Applets:WDF und VTF bei Gaußschen 2D Zufallsgrößen (Applet): Unterschied zwischen den Versionen
Höfler (Diskussion | Beiträge) K (Textersetzung - „Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29“ durch „Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29“) |
|||
(23 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | {{ | + | {{LntAppletLinkDeEn|gauss|gauss_en}} |
+ | |||
==Programmbeschreibung== | ==Programmbeschreibung== | ||
<br> | <br> | ||
− | + | Das Applet verdeutlicht die Eigenschaften zweidimensionaler Gaußscher Zufallsgrößen $XY\hspace{-0.1cm}$, gekennzeichnet durch die Standardabweichungen (Streuungen) $\sigma_X$ und $\sigma_Y$ ihrer beiden Komponenten sowie den Korrelationskoeffizienten $\rho_{XY}$ zwischen diesen. Die Komponenten werden als mittelwertfrei vorausgesetzt: $m_X = m_Y = 0$. | |
− | |||
− | |||
− | |||
− | :$$ | ||
− | + | Das Applet zeigt | |
− | + | * die zweidimensionale Wahrscheinlichkeitsdichtefunktion ⇒ $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ $f_{XY}(x, \hspace{0.1cm}y)$ in dreidimensionaler Darstellung sowie in Form von Höhenlinien, | |
− | * die | + | * die zugehörige Randwahrscheinlichkeitsdichtefunktion ⇒ $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ $f_{X}(x)$ der Zufallsgröße $X$ als blaue Kurve; ebenso $f_{Y}(y)$ für die zweite Zufallsgröße, |
− | *die | + | * die zweidimensionale Verteilungsfunktion ⇒ $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ $F_{XY}(x, \hspace{0.1cm}y)$ als 3D-Plot, |
− | + | * die Verteilungsfunktion ⇒ $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ $F_{X}(x)$ der Zufallsgröße $X$; ebenso $F_{Y}(y)$ als rote Kurve. | |
− | |||
− | |||
− | |||
− | |||
− | |||
+ | Das Applet verwendet das Framework [https://en.wikipedia.org/wiki/Plotly Plot.ly] | ||
+ | |||
==Theoretischer Hintergrund== | ==Theoretischer Hintergrund== | ||
<br> | <br> | ||
Zeile 29: | Zeile 23: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
$\text{Definition:}$ | $\text{Definition:}$ | ||
− | Die '''Verbundwahrscheinlichkeitsdichtefunktion''' ist die Wahrscheinlichkeitsdichtefunktion (WDF, englisch: ''Probability Density Function'', kurz: PDF) der zweidimensionalen Zufallsgröße $XY$ an der Stelle $(x, y)$ | + | Die '''Verbundwahrscheinlichkeitsdichtefunktion''' ist die Wahrscheinlichkeitsdichtefunktion (WDF, englisch: ''Probability Density Function'', kurz: PDF) der zweidimensionalen Zufallsgröße $XY$ an der Stelle $(x, y)$: |
:$$f_{XY}(x, \hspace{0.1cm}y) = \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0} }\right.}\frac{ {\rm Pr}\big [ (x - {\rm \Delta} x/{\rm 2} \le X \le x + {\rm \Delta} x/{\rm 2}) \cap (y - {\rm \Delta} y/{\rm 2} \le Y \le y +{\rm \Delta}y/{\rm 2}) \big] }{ {\rm \Delta} \ x\cdot{\rm \Delta} y}.$$ | :$$f_{XY}(x, \hspace{0.1cm}y) = \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0} }\right.}\frac{ {\rm Pr}\big [ (x - {\rm \Delta} x/{\rm 2} \le X \le x + {\rm \Delta} x/{\rm 2}) \cap (y - {\rm \Delta} y/{\rm 2} \le Y \le y +{\rm \Delta}y/{\rm 2}) \big] }{ {\rm \Delta} \ x\cdot{\rm \Delta} y}.$$ | ||
− | *Die Verbundwahrscheinlichkeitsdichtefunktion oder kurz $\ | + | *Die Verbundwahrscheinlichkeitsdichtefunktion oder kurz $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ ist eine Erweiterung der eindimensionalen WDF. |
*$∩$ kennzeichnet die logische UND-Verknüpfung. | *$∩$ kennzeichnet die logische UND-Verknüpfung. | ||
*$X$ und $Y$ bezeichnen die beiden Zufallsgrößen, und $x \in X$ sowie $y \in Y$ geben Realisierungen hiervon an. | *$X$ und $Y$ bezeichnen die beiden Zufallsgrößen, und $x \in X$ sowie $y \in Y$ geben Realisierungen hiervon an. | ||
Zeile 45: | Zeile 39: | ||
*liefern lediglich statistische Aussagen über die Einzelkomponenten $X$ bzw. $Y$, | *liefern lediglich statistische Aussagen über die Einzelkomponenten $X$ bzw. $Y$, | ||
*nicht jedoch über die Bindungen zwischen diesen. | *nicht jedoch über die Bindungen zwischen diesen. | ||
+ | |||
+ | |||
+ | Als quantitatives Maß für die linearen statistischen Bindungen ⇒ '''Korrelation''' verwendet man | ||
+ | * die '''Kovarianz''' $\mu_{XY}$, die bei mittelwertfreien Komponenten gleich dem gemeinsamen linearen Moment erster Ordnung ist: | ||
+ | :$$\mu_{XY} = {\rm E}\big[X \cdot Y\big] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} X \cdot Y \cdot f_{XY}(x,y) \,{\rm d}x \, {\rm d}y ,$$ | ||
+ | *den '''Korrelationskoeffizienten''' nach Normierung auf die beiden Effektivwerte $σ_X$ und $σ_Y$ der beiden Komponenten: | ||
+ | :$$\rho_{XY}=\frac{\mu_{XY} }{\sigma_X \cdot \sigma_Y}.$$ | ||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | $\text{Eigenschaften des Korrelationskoeffizienten:}$ | ||
+ | *Aufgrund der Normierung gilt stets $-1 \le ρ_{XY} ≤ +1$. | ||
+ | *Sind die beiden Zufallsgrößen $X$ und $Y$ unkorreliert, so ist $ρ_{XY} = 0$. | ||
+ | *Bei strenger linearer Abhängigkeit zwischen $X$ und $Y$ ist $ρ_{XY}= ±1$ ⇒ vollständige Korrelation. | ||
+ | *Ein positiver Korrelationskoeffizient bedeutet, dass bei größerem $X$–Wert im statistischen Mittel auch $Y$ größer ist als bei kleinerem $X$. | ||
+ | *Dagegen drückt ein negativer Korrelationskoeffizient aus, dass $Y$ mit steigendem $X$ im Mittel kleiner wird.}} | ||
<br><br> | <br><br> | ||
Zeile 50: | Zeile 59: | ||
Für den Sonderfall '''Gaußscher Zufallsgrößen''' – der Name geht auf den Wissenschaftler [https://de.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F Carl Friedrich Gauß] zurück – können wir weiterhin vermerken: | Für den Sonderfall '''Gaußscher Zufallsgrößen''' – der Name geht auf den Wissenschaftler [https://de.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F Carl Friedrich Gauß] zurück – können wir weiterhin vermerken: | ||
− | *Die Verbund–WDF einer Gaußschen 2D-Zufallsgröße $XY$ mit Mittelwerten $m_X = 0$ | + | *Die Verbund–WDF einer Gaußschen 2D-Zufallsgröße $XY$ mit Mittelwerten $m_X = 0$ und $m_Y = 0$ sowie dem Korrelationskoeffizienten $ρ = ρ_{XY}$ lautet: |
:$$f_{XY}(x,y)=\frac{\rm 1}{\rm 2\it\pi \cdot \sigma_X \cdot \sigma_Y \cdot \sqrt{\rm 1-\rho^2}}\ \cdot\ \exp\Bigg[-\frac{\rm 1}{\rm 2 \cdot (1-\it\rho^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_X^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_Y^{\rm 2}}-\rm 2\it\rho\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_Y}\rm ) \rm \Bigg]\hspace{0.8cm}{\rm mit}\hspace{0.5cm}-1 \le \rho \le +1.$$ | :$$f_{XY}(x,y)=\frac{\rm 1}{\rm 2\it\pi \cdot \sigma_X \cdot \sigma_Y \cdot \sqrt{\rm 1-\rho^2}}\ \cdot\ \exp\Bigg[-\frac{\rm 1}{\rm 2 \cdot (1-\it\rho^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_X^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_Y^{\rm 2}}-\rm 2\it\rho\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_Y}\rm ) \rm \Bigg]\hspace{0.8cm}{\rm mit}\hspace{0.5cm}-1 \le \rho \le +1.$$ | ||
*Ersetzt man $x$ durch $(x - m_X)$ sowie $y$ durch $(y- m_Y)$, so ergibt sich die allgemeinere WDF einer zweidimensionalen Gaußschen Zufallsgröße mit Mittelwert. | *Ersetzt man $x$ durch $(x - m_X)$ sowie $y$ durch $(y- m_Y)$, so ergibt sich die allgemeinere WDF einer zweidimensionalen Gaußschen Zufallsgröße mit Mittelwert. | ||
Zeile 64: | Zeile 73: | ||
*Bei keiner anderen WDF kann aus der ''Unkorreliertheit'' auf die ''statistische Unabhängigkeit'' geschlossen werden. | *Bei keiner anderen WDF kann aus der ''Unkorreliertheit'' auf die ''statistische Unabhängigkeit'' geschlossen werden. | ||
*Man kann aber stets ⇒ für jede beliebige 2D–WDF $f_{XY}(x, y)$ von der ''statistischen Unabhängigkeit'' auf die ''Unkorreliertheit'' schließen, weil: | *Man kann aber stets ⇒ für jede beliebige 2D–WDF $f_{XY}(x, y)$ von der ''statistischen Unabhängigkeit'' auf die ''Unkorreliertheit'' schließen, weil: | ||
− | *Sind zwei Zufallsgrößen $X$ und $Y$ völlig voneinander (statistisch) unabhängig, so gibt es zwischen ihnen natürlich auch keine ''linearen'' Abhängigkeiten <br>⇒ sie sind dann auch unkorreliert. }} | + | *Sind zwei Zufallsgrößen $X$ und $Y$ völlig voneinander (statistisch) unabhängig, so gibt es zwischen ihnen natürlich auch keine ''linearen'' Abhängigkeiten <br>⇒ sie sind dann auch unkorreliert ⇒ $ρ = 0$. }} |
− | + | <br><br> | |
+ | ===Höhenlinien bei unkorrelierten Zufallsgrößen=== | ||
− | [[Datei: | + | [[Datei:Sto_App_Bild2.png |frame| Höhenlinien der 2D-WDF bei unkorrelierten Größen | rechts]] |
− | {{ | + | Aus der Bedingungsgleichung $f_{XY}(x, y) = {\rm const.}$ können die Höhenlinien der WDF berechnet werden. |
− | |||
− | |||
− | |||
+ | Sind die Komponenten $X$ und $Y$ unkorreliert $(ρ_{XY} = 0)$, so erhält man als Gleichung für die Höhenlinien: | ||
− | + | :$$\frac{x^{\rm 2}}{\sigma_{X}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{Y}^{\rm 2}} =\rm const.$$ | |
− | + | Die Höhenlinien beschreiben in diesem Fall folgende Figuren: | |
− | + | *'''Kreise''' (falls $σ_X = σ_Y$, grüne Kurve), oder | |
+ | *'''Ellipsen''' (für $σ_X ≠ σ_Y$, blaue Kurve) in Ausrichtung der beiden Achsen. | ||
<br clear=all> | <br clear=all> | ||
− | + | ===Korrelationsgerade=== | |
− | |||
− | |||
− | |||
+ | Als '''Korrelationsgerade''' bezeichnet man die Gerade $y = K(x)$ in der $(x, y)$–Ebene durch den „Mittelpunkt” $(m_X, m_Y)$. Diese besitzt folgende Eigenschaften: | ||
+ | [[Datei:Sto_App_Bild1a.png|frame| Gaußsche 2D-WDF (Approximation mit $N$ Messpunkten) und <br>Korrelationsgerade $y = K(x)$]] | ||
− | + | *Die mittlere quadratische Abweichung von dieser Geraden – in $y$–Richtung betrachtet und über alle $N$ Messpunkte gemittelt – ist minimal: | |
− | + | :$$\overline{\varepsilon_y^{\rm 2} }=\frac{\rm 1}{N} \cdot \sum_{\nu=\rm 1}^{N}\; \;\big [y_\nu - K(x_{\nu})\big ]^{\rm 2}={\rm Minimum}.$$ | |
− | + | *Die Korrelationsgerade kann als eine Art „statistische Symmetrieachse“ interpretiert werden. Die Geradengleichung lautet im allgemeinen Fall: | |
− | + | :$$y=K(x)=\frac{\sigma_Y}{\sigma_X}\cdot\rho_{XY}\cdot(x - m_X)+m_Y.$$ | |
− | |||
− | |||
− | |||
− | :$$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | :$$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *Der Winkel, den die Korrelationsgerade zur $x$–Achse einnimmt, beträgt: | |
− | + | :$$\theta={\rm arctan}(\frac{\sigma_{Y} }{\sigma_{X} }\cdot \rho_{XY}).$$ | |
− | |||
− | :$$ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ===Höhenlinien bei korrelierten Zufallsgrößen=== | |
− | |||
− | |||
− | |||
+ | Bei korrelierten Komponenten $(ρ_{XY} ≠ 0)$ sind die Höhenlinien der WDF (fast) immer elliptisch, also auch für den Sonderfall $σ_X = σ_Y$. | ||
− | [[ | + | <u>Ausnahme:</u> $ρ_{XY}=\pm 1$ ⇒ Diracwand; siehe [[Aufgaben:Aufgabe_4.4:_Gaußsche_2D-WDF|Aufgabe 4.4]] im Buch „Stochastische Signaltheorie”, Teilaufgabe '''(5)'''. |
+ | [[Datei:Sto_App_Bild3.png|right|frame|Höhenlinien der 2D-WDF bei korrelierten Größen]] | ||
+ | Hier lautet die Bestimmungsgleichung der WDF-Höhenlinien: | ||
− | + | :$$f_{XY}(x, y) = {\rm const.} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \frac{x^{\rm 2} }{\sigma_{X}^{\rm 2}}+\frac{y^{\rm 2} }{\sigma_{Y}^{\rm 2} }-{\rm 2}\cdot\rho_{XY}\cdot\frac{x\cdot y}{\sigma_X\cdot \sigma_Y}={\rm const.}$$ | |
− | + | Die Grafik zeigt in hellerem Blau für zwei unterschiedliche Parametersätze je eine Höhenlinie. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | = | ||
− | |||
− | |||
− | + | *Die Ellipsenhauptachse ist dunkelblau gestrichelt. | |
+ | *Die [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen#Korrelationsgerade|Korrelationsgerade]] $K(x)$ ist durchgehend rot eingezeichnet. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Anhand dieser Darstellung sind folgende Aussagen möglich: | |
− | + | *Die Ellipsenform hängt außer vom Korrelationskoeffizienten $ρ_{XY}$ auch vom Verhältnis der beiden Streuungen $σ_X$ und $σ_Y$ ab. | |
− | *Die | + | *Der Neigungswinkel $α$ der Ellipsenhauptachse (gestrichelte Gerade) gegenüber der $x$–Achse hängt ebenfalls von $σ_X$, $σ_Y$ und $ρ_{XY}$ ab: |
− | + | :$$\alpha = {1}/{2} \cdot {\rm arctan } \big ( 2 \cdot \rho_{XY} \cdot \frac {\sigma_X \cdot \sigma_Y}{\sigma_X^2 - \sigma_Y^2} \big ).$$ | |
− | * | + | *Die (rote) Korrelationsgerade $y = K(x)$ einer Gaußschen 2D–Zufallsgröße liegt stets unterhalb der (blau gestrichelten) Ellipsenhauptachse. |
− | + | * $K(x)$ kann aus dem Schnittpunkt der Höhenlinien und ihrer vertikalen Tangenten geometrisch konstruiert werden, wie in der Skizze in grüner Farbe angedeutet. | |
− | == | + | <br><br> |
− | + | ===Zweidimensionale Verteilungsfunktion ⇒ 2D–VTF=== | |
− | |||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ Die '''2D-Verteilungsfunktion''' ist ebenso wie die 2D-WDF lediglich eine sinnvolle Erweiterung der [[Stochastische_Signaltheorie/Verteilungsfunktion_(VTF)#VTF_bei_kontinuierlichen_Zufallsgr.C3.B6.C3.9Fen_.281.29|eindimensionalen Verteilungsfunktion]] (VTF): |
− | + | :$$F_{XY}(x,y) = {\rm Pr}\big [(X \le x) \cap (Y \le y) \big ] .$$}} | |
− | |||
− | + | Es ergeben sich folgende Gemeinsamkeiten und Unterschiede zwischen der „1D-VTF” und der„ 2D-VTF”: | |
− | + | *Der Funktionalzusammenhang zwischen „2D–WDF” und „2D–VTF” ist wie im eindimensionalen Fall durch die Integration gegeben, aber nun in zwei Dimensionen. Bei kontinuierlichen Zufallsgrößen gilt: | |
− | + | :$$F_{XY}(x,y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(\xi,\eta) \,\,{\rm d}\xi \,\, {\rm d}\eta .$$ | |
− | + | *Umgekehrt lässt sich die Wahrscheinlichkeitsdichtefunktion aus der Verteilungsfunktion durch partielle Differentiation nach $x$ und $y$ angeben: | |
− | * | + | :$$f_{XY}(x,y)=\frac{{\rm d}^{\rm 2} F_{XY}(\xi,\eta)}{{\rm d} \xi \,\, {\rm d} \eta}\Bigg|_{\left.{x=\xi \atop {y=\eta}}\right.}.$$ |
− | + | *Bezüglich der Verteilungsfunktion $F_{XY}(x, y)$ gelten folgende Grenzwerte: | |
+ | :$$F_{XY}(-\infty,\ -\infty) = 0,\hspace{0.5cm}F_{XY}(x,\ +\infty)=F_{X}(x ),\hspace{0.5cm} | ||
+ | F_{XY}(+\infty,\ y)=F_{Y}(y ) ,\hspace{0.5cm}F_{XY}(+\infty,\ +\infty) = 1.$$ | ||
+ | *Im Grenzfall $($unendlich große $x$ und $y)$ ergibt sich demnach für die „2D-VTF” der Wert $1$. Daraus erhält man die '''Normierungsbedingung''' für die 2D-Wahrscheinlichkeitsdichtefunktion: | ||
+ | :$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1 . $$ | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Fazit:}$ Beachten Sie den signifikanten Unterschied zwischen eindimensionalen und zweidimensionalen Zufallsgrößen: |
− | + | *Bei eindimensionalen Zufallsgrößen ergibt die Fläche unter der WDF stets den Wert $1$. | |
− | + | *Bei zweidimensionalen Zufallsgrößen ist das WDF-Volumen immer gleich $1$.}} | |
+ | <br><br> | ||
− | + | ==Versuchsdurchführung== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<br> | <br> | ||
+ | [[Datei:Aufgaben_2D-Gauss.png|right]] | ||
− | + | *Wählen Sie zunächst die Nummer ('''1''', ...) der zu bearbeitenden Aufgabe. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | *Sie | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst. | *Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst. | ||
− | *Lösung nach Drücken von „ | + | *Lösung nach Drücken von „Musterlösung”. |
− | * | + | *Bei der Aufgabenbeschreibung verwenden wir $\rho$ anstelle von $\rho_{XY}$. |
+ | *Für die „1D-WDF” gilt: $f_{X}(x) = \sqrt{1/(2\pi \cdot \sigma_X^2)} \cdot {\rm e}^{-x^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sigma_X^2)}$. | ||
Zeile 422: | Zeile 163: | ||
*Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet. | *Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet. | ||
− | |||
− | |||
− | |||
− | |||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | '''(1)''' | + | '''(1)''' Machen Sie sich anhand der Voreinstellung $(\sigma_X=1, \ \sigma_Y=0.5, \ \rho = 0.7)$ mit dem Programm vertraut. Interpretieren Sie die Grafiken für $\rm WDF$ und $\rm VTF$.}} |
− | |||
+ | ::* $\rm WDF$ ist ein Bergrücken mit dem Maximum bei $x = 0, \ y = 0$. Der Bergkamm ist leicht verdreht gegenüber der $x$–Achse. | ||
+ | ::* $\rm VTF$ ergibt sich aus $\rm WDF$ durch fortlaufende Integration in beide Richtungen. Das Maximum $($nahezu $1)$ tritt bei $x=3, \ y=3$ auf. | ||
− | $\ | + | {{BlaueBox|TEXT= |
+ | '''(2)''' Nun lautet die Einstellung $\sigma_X= \sigma_Y=1, \ \rho = 0$. Welche Werte ergeben sich für $f_{XY}(0,\ 0)$ und $F_{XY}(0,\ 0)$? Interpretieren Sie die Ergebnisse.}} | ||
− | $ | + | ::* Das WDF–Maximum ist $f_{XY}(0,\ 0) = 1/(2\pi)= 0.1592$, wegen $\sigma_X= \sigma_Y = 1, \ \rho = 0$. Die Höhenlinien sind Kreise. |
+ | ::* Für den VTF-Wert gilt: $F_{XY}(0,\ 0) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 0)] = 0.25$. Geringfügige Abweichung wegen numerischer Integration. | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | '''( | + | '''(3)''' Es gelten weiter die Einstellungen von '''(2)'''. Welche Werte ergeben sich für $f_{XY}(0,\ 1)$ und $F_{XY}(0,\ 1)$? Interpretieren Sie die Ergebnisse.}} |
+ | ::* Es gilt $f_{XY}(0,\ 1) = f_{X}(0) \cdot f_{Y}(1) = [ \sqrt{1/(2\pi)}] \cdot [\sqrt{1/(2\pi)} \cdot {\rm e}^{-0.5}] = 1/(2\pi) \cdot {\rm e}^{-0.5} = 0.0965$. | ||
+ | ::* Das Programm liefert $F_{XY}(0,\ 1) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 1)] = 0.4187$, also einen größeren Wert als in '''(2)''', da weiter integriert wird. | ||
− | + | {{BlaueBox|TEXT= | |
− | + | '''(4)''' Die Einstellungen bleiben erhalten. Welche Werte ergeben sich für $f_{XY}(1,\ 0)$ und $F_{XY}(1,\ 0)$? Interpretieren Sie die Ergebnisse.}} | |
− | + | ::* Aufgrund der Rotationssysmmetrie gleiche Ergebnisse wie in '''(3)'''. | |
− | |||
− | |||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | '''( | + | '''(5)''' Stimmt die Aussage: „Elliptische Höhenlinien gibt es nur für $\rho \ne 0$”. Interpretieren Sie die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ und $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ für $\sigma_X=1, \ \sigma_Y=0.5$ und $\rho = 0$.}} |
+ | ::* Nein! Auch für $\ \rho = 0$ sind die Höhenlinien elliptisch (nicht kreisförmig), falls $\sigma_X \ne \sigma_Y$. | ||
+ | ::* Für $\sigma_X \gg \sigma_Y$ hat die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ die Form eines langgestreckten Bergkamms parallel zur $x$–Achse, für $\sigma_X \ll \sigma_Y$ parallel zur $y$–Achse. | ||
+ | ::* Für $\sigma_X \gg \sigma_Y$ ist der Anstieg der $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ in Richtung der $y$–Achse deutlich steiler als in Richtung der $x$–Achse. | ||
− | + | {{BlaueBox|TEXT= | |
+ | '''(6)''' Variieren Sie ausgehend von $\sigma_X=\sigma_Y=1, \ \rho = 0.7$ den Korrelationskoeffizienten $\rho$. Wie groß ist der Neigungswinkel $\alpha$ der Ellipsen–Hauptachse?}} | ||
− | $\ | + | ::* Für $\rho > 0$ ist $\alpha = 45^\circ$ und für $\rho < 0$ ist $\alpha = -45^\circ$. Für $\rho = 0$ sind die Höhenlinien kreisfömig und somit gibt es auch keine Ellipsen–Hauptachse. |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | '''( | + | '''(7)''' Variieren Sie ausgehend von $\sigma_X=\sigma_Y=1, \ \rho = 0.7$ den Korrelationskoeffizienten $\rho > 0$. Wie groß ist der Neigungswinkel $\theta$ der Korrelationsgeraden $K(x)$?}} |
− | |||
+ | ::* Für $\sigma_X=\sigma_Y$ ist $\theta={\rm arctan}\ (\rho)$. Die Steigung nimmt mit wachsendem $\rho > 0$ zu. In allen Fällen gilt $\theta < \alpha = 45^\circ$. Für $\rho = 0.7$ ergibt sich $\theta = 35^\circ$. | ||
− | $\ | + | {{BlaueBox|TEXT= |
+ | '''(8)''' Variieren Sie ausgehend von $\sigma_X=\sigma_Y=0.75, \ \rho = 0.7$ die Parameter $\sigma_Y$ und $\rho \ (>0)$. Welche Aussagen gelten für die Winkel $\alpha$ und $\theta$?}} | ||
− | $\ | + | ::* Für $\sigma_Y<\sigma_X$ ist $\alpha < 45^\circ$ und für $\sigma_Y>\sigma_X$ dagegen $\alpha > 45^\circ$. |
+ | ::* Bei allen Einstellungen gilt: '''Die Korrelationsgerade liegt unter der Ellipsen–Hauptachse'''. | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | '''( | + | '''(9)''' Gehen Sie von $\sigma_X= 1, \ \sigma_Y=0.75, \ \rho = 0.7$ aus und variieren Sie $\rho$. Wie könnte man die Korrelationsgerade aus den Höhenlinien konstruieren?}} |
+ | ::* Die Korrelationsgerade schneidet alle Höhenlinien an den Punkten, an denen die Tangente zu der Höhenlinie senkrecht verläuft. | ||
− | $\ | + | {{BlaueBox|TEXT= |
+ | '''(10)''' Nun gelte $\sigma_X= \sigma_Y=1, \ \rho = 0.95$. Interpretieren Sie die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$. Welche Aussagen würden für den Grenzfall $\rho \to 1$ zutreffen?}} | ||
− | $\hspace{ | + | ::* Die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ hat nur Anteile in der Nähe der Ellipsen–Hauptachse. Die Korrelationsgerade liegt nur knapp darunter: $\alpha = 45^\circ, \ \theta = 43.5^\circ$. |
+ | ::* Im Grenzfall $\rho \to 1$ wäre $\theta = \alpha = 45^\circ$. Außerhalb der Korrelationsgeraden hätte die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ keine Anteile. Das heißt: | ||
+ | ::* Längs der Korrelationsgeraden ergäbe sich eine '''Diracwand''' ⇒ Alle Werte sind unendlich groß, trotzdem um den Mittelwert gaußisch gewichtet. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==Zur Handhabung des Applets== | ==Zur Handhabung des Applets== | ||
− | [[Datei: | + | <br> |
− | '''(A)''' | + | [[Datei:Anleitung_2D-Gauss.png|left|600px]] |
+ | '''(A)''' Parametereingabe per Slider: $\sigma_X$, $\sigma_Y$ und $\rho$ | ||
− | '''(B)''' | + | '''(B)''' Auswahl: Darstellung von WDF oder VTF |
− | '''(C)''' | + | '''(C)''' Reset: Einstellung wie beim Programmstart |
− | '''(D)''' | + | '''(D)''' Höhenlinien darstellen anstelle von „1D-WDF” |
− | '''(E)''' | + | '''(E)''' Darstellungsbereich für „2D-WDF” |
− | '''(F)''' | + | '''(F)''' Manipulation der 3D-Grafik (Zoom, Drehen, ...) |
− | '''(G)''' | + | '''(G)''' Darstellungsbereich für „1D-WDF” bzw. „Höhenlinien” |
− | '''(H)''' | + | '''(H)''' Manipulation der 2D-Grafik („1D-WDF”) |
+ | '''( I )''' Bereich für die Versuchsdurchführung: Aufgabenauswahl | ||
− | + | '''(J)''' Bereich für die Versuchsdurchführung: Aufgabenstellung | |
− | + | '''(K)''' Bereich für die Versuchsdurchführung: Musterlösung einblenden | |
− | + | '''( L)''' Bereich für die Versuchsdurchführung: Musterlösung | |
− | + | <br><br><br><br><br><br><br><br> | |
− | + | Werte–Ausgabe über Maussteuerung (sowohl bei 2D als auch bei 3D) | |
− | + | <br clear=all> | |
− | '''( | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==Über die Autoren== | ==Über die Autoren== | ||
Dieses interaktive Berechnungstool wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert. | Dieses interaktive Berechnungstool wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert. | ||
*Die erste Version wurde 2003 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]). | *Die erste Version wurde 2003 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]). | ||
− | * | + | * 2019 wurde das Programm von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]] im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]]). |
+ | |||
+ | |||
+ | Die Umsetzung dieses Applets auf HTML 5 wurde durch [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse] der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns. | ||
+ | |||
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster== | ==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster== | ||
− | {{ | + | {{LntAppletLinkDeEn|gauss|gauss_en}} |
Aktuelle Version vom 26. Oktober 2023, 11:14 Uhr
Applet in neuem Tab öffnen Open English Version
Inhaltsverzeichnis
Programmbeschreibung
Das Applet verdeutlicht die Eigenschaften zweidimensionaler Gaußscher Zufallsgrößen $XY\hspace{-0.1cm}$, gekennzeichnet durch die Standardabweichungen (Streuungen) $\sigma_X$ und $\sigma_Y$ ihrer beiden Komponenten sowie den Korrelationskoeffizienten $\rho_{XY}$ zwischen diesen. Die Komponenten werden als mittelwertfrei vorausgesetzt: $m_X = m_Y = 0$.
Das Applet zeigt
- die zweidimensionale Wahrscheinlichkeitsdichtefunktion ⇒ $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ $f_{XY}(x, \hspace{0.1cm}y)$ in dreidimensionaler Darstellung sowie in Form von Höhenlinien,
- die zugehörige Randwahrscheinlichkeitsdichtefunktion ⇒ $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ $f_{X}(x)$ der Zufallsgröße $X$ als blaue Kurve; ebenso $f_{Y}(y)$ für die zweite Zufallsgröße,
- die zweidimensionale Verteilungsfunktion ⇒ $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ $F_{XY}(x, \hspace{0.1cm}y)$ als 3D-Plot,
- die Verteilungsfunktion ⇒ $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ $F_{X}(x)$ der Zufallsgröße $X$; ebenso $F_{Y}(y)$ als rote Kurve.
Das Applet verwendet das Framework Plot.ly
Theoretischer Hintergrund
Verbundwahrscheinlichkeitsdichtefunktion ⇒ 2D–WDF
Wir betrachten zwei wertkontinuierliche Zufallsgrößen $X$ und $Y\hspace{-0.1cm}$, zwischen denen statistische Abhängigkeiten bestehen können. Zur Beschreibung der Wechselbeziehungen zwischen diesen Größen ist es zweckmäßig, die beiden Komponenten zu einer zweidimensionalen Zufallsgröße $XY =(X, Y)$ zusammenzufassen. Dann gilt:
$\text{Definition:}$ Die Verbundwahrscheinlichkeitsdichtefunktion ist die Wahrscheinlichkeitsdichtefunktion (WDF, englisch: Probability Density Function, kurz: PDF) der zweidimensionalen Zufallsgröße $XY$ an der Stelle $(x, y)$:
- $$f_{XY}(x, \hspace{0.1cm}y) = \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0} }\right.}\frac{ {\rm Pr}\big [ (x - {\rm \Delta} x/{\rm 2} \le X \le x + {\rm \Delta} x/{\rm 2}) \cap (y - {\rm \Delta} y/{\rm 2} \le Y \le y +{\rm \Delta}y/{\rm 2}) \big] }{ {\rm \Delta} \ x\cdot{\rm \Delta} y}.$$
- Die Verbundwahrscheinlichkeitsdichtefunktion oder kurz $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ ist eine Erweiterung der eindimensionalen WDF.
- $∩$ kennzeichnet die logische UND-Verknüpfung.
- $X$ und $Y$ bezeichnen die beiden Zufallsgrößen, und $x \in X$ sowie $y \in Y$ geben Realisierungen hiervon an.
- Die für dieses Applet verwendete Nomenklatur unterscheidet sich also geringfügig gegenüber der Beschreibung im Theorieteil.
Anhand dieser 2D–WDF $f_{XY}(x, y)$ werden auch statistische Abhängigkeiten innerhalb der zweidimensionalen Zufallsgröße $XY$ vollständig erfasst im Gegensatz zu den beiden eindimensionalen Dichtefunktionen ⇒ Randwahrscheinlichkeitsdichtefunktionen:
- $$f_{X}(x) = \int _{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}y ,$$
- $$f_{Y}(y) = \int_{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}x .$$
Diese beiden Randdichtefunktionen $f_X(x)$ und $f_Y(y)$
- liefern lediglich statistische Aussagen über die Einzelkomponenten $X$ bzw. $Y$,
- nicht jedoch über die Bindungen zwischen diesen.
Als quantitatives Maß für die linearen statistischen Bindungen ⇒ Korrelation verwendet man
- die Kovarianz $\mu_{XY}$, die bei mittelwertfreien Komponenten gleich dem gemeinsamen linearen Moment erster Ordnung ist:
- $$\mu_{XY} = {\rm E}\big[X \cdot Y\big] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} X \cdot Y \cdot f_{XY}(x,y) \,{\rm d}x \, {\rm d}y ,$$
- den Korrelationskoeffizienten nach Normierung auf die beiden Effektivwerte $σ_X$ und $σ_Y$ der beiden Komponenten:
- $$\rho_{XY}=\frac{\mu_{XY} }{\sigma_X \cdot \sigma_Y}.$$
$\text{Eigenschaften des Korrelationskoeffizienten:}$
- Aufgrund der Normierung gilt stets $-1 \le ρ_{XY} ≤ +1$.
- Sind die beiden Zufallsgrößen $X$ und $Y$ unkorreliert, so ist $ρ_{XY} = 0$.
- Bei strenger linearer Abhängigkeit zwischen $X$ und $Y$ ist $ρ_{XY}= ±1$ ⇒ vollständige Korrelation.
- Ein positiver Korrelationskoeffizient bedeutet, dass bei größerem $X$–Wert im statistischen Mittel auch $Y$ größer ist als bei kleinerem $X$.
- Dagegen drückt ein negativer Korrelationskoeffizient aus, dass $Y$ mit steigendem $X$ im Mittel kleiner wird.
2D–WDF bei Gaußschen Zufallsgrößen
Für den Sonderfall Gaußscher Zufallsgrößen – der Name geht auf den Wissenschaftler Carl Friedrich Gauß zurück – können wir weiterhin vermerken:
- Die Verbund–WDF einer Gaußschen 2D-Zufallsgröße $XY$ mit Mittelwerten $m_X = 0$ und $m_Y = 0$ sowie dem Korrelationskoeffizienten $ρ = ρ_{XY}$ lautet:
- $$f_{XY}(x,y)=\frac{\rm 1}{\rm 2\it\pi \cdot \sigma_X \cdot \sigma_Y \cdot \sqrt{\rm 1-\rho^2}}\ \cdot\ \exp\Bigg[-\frac{\rm 1}{\rm 2 \cdot (1-\it\rho^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_X^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_Y^{\rm 2}}-\rm 2\it\rho\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_Y}\rm ) \rm \Bigg]\hspace{0.8cm}{\rm mit}\hspace{0.5cm}-1 \le \rho \le +1.$$
- Ersetzt man $x$ durch $(x - m_X)$ sowie $y$ durch $(y- m_Y)$, so ergibt sich die allgemeinere WDF einer zweidimensionalen Gaußschen Zufallsgröße mit Mittelwert.
- Die Randwahrscheinlichkeitsdichtefunktionen $f_{X}(x)$ und $f_{Y}(y)$ einer Gaußschen 2D-Zufallsgröße sind ebenfalls gaußförmig mit den Streuungen $σ_X$ bzw. $σ_Y$.
- Bei unkorrelierten Komponenten $X$ und $Y$ muss in obiger Gleichung $ρ = 0$ eingesetzt werden, und man erhält dann das Ergebnis:
- $$f_{XY}(x,y)=\frac{1}{\sqrt{2\pi}\cdot\sigma_{X}} \cdot\rm e^{-\it {x^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\hspace{0.05cm}\it\sigma_{X}^{\rm 2}} {\rm )}} \cdot\frac{1}{\sqrt{2\pi}\cdot\sigma_{\it Y}}\cdot e^{-\it {y^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\hspace{0.05cm}\it\sigma_{Y}^{\rm 2}} {\rm )}} = \it f_{X} \rm ( \it x \rm ) \cdot \it f_{Y} \rm ( \it y \rm ) .$$
$\text{Fazit:}$ Im Sonderfall einer 2D-Zufallsgröße mit Gaußscher WDF $f_{XY}(x, y)$ folgt aus der Unkorreliertheit auch direkt die statistische Unabhängigkeit:
- $$f_{XY}(x,y)= f_{X}(x) \cdot f_{Y}(y) . $$
Bitte beachten Sie:
- Bei keiner anderen WDF kann aus der Unkorreliertheit auf die statistische Unabhängigkeit geschlossen werden.
- Man kann aber stets ⇒ für jede beliebige 2D–WDF $f_{XY}(x, y)$ von der statistischen Unabhängigkeit auf die Unkorreliertheit schließen, weil:
- Sind zwei Zufallsgrößen $X$ und $Y$ völlig voneinander (statistisch) unabhängig, so gibt es zwischen ihnen natürlich auch keine linearen Abhängigkeiten
⇒ sie sind dann auch unkorreliert ⇒ $ρ = 0$.
Höhenlinien bei unkorrelierten Zufallsgrößen
Aus der Bedingungsgleichung $f_{XY}(x, y) = {\rm const.}$ können die Höhenlinien der WDF berechnet werden.
Sind die Komponenten $X$ und $Y$ unkorreliert $(ρ_{XY} = 0)$, so erhält man als Gleichung für die Höhenlinien:
- $$\frac{x^{\rm 2}}{\sigma_{X}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{Y}^{\rm 2}} =\rm const.$$
Die Höhenlinien beschreiben in diesem Fall folgende Figuren:
- Kreise (falls $σ_X = σ_Y$, grüne Kurve), oder
- Ellipsen (für $σ_X ≠ σ_Y$, blaue Kurve) in Ausrichtung der beiden Achsen.
Korrelationsgerade
Als Korrelationsgerade bezeichnet man die Gerade $y = K(x)$ in der $(x, y)$–Ebene durch den „Mittelpunkt” $(m_X, m_Y)$. Diese besitzt folgende Eigenschaften:
- Die mittlere quadratische Abweichung von dieser Geraden – in $y$–Richtung betrachtet und über alle $N$ Messpunkte gemittelt – ist minimal:
- $$\overline{\varepsilon_y^{\rm 2} }=\frac{\rm 1}{N} \cdot \sum_{\nu=\rm 1}^{N}\; \;\big [y_\nu - K(x_{\nu})\big ]^{\rm 2}={\rm Minimum}.$$
- Die Korrelationsgerade kann als eine Art „statistische Symmetrieachse“ interpretiert werden. Die Geradengleichung lautet im allgemeinen Fall:
- $$y=K(x)=\frac{\sigma_Y}{\sigma_X}\cdot\rho_{XY}\cdot(x - m_X)+m_Y.$$
- Der Winkel, den die Korrelationsgerade zur $x$–Achse einnimmt, beträgt:
- $$\theta={\rm arctan}(\frac{\sigma_{Y} }{\sigma_{X} }\cdot \rho_{XY}).$$
Höhenlinien bei korrelierten Zufallsgrößen
Bei korrelierten Komponenten $(ρ_{XY} ≠ 0)$ sind die Höhenlinien der WDF (fast) immer elliptisch, also auch für den Sonderfall $σ_X = σ_Y$.
Ausnahme: $ρ_{XY}=\pm 1$ ⇒ Diracwand; siehe Aufgabe 4.4 im Buch „Stochastische Signaltheorie”, Teilaufgabe (5).
Hier lautet die Bestimmungsgleichung der WDF-Höhenlinien:
- $$f_{XY}(x, y) = {\rm const.} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \frac{x^{\rm 2} }{\sigma_{X}^{\rm 2}}+\frac{y^{\rm 2} }{\sigma_{Y}^{\rm 2} }-{\rm 2}\cdot\rho_{XY}\cdot\frac{x\cdot y}{\sigma_X\cdot \sigma_Y}={\rm const.}$$
Die Grafik zeigt in hellerem Blau für zwei unterschiedliche Parametersätze je eine Höhenlinie.
- Die Ellipsenhauptachse ist dunkelblau gestrichelt.
- Die Korrelationsgerade $K(x)$ ist durchgehend rot eingezeichnet.
Anhand dieser Darstellung sind folgende Aussagen möglich:
- Die Ellipsenform hängt außer vom Korrelationskoeffizienten $ρ_{XY}$ auch vom Verhältnis der beiden Streuungen $σ_X$ und $σ_Y$ ab.
- Der Neigungswinkel $α$ der Ellipsenhauptachse (gestrichelte Gerade) gegenüber der $x$–Achse hängt ebenfalls von $σ_X$, $σ_Y$ und $ρ_{XY}$ ab:
- $$\alpha = {1}/{2} \cdot {\rm arctan } \big ( 2 \cdot \rho_{XY} \cdot \frac {\sigma_X \cdot \sigma_Y}{\sigma_X^2 - \sigma_Y^2} \big ).$$
- Die (rote) Korrelationsgerade $y = K(x)$ einer Gaußschen 2D–Zufallsgröße liegt stets unterhalb der (blau gestrichelten) Ellipsenhauptachse.
- $K(x)$ kann aus dem Schnittpunkt der Höhenlinien und ihrer vertikalen Tangenten geometrisch konstruiert werden, wie in der Skizze in grüner Farbe angedeutet.
Zweidimensionale Verteilungsfunktion ⇒ 2D–VTF
$\text{Definition:}$ Die 2D-Verteilungsfunktion ist ebenso wie die 2D-WDF lediglich eine sinnvolle Erweiterung der eindimensionalen Verteilungsfunktion (VTF):
- $$F_{XY}(x,y) = {\rm Pr}\big [(X \le x) \cap (Y \le y) \big ] .$$
Es ergeben sich folgende Gemeinsamkeiten und Unterschiede zwischen der „1D-VTF” und der„ 2D-VTF”:
- Der Funktionalzusammenhang zwischen „2D–WDF” und „2D–VTF” ist wie im eindimensionalen Fall durch die Integration gegeben, aber nun in zwei Dimensionen. Bei kontinuierlichen Zufallsgrößen gilt:
- $$F_{XY}(x,y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(\xi,\eta) \,\,{\rm d}\xi \,\, {\rm d}\eta .$$
- Umgekehrt lässt sich die Wahrscheinlichkeitsdichtefunktion aus der Verteilungsfunktion durch partielle Differentiation nach $x$ und $y$ angeben:
- $$f_{XY}(x,y)=\frac{{\rm d}^{\rm 2} F_{XY}(\xi,\eta)}{{\rm d} \xi \,\, {\rm d} \eta}\Bigg|_{\left.{x=\xi \atop {y=\eta}}\right.}.$$
- Bezüglich der Verteilungsfunktion $F_{XY}(x, y)$ gelten folgende Grenzwerte:
- $$F_{XY}(-\infty,\ -\infty) = 0,\hspace{0.5cm}F_{XY}(x,\ +\infty)=F_{X}(x ),\hspace{0.5cm} F_{XY}(+\infty,\ y)=F_{Y}(y ) ,\hspace{0.5cm}F_{XY}(+\infty,\ +\infty) = 1.$$
- Im Grenzfall $($unendlich große $x$ und $y)$ ergibt sich demnach für die „2D-VTF” der Wert $1$. Daraus erhält man die Normierungsbedingung für die 2D-Wahrscheinlichkeitsdichtefunktion:
- $$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1 . $$
$\text{Fazit:}$ Beachten Sie den signifikanten Unterschied zwischen eindimensionalen und zweidimensionalen Zufallsgrößen:
- Bei eindimensionalen Zufallsgrößen ergibt die Fläche unter der WDF stets den Wert $1$.
- Bei zweidimensionalen Zufallsgrößen ist das WDF-Volumen immer gleich $1$.
Versuchsdurchführung
- Wählen Sie zunächst die Nummer (1, ...) der zu bearbeitenden Aufgabe.
- Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
- Lösung nach Drücken von „Musterlösung”.
- Bei der Aufgabenbeschreibung verwenden wir $\rho$ anstelle von $\rho_{XY}$.
- Für die „1D-WDF” gilt: $f_{X}(x) = \sqrt{1/(2\pi \cdot \sigma_X^2)} \cdot {\rm e}^{-x^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sigma_X^2)}$.
Die Nummer 0 entspricht einem „Reset”:
- Gleiche Einstellung wie beim Programmstart.
- Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.
(1) Machen Sie sich anhand der Voreinstellung $(\sigma_X=1, \ \sigma_Y=0.5, \ \rho = 0.7)$ mit dem Programm vertraut. Interpretieren Sie die Grafiken für $\rm WDF$ und $\rm VTF$.
- $\rm WDF$ ist ein Bergrücken mit dem Maximum bei $x = 0, \ y = 0$. Der Bergkamm ist leicht verdreht gegenüber der $x$–Achse.
- $\rm VTF$ ergibt sich aus $\rm WDF$ durch fortlaufende Integration in beide Richtungen. Das Maximum $($nahezu $1)$ tritt bei $x=3, \ y=3$ auf.
(2) Nun lautet die Einstellung $\sigma_X= \sigma_Y=1, \ \rho = 0$. Welche Werte ergeben sich für $f_{XY}(0,\ 0)$ und $F_{XY}(0,\ 0)$? Interpretieren Sie die Ergebnisse.
- Das WDF–Maximum ist $f_{XY}(0,\ 0) = 1/(2\pi)= 0.1592$, wegen $\sigma_X= \sigma_Y = 1, \ \rho = 0$. Die Höhenlinien sind Kreise.
- Für den VTF-Wert gilt: $F_{XY}(0,\ 0) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 0)] = 0.25$. Geringfügige Abweichung wegen numerischer Integration.
(3) Es gelten weiter die Einstellungen von (2). Welche Werte ergeben sich für $f_{XY}(0,\ 1)$ und $F_{XY}(0,\ 1)$? Interpretieren Sie die Ergebnisse.
- Es gilt $f_{XY}(0,\ 1) = f_{X}(0) \cdot f_{Y}(1) = [ \sqrt{1/(2\pi)}] \cdot [\sqrt{1/(2\pi)} \cdot {\rm e}^{-0.5}] = 1/(2\pi) \cdot {\rm e}^{-0.5} = 0.0965$.
- Das Programm liefert $F_{XY}(0,\ 1) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 1)] = 0.4187$, also einen größeren Wert als in (2), da weiter integriert wird.
(4) Die Einstellungen bleiben erhalten. Welche Werte ergeben sich für $f_{XY}(1,\ 0)$ und $F_{XY}(1,\ 0)$? Interpretieren Sie die Ergebnisse.
- Aufgrund der Rotationssysmmetrie gleiche Ergebnisse wie in (3).
(5) Stimmt die Aussage: „Elliptische Höhenlinien gibt es nur für $\rho \ne 0$”. Interpretieren Sie die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ und $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ für $\sigma_X=1, \ \sigma_Y=0.5$ und $\rho = 0$.
- Nein! Auch für $\ \rho = 0$ sind die Höhenlinien elliptisch (nicht kreisförmig), falls $\sigma_X \ne \sigma_Y$.
- Für $\sigma_X \gg \sigma_Y$ hat die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ die Form eines langgestreckten Bergkamms parallel zur $x$–Achse, für $\sigma_X \ll \sigma_Y$ parallel zur $y$–Achse.
- Für $\sigma_X \gg \sigma_Y$ ist der Anstieg der $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$ in Richtung der $y$–Achse deutlich steiler als in Richtung der $x$–Achse.
(6) Variieren Sie ausgehend von $\sigma_X=\sigma_Y=1, \ \rho = 0.7$ den Korrelationskoeffizienten $\rho$. Wie groß ist der Neigungswinkel $\alpha$ der Ellipsen–Hauptachse?
- Für $\rho > 0$ ist $\alpha = 45^\circ$ und für $\rho < 0$ ist $\alpha = -45^\circ$. Für $\rho = 0$ sind die Höhenlinien kreisfömig und somit gibt es auch keine Ellipsen–Hauptachse.
(7) Variieren Sie ausgehend von $\sigma_X=\sigma_Y=1, \ \rho = 0.7$ den Korrelationskoeffizienten $\rho > 0$. Wie groß ist der Neigungswinkel $\theta$ der Korrelationsgeraden $K(x)$?
- Für $\sigma_X=\sigma_Y$ ist $\theta={\rm arctan}\ (\rho)$. Die Steigung nimmt mit wachsendem $\rho > 0$ zu. In allen Fällen gilt $\theta < \alpha = 45^\circ$. Für $\rho = 0.7$ ergibt sich $\theta = 35^\circ$.
(8) Variieren Sie ausgehend von $\sigma_X=\sigma_Y=0.75, \ \rho = 0.7$ die Parameter $\sigma_Y$ und $\rho \ (>0)$. Welche Aussagen gelten für die Winkel $\alpha$ und $\theta$?
- Für $\sigma_Y<\sigma_X$ ist $\alpha < 45^\circ$ und für $\sigma_Y>\sigma_X$ dagegen $\alpha > 45^\circ$.
- Bei allen Einstellungen gilt: Die Korrelationsgerade liegt unter der Ellipsen–Hauptachse.
(9) Gehen Sie von $\sigma_X= 1, \ \sigma_Y=0.75, \ \rho = 0.7$ aus und variieren Sie $\rho$. Wie könnte man die Korrelationsgerade aus den Höhenlinien konstruieren?
- Die Korrelationsgerade schneidet alle Höhenlinien an den Punkten, an denen die Tangente zu der Höhenlinie senkrecht verläuft.
(10) Nun gelte $\sigma_X= \sigma_Y=1, \ \rho = 0.95$. Interpretieren Sie die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$. Welche Aussagen würden für den Grenzfall $\rho \to 1$ zutreffen?
- Die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ hat nur Anteile in der Nähe der Ellipsen–Hauptachse. Die Korrelationsgerade liegt nur knapp darunter: $\alpha = 45^\circ, \ \theta = 43.5^\circ$.
- Im Grenzfall $\rho \to 1$ wäre $\theta = \alpha = 45^\circ$. Außerhalb der Korrelationsgeraden hätte die $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$ keine Anteile. Das heißt:
- Längs der Korrelationsgeraden ergäbe sich eine Diracwand ⇒ Alle Werte sind unendlich groß, trotzdem um den Mittelwert gaußisch gewichtet.
Zur Handhabung des Applets
(A) Parametereingabe per Slider: $\sigma_X$, $\sigma_Y$ und $\rho$
(B) Auswahl: Darstellung von WDF oder VTF
(C) Reset: Einstellung wie beim Programmstart
(D) Höhenlinien darstellen anstelle von „1D-WDF”
(E) Darstellungsbereich für „2D-WDF”
(F) Manipulation der 3D-Grafik (Zoom, Drehen, ...)
(G) Darstellungsbereich für „1D-WDF” bzw. „Höhenlinien”
(H) Manipulation der 2D-Grafik („1D-WDF”)
( I ) Bereich für die Versuchsdurchführung: Aufgabenauswahl
(J) Bereich für die Versuchsdurchführung: Aufgabenstellung
(K) Bereich für die Versuchsdurchführung: Musterlösung einblenden
( L) Bereich für die Versuchsdurchführung: Musterlösung
Werte–Ausgabe über Maussteuerung (sowohl bei 2D als auch bei 3D)
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2003 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
- 2019 wurde das Programm von Carolin Mirschina im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer: Tasnád Kernetzky).
Die Umsetzung dieses Applets auf HTML 5 wurde durch Studienzuschüsse der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.