Digitalsignalübertragung/Fehlerwahrscheinlichkeit bei Basisbandübertragung: Unterschied zwischen den Versionen
Ayush (Diskussion | Beiträge) |
Ayush (Diskussion | Beiträge) |
||
Zeile 17: | Zeile 17: | ||
*Dieser „Digitale Kanal” wird allein durch die Fehlerfolge 〈<i>e<sub>ν</sub></i>〉 charakterisiert. Bei fehlerfreier Übertragung des <i>ν</i>–ten Bits (<i>υ<sub>ν</sub></i> = <i>q<sub>ν</sub></i>) gilt <i>e<sub>ν</sub></i> = 0, andernfalls (<i>υ<sub>ν</sub></i> ≠ <i>q<sub>ν</sub></i>) wird <i>e<sub>ν</sub></i> = 1 gesetzt.<br><br> | *Dieser „Digitale Kanal” wird allein durch die Fehlerfolge 〈<i>e<sub>ν</sub></i>〉 charakterisiert. Bei fehlerfreier Übertragung des <i>ν</i>–ten Bits (<i>υ<sub>ν</sub></i> = <i>q<sub>ν</sub></i>) gilt <i>e<sub>ν</sub></i> = 0, andernfalls (<i>υ<sub>ν</sub></i> ≠ <i>q<sub>ν</sub></i>) wird <i>e<sub>ν</sub></i> = 1 gesetzt.<br><br> | ||
− | {{Definition}}''':''' Die (mittlere) | + | {{Definition}}''':''' Die (mittlere) Bitfehlerwahrscheinlichkeit ist bei einem Binärsystem wie folgt gegeben:: |
<math>\it p_{\rm B} = \rm E[\rm Pr(\it v_{\nu} \ne q_{\nu})]= \overline {\rm Pr(\it v_{\nu} \ne q_{\nu})} = | <math>\it p_{\rm B} = \rm E[\rm Pr(\it v_{\nu} \ne q_{\nu})]= \overline {\rm Pr(\it v_{\nu} \ne q_{\nu})} = | ||
\lim_{{\it N}\to\infty}\frac{\rm 1}{\it | \lim_{{\it N}\to\infty}\frac{\rm 1}{\it | ||
Zeile 33: | Zeile 33: | ||
== Definition der Bitfehlerquote (1) == | == Definition der Bitfehlerquote (1) == | ||
<br> | <br> | ||
− | Die Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> eignet sich zum Beispiel gut für die Konzipierung und Optimierung von Digitalsystemen. Diese ist eine | + | Die Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> eignet sich zum Beispiel gut für die Konzipierung und Optimierung von Digitalsystemen. Diese ist eine Apriori-Kenngröße, die eine Vorhersage über das Fehlerverhalten eines Nachrichtensystems erlaubt, ohne dass dieses bereits realisiert sein muss. |
− | Dagegen muss zur messtechnischen Erfassung der Qualität eines realisierten Systems oder bei einer Systemsimulation auf die Bitfehlerquote übergegangen werden, die durch den Vergleich von Quellen– und Sinkensymbolfolge ermittelt wird. Diese ist somit eine | + | Dagegen muss zur messtechnischen Erfassung der Qualität eines realisierten Systems oder bei einer Systemsimulation auf die Bitfehlerquote übergegangen werden, die durch den Vergleich von Quellen– und Sinkensymbolfolge ermittelt wird. Diese ist somit eine Aposteriori-Kenngröße des Systems. |
− | {{Definition}}''':'''Die | + | {{Definition}}''':'''Die Bitfehlerquote (englisch: <i>Bit Error Rate</i>, BER) ist das Verhältnis aus der Anzahl <i>n</i><sub>B</sub>(<i>N</i>) der aufgetretenen Bitfehler (<i>υ<sub>ν</sub></i> ≠ <i>q<sub>ν</sub></i>) und der Anzahl <i>N</i> der insgesamt übertragenen Symbole: |
<math>h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N} \hspace{0.05cm}.</math> | <math>h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N} \hspace{0.05cm}.</math> | ||
Im Sinne der Wahrscheinlichkeitsrechnung stellt die Bitfehlerquote eine relative Häufigkeit dar; sie wird demzufolge auch <font color="#000000"><span style="font-weight: bold;"> Bitfehlerhäufigkeit </span></font> genannt.{{end}}<br> | Im Sinne der Wahrscheinlichkeitsrechnung stellt die Bitfehlerquote eine relative Häufigkeit dar; sie wird demzufolge auch <font color="#000000"><span style="font-weight: bold;"> Bitfehlerhäufigkeit </span></font> genannt.{{end}}<br> | ||
Zeile 42: | Zeile 42: | ||
Der Zusammenhang zwischen Wahrscheinlichkeit und relativer Häufigkeit wird in einem Lernvideo zum Buch „Stochastische Signaltheorie” verdeutlicht:<br> | Der Zusammenhang zwischen Wahrscheinlichkeit und relativer Häufigkeit wird in einem Lernvideo zum Buch „Stochastische Signaltheorie” verdeutlicht:<br> | ||
[https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=848&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross Das Bernoullische Gesetz der großen Zahlen] (Dateigröße: 1.97 MB, Dauer: 4:25)<br><br> | [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=848&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross Das Bernoullische Gesetz der großen Zahlen] (Dateigröße: 1.97 MB, Dauer: 4:25)<br><br> | ||
− | Für die nachfolgende Herleitung wird das | + | Für die nachfolgende Herleitung wird das BSC–Modell zugrunde gelegt, das in [http://www.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)&action=edit&redlink=1 Kapitel 5.2][[Please add link]] im Detail beschrieben wird. Jedes einzelne Bit wird mit der Wahrscheinlichkeit <i>p</i> = Pr(<i>υ<sub>ν</sub></i> ≠ <i>q<sub>ν</sub></i>) = Pr(<i>e</i><sub>ν</sub> = 1) verfälscht, unabhängig von den Fehlerwahrscheinlichkeiten der benachbarten Symbole. Die (mittlere) Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> ist somit ebenfalls gleich <i>p</i>. |
Zeile 67: | Zeile 67: | ||
{{Beispiel}}''':''' Die Bitfehlerwahrscheinlichkeit betrage <i>p</i><sub>B</sub> = 10<sup>–3</sup> und es ist bekannt, dass die Bitfehler statistisch unabhängig sind. Macht man nun sehr viele Versuchsreihen mit jeweils <i>N</i> = 10<sup>5</sup> Symbolen, so werden die jeweiligen Ergebnisse <i>h</i><sub>B</sub> entsprechend einer Gaußverteilung um den Sollwert 10<sup>–3</sup> variieren. Die Streuung beträgt dabei | {{Beispiel}}''':''' Die Bitfehlerwahrscheinlichkeit betrage <i>p</i><sub>B</sub> = 10<sup>–3</sup> und es ist bekannt, dass die Bitfehler statistisch unabhängig sind. Macht man nun sehr viele Versuchsreihen mit jeweils <i>N</i> = 10<sup>5</sup> Symbolen, so werden die jeweiligen Ergebnisse <i>h</i><sub>B</sub> entsprechend einer Gaußverteilung um den Sollwert 10<sup>–3</sup> variieren. Die Streuung beträgt dabei | ||
<math>\sigma_{h{\rm B}}= \sqrt{{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N}}\approx 10^{-4}\hspace{0.05cm}.</math><br> | <math>\sigma_{h{\rm B}}= \sqrt{{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N}}\approx 10^{-4}\hspace{0.05cm}.</math><br> | ||
− | Die Wahrscheinlichkeit, dass die relative Häufigkeit einen Wert zwischen 0.9 · 10<sup>–3</sup> und 1.1 · 10<sup>–3</sup> <nobr>(<i>ε</i> = 10<sup>–4</ | + | Die Wahrscheinlichkeit, dass die relative Häufigkeit einen Wert zwischen 0.9 · 10<sup>–3</sup> und 1.1 · 10<sup>–3</sup> <nobr>(<i>ε</i> = 10<sup>–4</supFehlerwahrscheinlichkeit bei Gaußschem Rauschen>)</nobr> haben wird, ist somit gleich <i>p<sub>ε</sub></i> = 1 – 2 · Q(<i>ε</i>/<i>σ<sub>h</sub></i><sub>B</sub>) = 1 – 2 · Q(1) ≈ 68.4%. Soll diese Wahrscheinlichkeit (Genauigkeit) auf 95% gesteigert werden, so müsste <i>N</i> auf 400 000 erhöht werden.{{end}} |
Zeile 76: | Zeile 76: | ||
Der Nutzanteil wird durch die Wahrscheinlichkeitsdichtefunktion (WDF) <i>f</i><sub><i>d</i>S</sub>(<i>d</i><sub>S</sub>) beschrieben, wobei wir hier von unterschiedlichen Auftrittswahrscheinlichkeiten <i>p</i><sub>L</sub> = Pr(<i>d</i><sub>S</sub> = –<i>s</i><sub>0</sub>), | Der Nutzanteil wird durch die Wahrscheinlichkeitsdichtefunktion (WDF) <i>f</i><sub><i>d</i>S</sub>(<i>d</i><sub>S</sub>) beschrieben, wobei wir hier von unterschiedlichen Auftrittswahrscheinlichkeiten <i>p</i><sub>L</sub> = Pr(<i>d</i><sub>S</sub> = –<i>s</i><sub>0</sub>), | ||
<i>p</i><sub>H</sub> = Pr(<i>d</i><sub>S</sub> = +<i>s</i><sub>0</sub>) = 1– <i>p</i><sub>L</sub> ausgehen. Die WDF <i>f</i><sub><i>d</i>N</sub>(<i>d</i><sub>N</sub>) der Störkomponente ist gaußförmig und besitzt die Streuung <i>σ<sub>d</sub></i>.<br> | <i>p</i><sub>H</sub> = Pr(<i>d</i><sub>S</sub> = +<i>s</i><sub>0</sub>) = 1– <i>p</i><sub>L</sub> ausgehen. Die WDF <i>f</i><sub><i>d</i>N</sub>(<i>d</i><sub>N</sub>) der Störkomponente ist gaußförmig und besitzt die Streuung <i>σ<sub>d</sub></i>.<br> | ||
− | [[Datei:P_ID1259__Dig_T_1_2_S3_v2.png|Fehlerwahrscheinlichkeit bei Gaußschem Rauschen|class=fit]] | + | [[Datei:P_ID1259__Dig_T_1_2_S3_v2.png|Fehlerwahrscheinlichkeit bei Gaußschem Rauschen|class=fit]] |
Die WDF <i>f</i><sub><i>d</i></sub>(<i>d</i>) der Detektionsabtastwerte <i>d</i>(<i>ν</i><i>T</i>) ergibt sich unter der Voraussetzung, dass <i>d</i><sub>S</sub>(<i>ν</i><i>T</i>) und <i>d</i><sub>N</sub>(<i>ν</i><i>T</i>) statistisch unabhängig voneinander sind („signalunabhängiges Rauschen”), als Faltungsprodukt<nowiki>:</nowiki> | Die WDF <i>f</i><sub><i>d</i></sub>(<i>d</i>) der Detektionsabtastwerte <i>d</i>(<i>ν</i><i>T</i>) ergibt sich unter der Voraussetzung, dass <i>d</i><sub>S</sub>(<i>ν</i><i>T</i>) und <i>d</i><sub>N</sub>(<i>ν</i><i>T</i>) statistisch unabhängig voneinander sind („signalunabhängiges Rauschen”), als Faltungsprodukt<nowiki>:</nowiki> |
Version vom 18. November 2016, 16:28 Uhr
Inhaltsverzeichnis
Definition der Bitfehlerwahrscheinlichkeit
Die Grafik zeigt ein sehr einfaches, aber allgemeingültiges Modell eines binären Übertragungssystems.
Dieses lässt sich wie folgt charakterisieren:
- Die Quelle und die Sinke werden durch die beiden Binärfolgen 〈qν〉 und 〈υν〉 beschrieben.
- Das gesamte Übertragungsystem – bestehend aus Sender, Übertragungskanal inklusive Störungen und Empfänger – wird als „Black Box” mit binärem Ein– und Ausgang betrachtet.
- Dieser „Digitale Kanal” wird allein durch die Fehlerfolge 〈eν〉 charakterisiert. Bei fehlerfreier Übertragung des ν–ten Bits (υν = qν) gilt eν = 0, andernfalls (υν ≠ qν) wird eν = 1 gesetzt.
Diese statistische Größe ist das wichtigste Beurteilungskriterium eines jeden Digitalsystems.
Die Berechnung als Erwartungswert E[…..] gemäß dem ersten Teil der obigen Gleichung entspricht einer Scharmittelung über die Verfälschungswahrscheinlichkeit Pr(υν ≠ qν) des ν–ten Symbols, während die überstreichende Linie im rechten Teil eine Zeitmittelung kennzeichnet. Beide Berechnungsarten führen – unter der gerechtfertigten Annahme ergodischer Prozesse – zum gleichen Ergebnis, wie im Kapitel 4 des Buches „Stochastische Signaltheorie” gezeigt wurde.
Auch aus der Fehlerfolge 〈eν〉 lässt sich die Bitfehlerwahrscheinlichkeit als Erwartungswert bestimmen, wobei zu berücksichtigen ist, dass eν nur die Werte 0 und 1 annehmen kann:\[\it p_{\rm B} = \rm E[\rm Pr(\it e_{\nu}=\rm 1)]= {\rm E}[{\it e_{\nu}}]\hspace{0.05cm}.\] Die obige Definition der Bitfehlerwahrscheinlichkeit gilt unabhängig davon, ob es statistische Bindungen innerhalb der Fehlerfolge 〈eν〉 gibt oder nicht. Je nachdem ist der Aufwand zur Berechnung von pB unterschiedlich groß und bei einer Systemsimulation müssen unterschiedliche digitale Kanalmodelle herangezogen werden. Im Kapitel 5 wird gezeigt, dass das sog. BSC–Modell (Binary Symmetrical Channel) statistisch unabhängige Fehler liefert, während für die Beschreibung von Bündelfehlerkanälen auf die Modelle von Gilbert–Elliott: .: Capacity of Burst–Noise Channel, In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266 and McCullough : The Binary Regenerative Channel, In: Bell Syst. Techn. J. (47), 1968 zurückgegriffen werden muss.
Definition der Bitfehlerquote (1)
Die Bitfehlerwahrscheinlichkeit pB eignet sich zum Beispiel gut für die Konzipierung und Optimierung von Digitalsystemen. Diese ist eine Apriori-Kenngröße, die eine Vorhersage über das Fehlerverhalten eines Nachrichtensystems erlaubt, ohne dass dieses bereits realisiert sein muss.
Dagegen muss zur messtechnischen Erfassung der Qualität eines realisierten Systems oder bei einer Systemsimulation auf die Bitfehlerquote übergegangen werden, die durch den Vergleich von Quellen– und Sinkensymbolfolge ermittelt wird. Diese ist somit eine Aposteriori-Kenngröße des Systems.
Die Schreibweise hB(N) soll deutlich machen, dass die per Messung oder durch Simulation ermittelte Bitfehlerquote signifikant von dem Parameter N – also der Anzahl der insgesamt übertragenen oder simulierten Symbole – abhängt. Nach den elementaren Gesetzen der Wahrscheinlichkeitsrechnung stimmt nur im Grenzfall N → ∞ die Aposteriori–Kenngröße hB mit der Apriori–Kenngröße pB exakt überein.
Der Zusammenhang zwischen Wahrscheinlichkeit und relativer Häufigkeit wird in einem Lernvideo zum Buch „Stochastische Signaltheorie” verdeutlicht:
Das Bernoullische Gesetz der großen Zahlen (Dateigröße: 1.97 MB, Dauer: 4:25)
Für die nachfolgende Herleitung wird das BSC–Modell zugrunde gelegt, das in Kapitel 5.2Please add link im Detail beschrieben wird. Jedes einzelne Bit wird mit der Wahrscheinlichkeit p = Pr(υν ≠ qν) = Pr(eν = 1) verfälscht, unabhängig von den Fehlerwahrscheinlichkeiten der benachbarten Symbole. Die (mittlere) Bitfehlerwahrscheinlichkeit pB ist somit ebenfalls gleich p.
Definition der Bitfehlerquote (2)
Nun soll abgeschätzt werden, wie genau die Bitfehlerwahrscheinlichkeit pB = p beim BSC-Modell durch die Bitfehlerquote hB approximiert wird. Dies geschieht in mehreren Schritten:
- Die Anzahl der Bitfehler bei der Übertragung von N Symbolen ist eine diskrete Zufallsgröße:\[n_{\rm B}(N) = \sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu} \hspace{0.2cm} \in \hspace{0.2cm} \{0, 1, ... , N \}\hspace{0.05cm}.\]
- Bei statistisch unabhängigen Fehlern (BSC) ist nB binominalverteilt. Demzufolge gilt:\[m_{n{\rm B}}=N \cdot p_{\rm B},\hspace{0.2cm}\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}\hspace{0.05cm}.\]
- Für Mittelwert und Streuung der Bitfehlerquote hB = nB/N gilt deshalb:\[m_{h{\rm B}}= \frac{m_{n{\rm B}}}{N} = p_{\rm B}\hspace{0.05cm},\hspace{0.2cm}\sigma_{h{\rm B}}= \frac{\sigma_{n{\rm B}}}{N}= \sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}{N}}\hspace{0.05cm}.\]
- Nach Moivre und Laplace lässt sich die Binominalverteilung in eine Gaußverteilung überführen:\[f_{h{\rm B}}({h_{\rm B}}) \approx \frac{1}{\sqrt{2\pi}\cdot\sigma_{h{\rm B}}}\cdot {\rm exp} \left[-\frac{(h_{\rm B}-p_{\rm B})^2}{2 \cdot \sigma_{h{\rm B}}^2}\right].\]
- Mit dem Gaußschen Fehlerintergal Q(x) lässt sich somit die Wahrscheinlichkeit pε berechnen, dass die per Simulation/Messung über N Symbole ermittelte Bitfehlerquote hB(N) betragsmäßig um weniger als einen Wert ε von der tatsächlichen Bitfehlerwahrscheinlichkeit pB abweicht:\[p_{\varepsilon}= {\rm Pr} \left( |h_{\rm B}(N) - p_{\rm B}| < \varepsilon \right) = 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon}{\sigma_{h{\rm B}}} \right)= 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon \cdot \sqrt{N}}{\sqrt{p_{\rm B} \cdot (1-p_{\rm B})}} \right)\hspace{0.05cm}.\]
Dieses Ergebnis ist wie folgt zu interpretieren: Wenn man unendlich viele Versuchsreihen über jeweils N Symbole durchführt, ist der Mittelwert mhB tatsächlich gleich der gesuchten Fehlerwahrscheinlichkeit pB. Bei einer einzigen Versuchsreihe wird man dagegen nur eine Näherung erhalten, wobei die jeweilige Abweichung vom Sollwert bei mehreren Versuchsreihen gaußverteilt ist.
\(\sigma_{h{\rm B}}= \sqrt{{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N}}\approx 10^{-4}\hspace{0.05cm}.\)
Fehlerwahrscheinlichkeit bei Gaußschem Rauschen (1)
Entsprechend den Voraussetzungen zu diesem Kapitel gehen wir davon aus, dass das Detektionssignal zu den Detektionszeitpunkten wie folgt dargestellt werden kann:\[ d(\nu T) = d_{\rm S}(\nu T)+d_{\rm N}(\nu T)\hspace{0.05cm}. \]
Der Nutzanteil wird durch die Wahrscheinlichkeitsdichtefunktion (WDF) fdS(dS) beschrieben, wobei wir hier von unterschiedlichen Auftrittswahrscheinlichkeiten pL = Pr(dS = –s0),
pH = Pr(dS = +s0) = 1– pL ausgehen. Die WDF fdN(dN) der Störkomponente ist gaußförmig und besitzt die Streuung σd.
Die WDF fd(d) der Detektionsabtastwerte d(νT) ergibt sich unter der Voraussetzung, dass dS(νT) und dN(νT) statistisch unabhängig voneinander sind („signalunabhängiges Rauschen”), als Faltungsprodukt:
\(f_d(d) = f_{d{\rm S}}(d_{\rm S}) \star f_{d{\rm N}}(d_{\rm N})\hspace{0.05cm}.\)
Der Schwellenwertentscheider mit der Schwelle E = 0 trifft dann eine falsche Entscheidung, wenn
- das Symbol L gesendet wurde (dS = –s0) und d > 0 ist (rote schraffierte Fläche), oder
- das Symbol H gesendet wurde (dS = +s0) und d < 0 ist (blaue schraffierte Fläche).
Da die Flächen der zwei Gaußkurven zusammen 1 ergeben, gibt die Summe aus der rot und der blau schraffierten Fläche die Bitfehlerwahrscheinlichkeit pB an. Die beiden grün schraffierten Flächen in der oberen Wahrscheinlichkeitsdichtefunktion fdN(dN) sind – jede für sich – ebenfalls gleich pB.
Die anhand der Grafik veranschaulichten Ergebnisse sollen nun formelmäßig hergeleitet werden. Es gilt\[p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( \upsilon_\nu = \mathbf{H}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{L})+
p_{\rm H} \cdot {\rm Pr}( \upsilon_\nu = \mathbf{L}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{H})\hspace{0.05cm}.\]
Hierbei sind pL und pH die Quellensymbolwahrscheinlichkeiten, während die jeweils zweiten, bedingten Wahrscheinlichkeiten Pr(υν | qν) die Verfälschungen durch den AWGN–Kanal beschreiben.
Aus der Entscheidungsregel des Schwellenwertentscheiders (mit Schwelle E = 0) ergibt sich auch:\[p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+ p_{\rm H} \cdot {\rm Pr}( d(\nu T)<0) =\]
- \[= p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0)+ p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.\]
Die Herleitung wird auf der nächsten Seite fortgesetzt.