Aufgaben:Aufgabe 3.2: Laplace-Transformation: Unterschied zwischen den Versionen
Aus LNTwww
Nabil (Diskussion | Beiträge) |
Nabil (Diskussion | Beiträge) |
||
Zeile 23: | Zeile 23: | ||
:Da <i>z</i>(<i>t</i>) ebenso wie die anderen hier betrachteten Signale <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) nicht energiebegrenzt ist, kann zur Berechnung der Spektralfunktion nicht die Gleichung | :Da <i>z</i>(<i>t</i>) ebenso wie die anderen hier betrachteten Signale <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) nicht energiebegrenzt ist, kann zur Berechnung der Spektralfunktion nicht die Gleichung | ||
− | :$$Z(f) = Z_{\rm L}(p) | + | :$$Z(f) = Z_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it |
+ | f}} .$$ | ||
:herangezogen werden. Vielmehr ist zu berücksichtigen, dass | :herangezogen werden. Vielmehr ist zu berücksichtigen, dass |
Version vom 30. September 2016, 20:40 Uhr
- Kausale Signale und Systeme beschreibt man meist mittels der Laplace–Transformation. Ist x(t) für alle Zeiten t < 0 identisch 0, so lautet die Laplace–Transformierte:
- $$X_{\rm L}(p) = \int\limits_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$
- In dieser Aufgabe sollen die Laplace–Transformierten der in der Grafik dargestellten kausalen Signale ermittelt werden. Die nachfolgenden Gleichungen gelten nur für t ≥ 0. Für negative Zeiten sind alle Signale identisch 0.
- Cosinussignal mit der Periodendauer T0:
- $$x(t) = {\rm cos} (2\pi \cdot \frac{t}{T_0})= {\rm cos} (\omega_0 \cdot t) \hspace{0.05cm},$$
- Sinussignal mit Periodendauer T0:
- $$y(t) = {\rm sin} (2\pi \cdot \frac{t}{T_0})= {\rm sin} (\omega_0 \cdot t) \hspace{0.05cm},$$
- sin(t)/t–Signal mit äquivalenten Nulldurchgängen im Abstand T:
- $$z(t) = {\rm si} (\pi \cdot \frac{t}{T})\hspace{0.2cm}{\rm mit}\hspace{0.2cm}{\rm si}(x)= {\rm sin}(x)/x \hspace{0.05cm}.$$
- Da z(t) ebenso wie die anderen hier betrachteten Signale x(t) und y(t) nicht energiebegrenzt ist, kann zur Berechnung der Spektralfunktion nicht die Gleichung
- $$Z(f) = Z_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} .$$
- herangezogen werden. Vielmehr ist zu berücksichtigen, dass
- $$z(t) = s(t) \cdot \gamma(t)$$
- gilt, wobei s(t) die herkömmliche symmetrische si–Funktion bezeichnet:
- $$s(t) = {\rm si} (\pi \cdot \frac{t}{T}) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad S(f)$$
- Die Fouriertansformierte der Sprungfunktion γ(t) lautet:
- $$\gamma(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad \Gamma(f) = \frac{1}{2} \cdot \delta (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$
- S(f) ist eine um f = 0 symmetrische Rechteckfunktion mit der Höhe T und der Breite 1/T.
- Hinweis: Die Aufgabe gehört zu Kapitel 3.2. Gegeben sind folgende bestimmte Integrale:
- $$\int\limits_{0}^{ \infty} { {\rm e}^{-p x} \cdot \cos(qx)}\hspace{0.1cm}{\rm d}x = \frac{p}{p^2 + q^2}\hspace{0.05cm} , \hspace{1.0cm}\int\limits_{0}^{ \infty} { {\rm e}^{-p x} \cdot \sin(qx)}\hspace{0.1cm}{\rm d}x = \frac{q}{p^2 + q^2}\hspace{0.05cm} , $$
- $$\int\limits_{0}^{ \infty} { {\rm e}^{-p x} \cdot \frac{\sin(qx)}{x}}\hspace{0.1cm}{\rm d}x = {\rm arctan}\hspace{0.15cm}\frac{q}{p}\hspace{0.05cm} , \hspace{0.6cm} \int\limits_{A}^{ B} { \frac{1}{x}}\hspace{0.1cm}{\rm d}x = {\rm ln}\hspace{0.15cm}\frac{B}{A}\hspace{0.05cm} .$$
Fragebogen
Musterlösung
- 1. Entsprechend der Laplace–Definition gilt mit den vorgegebenen Gleichungen:
- $$X_{\rm L}(p) = \int\limits_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \int\limits_{0}^{ \infty} { {\rm cos} (\omega_0 \cdot T) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \frac{p}{p^2 + \omega_0^2} \hspace{0.05cm} .$$
- Richtig ist somit der Vorschlag 2. Der Vorschlag 3 scheitert von vorneherein aus, da XL(p) die Einheit „Sekunde” aufweisen muss (Integral über die Zeit), während p und ω0 jeweils die Einheit 1/s besitzen.
- 2. Hier gilt bei gleicher Vorgehensweise wie in der Teilaufgabe 1):
- $$Y_{\rm L}(p) = \int\limits_{0}^{ \infty} { {\rm sin} (\omega_0 \cdot T) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \frac{\omega_0}{p^2 + \omega_0^2} \hspace{0.05cm} .$$
- Richtig ist hier somit der Lösungsvorschlag 1.
- 3. Die p–Übertragungsfunktion der kausalen si–Funktion lautet mit dem vorne angegebenen Integral:
- $$Z_{\rm L}(p) = \int\limits_{0}^{ \infty} { \frac{\sin(\pi \cdot t/T)}{\pi \cdot t/T} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t = \frac{T}{\pi} \cdot {\rm arctan}\hspace{0.15cm}\frac{\pi}{p \cdot T} \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm Vorschlag \hspace{0.15cm} 3}} \hspace{0.05cm} .$$
- Vorschlag 1 gilt nur für die Fouriertransformierte der akausalen si–Funktion. Vorschlag 2 kann schon allein deshalb nicht stimmen, da hier das Argument der Arcustangens–Funktion dimensionsbehaftet ist.
- 4. Aus z(t) = s(t) · γ(t) folgt mit dem Faltungssatz:
- $$Z(f) = S(f) \star \Gamma(f) = \frac{1}{2} \cdot S(f) \star \delta (f) + S(f) \star \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm}.$$
- Da S(f) reell ist, ergibt sich der Realteil von Z(f) als der erste Term dieser Gleichung:
- $${\rm Re}\{ Z(f)\} = \frac{1}{2} \cdot S(f) \star \delta (f) = \frac{1}{2} \cdot S(f) \hspace{0.05cm}.$$
- Der Realteil von Z(f) hat somit die gleiche Rechteckform wie S(f), ist aber nur halb so hoch:
- $${\rm Re}\{ Z(f)\}= \left\{ \begin{array}{c} T/2 \\ 0 \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \end{array} \begin{array}{*{20}c} { |f|< 1/(2T)\hspace{0.05cm},} \\ { |f|> 1/(2T)\hspace{0.05cm}.} \end{array} \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{{\rm Vorschlag \hspace{0.15cm} 1}}.$$
- 5. Mit dem Ergebnis aus d) folgt für den Imaginärteil:
- $${\rm Im}\{ Z(f)\} = S(f) \star \frac{(-1)}{{\rm j} \cdot 2\pi f} \hspace{0.05cm}.$$
- Für hinreichend große Frequenzen (f ≥ 1/(2 T)) liefert dieses Faltungsintegral:
- $${\rm Im}\{ Z(f)\} = -T \cdot \int\limits_{f- 1/(2T)}^{ f+ 1/(2T)} { \frac{1}{2\pi x}}\hspace{0.1cm}{\rm d}x = \frac{T}{2\pi } \cdot {\rm ln}\hspace{0.15cm}\left |\frac{f- 1/(2T)}{f+ 1/(2T)}\right | \hspace{0.05cm}.$$
- Richtig ist somit der zweite Vorschlag.