Aufgaben:Aufgabe 1.1: Würfelspiel Mäxchen: Unterschied zwischen den Versionen
Nabil (Diskussion | Beiträge) |
Nabil (Diskussion | Beiträge) |
||
Zeile 1: | Zeile 1: | ||
− | {{quiz-Header|Buchseite=Stochastische Signaltheorie/ | + | {{quiz-Header|Buchseite=Stochastische Signaltheorie/Mengentheoretische Grundlagen}} |
==A1.1 Würfelspiel Mäxchen== | ==A1.1 Würfelspiel Mäxchen== | ||
[[Datei:P_ID3__Sto_A1_1.jpg|right|]] | [[Datei:P_ID3__Sto_A1_1.jpg|right|]] | ||
Zeile 38: | Zeile 38: | ||
{Der Spieler $X$ hat eine „3” und eine „5” vorgelegt. Wie groß ist unter dieser Annahme die Gewinnchance von Spieler $Y$? | {Der Spieler $X$ hat eine „3” und eine „5” vorgelegt. Wie groß ist unter dieser Annahme die Gewinnchance von Spieler $Y$? | ||
|type="{}"} | |type="{}"} | ||
− | $Pr[Y gewinnt]$ = { 0.5556 3% } | + | $Pr[Y gewinnt]$ = { 0.5556 3% }Einige grundlegende Definitionen |
{Welches Spielergebnis $R_\min$ muss der Spieler $X$ mindestens erzielen, damit er eine größere Gewinnchance als 75% hat? | {Welches Spielergebnis $R_\min$ muss der Spieler $X$ mindestens erzielen, damit er eine größere Gewinnchance als 75% hat? | ||
Zeile 59: | Zeile 59: | ||
− | [[Category:Aufgaben zu Stochastische Signaltheorie|^1. | + | [[Category:Aufgaben zu Stochastische Signaltheorie|^1.2 Mengentheoretische Grundlagen^]] |
Version vom 26. August 2016, 15:58 Uhr
A1.1 Würfelspiel Mäxchen
Bei dem Würfelspiel Mäxchen wird jeweils mit zwei Würfeln geworfen. Die höhere Augenzahl der beiden Würfel wird mit 10 multipliziert und dann die niedrigere Augenzahl dazu addiert. Beispielsweise liefert eine „2“ und eine „4“ das Spielresultat 42 und eine „5“ und eine „6“ das Ergebnis 65. Das kleinstmögliche Resultat eines Wurfes ist somit 31.
Ein Pasch (zweimal die gleiche Augenzahl) wird im Allgemeinen höher bewertet als zwei ungleiche Würfel. So ist ein Einser-Pasch höher als 65, aber niedriger als jeder andere Pasch. Eine Sonderstellung nimmt bei diesem Spiel das Mäxchen (eine „1” und eine „2”) ein. Diese im Bild dargestellte Kombination steht noch über dem Sechser-Pasch.
Der Spieler $X$ beginnt. Er gewinnt, wenn der Spieler $Y$ das vorgelegte Resultat nicht überbieten kann. Die weiteren vielfältigen Optionen dieses Spiels werden hier nicht berücksichtigt.
Hinweis: Diese Aufgabe bezieht sich auf den gesamten Lehrstoff von Kapitel 1.1. Der Inhalt dieses Abschnitts ist in einem Lernvideo zusammengefasst:
Fragebogen
Musterlösung