Aufgaben:Aufgabe 1.3Z: Exponentiell abfallende Impulsantwort: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 42: | Zeile 42: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.''' Der Frequenzgang $H(f)$ ist die Fouriertransformierte von $h(t)$: |
+ | $$H(f) = \int_{-\infty}^{+\infty}h(t) \cdot {\rm e}^{\hspace{0.05cm}{-\rm j}2\pi ft}\hspace{0.15cm} {\rm d}t = \frac{1}{T} \cdot \int_{0}^{+\infty} {\rm e}^{\hspace{0.05cm}{-(\rm j}2\pi f+ {1}/{T}) t}\hspace{0.15cm} | ||
+ | {\rm d}t.$$ | ||
+ | Die Integration führt zum Ergebnis: | ||
+ | $$H(f) = \left[ \frac{-1/T}{{\rm j}2\pi f+{1}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{-(\rm j}2\pi f+ {1}/{T}) | ||
+ | t}\right]_{0}^{\infty}= \frac{1}{1+{\rm j} \cdot 2\pi fT}.$$ | ||
+ | Bei der Frequenz $f =$ 0 hat der Frequenzgang $\rm \underline{\: den \: Wert \: 1}$. | ||
'''2.''' | '''2.''' | ||
'''3.''' | '''3.''' |
Version vom 12. Juli 2016, 18:58 Uhr
Gemessen wurde die Impulsantwort $h(t)$ eines LZI–Systems, die für alle Zeiten $t$ < 0 identisch 0 ist und für $t$ > 0 entsprechend einer Exponentialfunktion abfällt: $$h(t) = \frac{1}{T} \cdot {\rm e}^{-t/T}.$$ Der Funktionsparameter sei $T =$ 1 ms. In der Teilaufgabe 3) ist nach der 3dB–Grenzfrequenz $f_{\rm G}$ gefragt, die wie folgt implizit definiert ist: $$|H(f = f_{\rm G})| = \frac{1}{\sqrt{2}} \cdot|H(f = 0)| .$$ Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 1.2. Gegeben ist das folgende bestimmte Integral: $$\int_{ 0 }^{ \infty } \frac{1}{1+x^2} \hspace{0.1cm}{\rm d}x = \frac{\pi}{2} .$$
Fragebogen
Musterlösung
1. Der Frequenzgang $H(f)$ ist die Fouriertransformierte von $h(t)$:
$$H(f) = \int_{-\infty}^{+\infty}h(t) \cdot {\rm e}^{\hspace{0.05cm}{-\rm j}2\pi ft}\hspace{0.15cm} {\rm d}t = \frac{1}{T} \cdot \int_{0}^{+\infty} {\rm e}^{\hspace{0.05cm}{-(\rm j}2\pi f+ {1}/{T}) t}\hspace{0.15cm}
{\rm d}t.$$
Die Integration führt zum Ergebnis:
$$H(f) = \left[ \frac{-1/T}{{\rm j}2\pi f+{1}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{-(\rm j}2\pi f+ {1}/{T})
t}\right]_{0}^{\infty}= \frac{1}{1+{\rm j} \cdot 2\pi fT}.$$
Bei der Frequenz $f =$ 0 hat der Frequenzgang $\rm \underline{\: den \: Wert \: 1}$.
2.
3.
4.
5.
6.
7.