zahlenwerten:

  • Dämpfungsmaß $α(f)$ und Dämpfungsfunktion $a_{\rm K}(f) = α(f) · l$ hängen signifikant vom Leitungsdurchmesser ab. Die seit 1994 verlegten Kabel mit $d = 0.35$ mm und $d = 0.5$ mm haben etwa ein um $10\%$ größeres Dämpfungsmaß als die älteren Leitungen mit $d = 0.4$bzw. $0.6$ mm.
  • Dieser mit den Herstellungs– und Verlegungskosten begründete kleinere Durchmesser vermindert allerdings die Reichweite $l_{\rm max}$ der auf diesen Leitungen eingesetzten Übertragungssysteme signifikant, so dass im schlimmsten Fall teuere Zwischenregeneratoren eingesetzt werden müssen.
  • Die heute üblichen Übertragungsverfahren für Kupferleitungen belegen allerdings nur ein relativ schmales Frequenzband, zum Beispiel sind dies bei ISDN $120\ \rm kHz$ und bei DSL ca. $1100 \ \rm kHz$. Für $f = 1 \ \rm MHz$ beträgt das Dämpfungsmaß für ein 0.4 mm–Kabel etwa $20 \ \rm dB/km$, so dass selbst bei einer Kabellänge von $l = 4 \ \rm km$ der Dämpfungswert nicht über $80 \ \rm dB$ liegt.


Umrechnung zwischen $k$– und $\alpha$– Parametern

Es besteht die Möglichkeit, die $k$–Parameter des Dämpfungsmaßes   ⇒   $\alpha_{\rm I} (f)$ in entsprechende $\alpha$–Parameter   ⇒   $\alpha_{\rm II} (f)$ umzurechnen:

$$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.$$

Als Kriterium dieser Umrechnung gehen wir davon aus, dass die quadratische Abweichung dieser beiden Funktionen innerhalb einer Bandbreite $B$ minimal ist:

$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$

Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrundegelegten Bandbreite $B$ abhängig und lauten:

$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$

In der Gegenrichtung lautet die Umrechnungsvorschrift für den Exponenten:

$$k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Hilfsgröße: }A = \frac{2} {3} \cdot \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$

Mit diesem Ergebnis lässt sich $k_2$ mit jeder der oberen Gleichungen angeben.

$\text{Beispiel 1:}$  Im Folgenden verwenden wir die Normierunggröße $f_0 = 1 \ \rm MHz$.

  • Für $k_3 = 1$ (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
  • Für $k_3 = 0.5$ (entsprechend Skineffekt) erhält man folgende Koeffizienten:   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
  • Für $k_3 < 0.5$ ergibt sich ein negatives $\alpha_1$. Umrechnung ist nur für $0.5 \le k_3 \le 1$ möglich.
  • Für $0.5 \le k_3 \le$ ergeben sich Koeffizienten $\alpha_1 > 0$ und $\alpha_2 > 0$, die auch von $B/f_0$ abhängen.
  • Aus $\alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz$ folgt $k_3 = 0.63$ und $k_2 = 2.9 \ \rm dB/km$.




Zum Kanaleinfluss auf die binäre Nyquistentzerrung

Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers

Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender  ⇒  $H_{\rm S}(f)$, Kanal  ⇒  $H_{\rm K}(f)$ und Empfänger   ⇒  $H_{\rm E}(f)$.

In diesem Applet

  • vernachlässigen wir den Einfluss der Sendeimpulsform   ⇒   $H_{\rm S}(f) \equiv 1$   ⇒   diracförmiges Sendesignal $s(t)$,
  • setzen ein binäres Nyquistsystem mit Cosinus–Roll-off um die Nyquistfrequenz $f_{\rm Nyq} = [f_1 + f_2]/2 =1/(2T)$ voraus:
$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$
Frequenzgang mit Cosinus–Roll-off

Das bedeutet: Das erste Nyquistkriterium wird erfüllt  ⇒   zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig   ⇒   es gibt keine Impulsinterferenzen (englisch: Intersymbol Interference, ISI).

Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:

$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$


Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal   ⇒   $H_{\rm K}(f) \equiv 1$ und gleichzeitig dem Frequenzgang $H_{\rm CRO}(f)$ mit Roll-off–Faktor $r = 1$ im Bereich $|f| \le 2 \cdot f_{\rm Nyq}$ (siehe Skizze):

$$P_\text{N, min} = P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1; \ \text{ Roll-off–Faktor } r=r_{\rm opt} =1 \big ] = N_0 \cdot 3/4 \cdot f_{\rm Nyq} .$$

$\text{Definitionen:}$ 

  • Als Gütekriterium für ein gegebenes System verwenden wir den Gesamt–Wirkungsgrad:
$$\eta_\text{K+E} = \frac{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{gegebenes System: Kanal }H_{\rm K}(f), \ \text{Roll-off-Faktor }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$
Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben:   $10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB$.
  • Durch Variation und Optimierung des Roll-off-Faktors $r$ erhält man den Kanal–Wirkungsgrad:
$$\eta_\text{K} = \max_{0 \le r \le 1} \ \eta_\text{K+E} .$$


Betrags–Quadrat–Frequenzgang $\left \vert H_{\rm E}(f)\right \vert ^2 $

$\text{Beispiel 2:}$  Die Grafik zeigt den Betrags–Quadrat–Frequenzgang $\left \vert H_{\rm E}(f)\right \vert ^2 $ mit $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f) / \left \vert H_{\rm K}(f)\right \vert$ für folgende Randbedingungen:

  • Dämpfungsfunktion des Kanals:   $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,
  • Nyquist–Frequenz: :   $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off-Faktor $r = 0.5$


Daraus ergeben sich folgende Konsequenzen:

  • Im Bereich bis $f_{1} = 10 \ {\rm MHz}$ ist $H_{\rm CRO}(f) = 1$   ⇒   $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (siehe gelbe Hinterlegung).
  • Erst im Bereich von $f_{1}$ bis $f_{2} = 30 \ {\rm MHz}$ ist die Flanke von $H_{\rm CRO}(f)$ wirksam und $\left \vert H_{\rm E}(f)\right \vert ^2$ wird immer kleiner.
  • Das Maximum von $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ bei $f_{\rm max} \approx 11.5 \ {\rm MHz}$ ist mehr als doppelt so groß wie $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
  • Das Integral über $\left \vert H_{\rm E}(f)\right \vert ^2$ ist ein Maß für die wirksame Rauschleistung. Diese ist im Beispiel um den Faktor $4.6$ größer als die minimale Rauschleistung (für $a_{\rm K}(f) = 0 \ {\rm dB}$ und $r=1$)   ⇒   $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$


Versuchsdurchführung

  • Wählen Sie zunächst die Nummer 1 ... 11 der zu bearbeitenden Aufgabe.  Der Aufgabentext wird angezeigt.  Die Parameterwerte sind angepasst.
  • Die Nummer 0 entspricht einem „Reset”:  Gleiche Einstellung wie beim Programmstart.  Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.
  • Die Applet–Sprache ist Englisch, auch Aufgabenstellung und Lösung im Gegensatz zu dieser Wiki–Beschreibungsdatei.  Lösung nach Drücken von „Hide solution”.


In der folgenden Beschreibung bezeichnet Blue den linken Parametersatz (im Applet blau markiert) Red den rechten Parametersatz (im Applet rot markiert). Alle Angaben mit Hochkomma sind ohne Einheit, zum Beispiel steht ${\alpha_2}' =2$   für   $\alpha_2 =2\, {\rm dB} / ({\rm km \cdot \sqrt{MHz} })$.

(1)  Setzen Sie Blue zunächst auf $\text{Coax (1.2/4.4 mm)}$ und anschließend auf $\text{Coax (2.6/9.5 mm)}$. Die Kabellänge sei jeweils $l_{\rm Blue}= 5\ \rm km$.

Betrachten und Interpretieren Sie $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$, insbesondere die Funktionswerte $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ und $\vert H_{\rm K}(f = 0) \vert$.


$\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};$

$\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$

$\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$


(2)  Für Blue gelte $\text{Coax (2.6/9.5 mm)}$ und $l_{\rm Blue} = 5\ \rm km$. Wie wird $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ von $\alpha_0$, $\alpha_1$ und $\alpha_2$ beeinflusst?


$\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{ (Skineffekt). Die Beitrag von } \alpha_0\text{ ist nur ca. 0.1 dB und der von }\alpha_1 \text{ nur ca. 0.6 dB.}$


(3)  Setzen Sie zusätzlich Red auf $\text{Two–wired Line (0.5 mm)}$ und $l_{\rm Red} = 1\ \rm km$. Welcher Wert ergibt sich für $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?

Bis zu welcher Länge $l_{\rm Red}$ ist die rote Dämpfungsfunktion vergleichbar mit der blauen?


$\Rightarrow\hspace{0.3cm}\text{Für die rote Kurve gilt: }a_{\rm K}(f = f_\star) = 87.5 {\ \rm dB} \text{. Obige Bedingung wird erfüllt für }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = 61.3 {\ \rm dB}.$


(4)  Setzen Sie Red auf ${k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km$ und variieren Sie den Parameter $0.5 \le k_3 \le 1$.

Was erkennt man anhand von $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$?


$\Rightarrow\hspace{0.3cm}\text{Bei festem }k_2\text {wird }a_{\rm K}(f)\text{ mit größerem }k_3\text{ immer größer und }\vert H_{\rm K}(f) \vert \text{ nimmt immer schneller ab. Mit }k_3 =1: a_{\rm K}(f)\text{ steigt linear.}$

$\hspace{1.15cm}\text{Mit }k_3 \to 0.5\text{ wird die Dämpfungsfunktion wie beim Koaxialkabel immer mehr durch den Skineffekt bestimmt.}$


(5)  Setzen Sie Red auf $\text{Two–wired Line (0.5 mm)}$ und Blue auf $\text{Conversion of Red}$. Es gelte $l_{\rm Red} = l_{\rm Blue} = 1\ \rm km$.

Betrachten und interpretieren Sie die dargestellten Funktionsverläufe für $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$.


$\Rightarrow\hspace{0.3cm}\text{Sehr gute Approximation der Zweidrahtleitung durch den blauen Parametersatz, sowohl bezüglich }a_{\rm K}(f) \text{ als auch }\vert H_{\rm K}(f) \vert.$

$\hspace{1.15cm}\text{Die errechneten Parameterwerte nach der Konvertierung sind }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.$


(6)  Es gelten die Einstellungen von (5). Welche Anteile der Dämpfungsfunktion gehen auf Ohmschen Verlust, Querverluste und Skineffekt zurück?


$\Rightarrow\hspace{0.3cm}\text{Lösung anhand '''Blue''': }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0\text{: }83.7\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0 \text{ und } \alpha_1\text{: }60.9\ {\rm dB}.$

$\hspace{1.15cm}\text{Bei einer Zweidrahtleitung ist der Einfluss der Längs– und der Querverluste signifikant größer als bei einem Koaxialkabel.}$


(7)  Setzen Sie Blue auf ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ und Red auf ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km$. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.5$.

Wie groß ist jeweils der Gesamt–Wirkungsgrad $\eta_\text{K+E}$ und der Kanal–Wirkungsgrad $\eta_\text{K}$?


$\Rightarrow\hspace{0.3cm}\text{Es gilt }10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideales System) und }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: nur Gleichsignaldämpfung)}$.

$\hspace{0.95cm}\text{Der bestmögliche Rolloff–Faktor ist }r = 1.\text{ Somit ist }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) bzw. }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.$


(8)  Es gilt die Einstellung von (7). Mit welcher Sendeleistung $P_{\rm red}$ in Bezug zu $P_{\rm blue}$ erreichen beide Systeme gleiche Fehlerwahrscheinlichkeit?


$\Rightarrow\hspace{0.3cm}\text{Es muss gelten: }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ ⇒ } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.$


(9)  Setzen Sie Blue auf ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ und Red auf „Inactive”. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.7$.

Welchen Verlauf hat $\vert H_{\rm E}(f) \vert$? Wie groß ist sind Gesamt–Wirkungsgrad $\eta_\text{K+E}$ und Kanal–Wirkungsgrad $\eta_\text{K}$?


$\Rightarrow\hspace{0.3cm}\text{Für } f < 7.5 {\ \rm MHz}\text{ ist } \vert H_{\rm E}(f) \vert = \vert H_{\rm K}(f) \vert ^{-1}.\text{ Für }(f > 22.5 {\ \rm MHz)}\text{ ist: }\vert H_{\rm E}(f) \vert = 0.\text{ Dazwischen Einfluss der CRO–Flanke.}$

$\hspace{0.95cm}\text{Der bestmögliche Rolloff–Faktor }r = 0.7\text{ ist bereits eingestellt: }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$


(10)  Setzen Sie Blue auf ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ sowie Red auf „Inactive”. Zusätzlich gelte ${f_{\rm Nyq} }' =15$ und $r= 0.7$.

Welchen Wert hat $\vert H_{\rm E}(f = 0) \vert$? Was ist der Maximalwert von $\vert H_{\rm E}(f) \vert$? Wie groß ist ist der Kanal–Wirkungsgrad $\eta_\text{K}$?


$\Rightarrow\hspace{0.3cm}\text{Es gilt }\vert H_{\rm E}(f = 0) \vert = \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ und das Maximum von } \vert H_{\rm E}(f) \vert \text{ ist ca. }37500\text{ für }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},$

$\hspace{0.95cm}\text{weil das Intergral über }\vert H_{\rm E}(f) \vert^2\text{sehr groß ist. Nach Optimierung von }r=0.17 \text{ erhält man }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$


(11)  Es gelten die Einstellungen von (10) und $r= 0.17$. Variieren Sie die Kabellänge bis $l_{\rm blue} =10 \ \rm km$.

Wie ändert sich der Maximalwert von $\vert H_{\rm E}(f) \vert$, der Kanal–Wirkungsgrad $\eta_\text{K}$ und der optimale Roll–off–Faktor $r_{\rm opt}$?


$\Rightarrow\hspace{0.3cm}\text{Der Maximalwert von } \vert H_{\rm E}(f) \vert \text{wird immer größer und }10 \cdot \lg \ \eta_\text{K}\text{ immer kleiner.}$

$\hspace{0.95cm}\text{Bei 10 km Länge ist } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ und } r_{\rm opt}=0.14\text{. Für }f_\star \approx 14.5\ {\rm MHz} \text{ ist } \vert H_{\rm E}(f = f_\star) = 352000 \cdot \approx \vert H_{\rm E}(f =0)\vert$.


Zur Handhabung des Applets

Applet Kabeldaempfung 5 version2.png

    (A)     Vorauswahl für blauen Parametersatz

    (B)     Eingabe der $\alpha$–Parameter per Slider

    (C)     Vorauswahl für roten Parametersatz

    (D)     Eingabe der $k$–Parameter per Slider

    (E)     Eingabe der Parameter $f_{\rm Nyq}$ und $r$

    (F)     Auswahl für die graphische Darstellung

    (G)     Darstellung $a_\text{K}(f)$, $|H_\text{K}(f)|$, $|H_\text{E}(f)|$, ...

    (H)     Skalierungsfaktor $H_0$ für $|H_\text{E}(f)|$, $|H_\text{E}(f)|^2$

    (I)     Auswahl der Frequenz $f_\star$ für Numerikausgabe

    (J)     Numerikausgabe für blauen Parametersatz

    (K)     Numerikausgabe für roten Parametersatz

    (L)     Ausgabe Systemwirkungsgrad $\eta_\text{K+E}$ in dB

    (M)     Store & Recall von Einstellungen

    (N)     Bereich für die Versuchsdurchführung

    (O)     Variation der grafischen Darstellung:$\hspace{0.5cm}$„$+$” (Vergrößern), $\hspace{0.5cm}$ „$-$” (Verkleinern) $\hspace{0.5cm}$ „$\rm o$” (Zurücksetzen) $\hspace{0.5cm}$ „$\leftarrow$” (Verschieben nach links), usw.

Andere Möglichkeiten zur Variation der grafischen Darstellung:

  • Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
  • Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.

Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

Applet in neuem Tab öffnen

  1. 1,0 1,1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
  2. 2,0 2,1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.