Aufgaben:Aufgabe 1.5: Idealer rechteckförmiger Tiefpass: Unterschied zwischen den Versionen
Zeile 72: | Zeile 72: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.''' Die Impulsantwort des idealen Tiefpasses lautet mit $Δf =$ 10 kHz: |
− | '''2.''' | + | $$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t ).$$ |
+ | Das Ausgangssignal unterscheidet sich hiervon um den Gewichtungsfaktor $\rm 10^{–3} Vs$: | ||
+ | $$\begin{align*} y_1(t) & = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot 10^{4}\hspace{0.1cm}{\rm Hz} \cdot {\rm si}(\pi \cdot \Delta f \cdot t ) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot \Delta f \cdot t )\\ & \Rightarrow & \hspace{0.2cm}y_1(t = 0) \hspace{0.15cm}\underline{=10\hspace{0.1cm}{\rm V}},\hspace{0.2cm}y_1(t = 50\hspace{0.1cm}{\rm \mu s}) =10\hspace{0.1cm}{\rm V} \cdot {\rm | ||
+ | si} \left( \frac{\pi}{2} \right) \hspace{0.15cm}\underline{= 6.37\hspace{0.1cm}{\rm V}}.\end{align*}$$ | ||
+ | |||
+ | |||
+ | '''2.''' [[Datei:P_ID856__LZI_A_1_5_b.png | rechts | Diracpuls und Rechteckfilter (ML zu Aufgabe A1.5b)]] Das Spektrum $X_2(f)$ des Diracpulses beinhaltet diskrete Linien im Abstand $f_{\rm A} = 1/T_{\rm A} =$ 5 kHz, jeweils mit dem Gewicht 5 V. Das Spektrum $Y_2(f)$ besteht somit aus einer Spektrallinie bei $f =$ 0 mit dem Gewicht 5 V und je einer bei ±5 kHz mit Gewicht 2.5 V. Damit gilt für das Zeitsignal: | ||
+ | $$\begin{align*} y_2(t) \hspace{-0.15cm} &= \hspace{-0.15cm}5 \hspace{0.1cm}{\rm V} + 5\hspace{0.1cm}{\rm V} \cdot{\rm cos}(2 \pi \cdot f_{\rm A} \cdot t ) =\\ &= \hspace{-0.15cm}10\hspace{0.1cm}{\rm V} \cdot {\rm cos}^2(\pi \cdot f_{\rm A} \cdot t ).\end{align*}$$ | ||
+ | Der Signalwert bei $t =$ 0 beträgt somit $\rm \underline{10 \: V}$. | ||
+ | |||
+ | |||
'''3.''' | '''3.''' | ||
'''4.''' | '''4.''' |
Version vom 15. Juli 2016, 16:11 Uhr
Wir betrachten einen idealen, rechteckförmigen Tiefpass – manchmal auch Küpfmüller–Tiefpass genannt, der
- alle Frequenzen $f <$ 5 kHz unverfälscht durchlässt ⇒ $H(f) = 1$,
- alle Spektralanteile über 5 kHz vollständig unterdrückt ⇒ $H(f) = 0$.
Exakt bei der Grenzfrequenz $f_{\rm G} =$ 5 kHz ist der Wert der Übertragungsfunktion gleich 1/2.
An den Eingang des Tiefpasses werden verschiedene Signale angelegt:
- ein schmaler Rechteckimpuls geeigneter Höhe, der durch einen Diracimpuls angenähert werden kann:
$$x_1(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot {\rm \delta}(t),$$
- ein Diracpuls im Zeitabstand $T_{\rm A}$:
$$x_2(t) = 10^{-3}\hspace{0.1cm}{\rm Vs} \cdot \sum_{\nu = -\infty}^{+\infty}{\rm \delta}(t - \nu \cdot T_{\rm A}),$$
- wobei das zugehörige Spektrum mit $f_{\rm A} = 1/T_{\rm A}$ lautet:
$$X_2(f) = \frac{10^{-3}\hspace{0.1cm}{\rm Vs}}{T_{\rm A}} \cdot\sum_{\mu = -\infty}^{+\infty}{\rm \delta}(f - \mu \cdot f_{\rm A}),$$
- eine Sprungfunktion zum Zeitpunkt $t = 0$:
$$x_3(t) = 10\hspace{0.1cm}{\rm V} \cdot \gamma(t) = \left\{ \begin{array}{c} 0 \\ 5\hspace{0.1cm}{\rm V} \\ 10\hspace{0.1cm}{\rm V} \\ \end{array} \right.\quad \quad\begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ t < 0,} \\{ t = 0,} \\ { t > 0,} \\ \end{array}$$
- ein si–förmiger Impuls mit der äquivalenten Dauer $T$:
$$x_4(t) = 10\hspace{0.1cm}{\rm V} \cdot {\rm si}(\pi \cdot {t}/{T}) .$$
Hinweis: Die Aufgabe bezieht sich auf die Beschreibungen von Kapitel 1.3. In der Tabelle sind die Funktionswerte der Spaltfunktion ${\rm si}(πx)$ und der Integralsinusfunktion ${\rm Si}(πx)$ aufgelistet:
$${\rm Si}(\pi x) = \int_{ 0 }^{ x } {{\rm si} ( \pi \xi )} \hspace{0.1cm}{\rm d}\xi .$$
Fragebogen
Musterlösung
$$\begin{align*} y_2(t) \hspace{-0.15cm} &= \hspace{-0.15cm}5 \hspace{0.1cm}{\rm V} + 5\hspace{0.1cm}{\rm V} \cdot{\rm cos}(2 \pi \cdot f_{\rm A} \cdot t ) =\\ &= \hspace{-0.15cm}10\hspace{0.1cm}{\rm V} \cdot {\rm cos}^2(\pi \cdot f_{\rm A} \cdot t ).\end{align*}$$ Der Signalwert bei $t =$ 0 beträgt somit $\rm \underline{10 \: V}$.
3.
4.
5.
6.
7.