Aufgaben:Aufgabe 2.6Z: Signal–zu–Rausch–Leistungsverhältnis: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 30: Zeile 30:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
  
{Input-Box Frage
+
{Berechnen Sie die Sendeleistung, bezogen auf den Einheitswiderstand 1 Ω.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$P_q$ = { 8 3% } $V^2$
  
  
 +
{Wie groß ist die Leistung $P_q$ in „W” für den Widerstand R = 50 Ω?
 +
|type="{}"}
 +
$P_q$ = { 0.16 3% } $w$
 +
 +
 +
{Welcher Dämpfungsfaktor ergibt sich für das Gesamtsystem?
 +
|type="{}"}
 +
$α$ = { 0.5 3% } $10{-4}$
  
 +
 +
{Berechnen Sie die Leistungsdichte der Rauschkomponente $ε(t)$ am Ausgang. Wie groß ist der Wert bei $f = 0$? Es gelte $H_E(f = 0) = 1$.
 +
|type="{}"}
 +
$Φ_ε(f = 0)$ = { 4 3% } $10^{-19}$ $W/Hz$
 +
 +
{Wie groß ist die Rauschleistung im Sinkensignal?
 +
|type="{}"}
 +
$P_ε$ = { 4 3% } $10^{-15 }$ $W$
 +
 +
 +
{Wie groß ist das Signal–zu–Rausch–Leistungsverhältnis (SNR) an der Sinke? Welcher db–Wert ergibt sich daraus?
 +
|type="{}"}
 +
$ρ_υ$ = { 5 3% } $10^{5 }$
 +
$10 · lg ρ_υ$ = { 50 3% } $dB$
 
</quiz>
 
</quiz>
  

Version vom 30. Dezember 2016, 21:30 Uhr

P ID1017 Mod Z 2 6.png

Wir gehen von folgenden Voraussetzungen aus:

  • cosinusförmiges Quellensignal:

$$ q(t) = 4 \,{\rm V} \cdot \cos(2 \pi \cdot 5\,{\rm kHz} \cdot t )\hspace{0.05cm},$$

  • ZSB–AM durch Multiplikation mit

$$z(t) = 1 \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t )\hspace{0.05cm},$$

  • frequenzunabhängige Dämpfung auf dem Kanal entsprechend $α_K = 10^{–4}$,
  • additives weißes Rauschen am Empfängereingang mit Rauschleistungsdichte $N_0 = 4 · 10^{–19} W/Hz$,
  • phasen– und frequenzsynchrone Demodulation durch Multiplikation mit gleichem $z(t)$ wie oben,
  • rechteckförmiger Tiefpass mit der Grenzfrequenz $f_E = 5 kHz$ innerhalb des Synchrondemodulators.


In der Grafik sind diese Vorgaben im Spektralbereich dargestellt. Ausdrücklich soll erwähnt werden, dass das Leistungsdichtespektrum $Φ_z(f)$ der Cosinusschwingung $z(t)$ ebenso wie das Amplitudenspektrum $Z(f)$ sich aus zwei Diraclinien bei $±f_T$ zusammensetzt, aber mit dem Gewicht $A^2/4$ anstelle von $A/2$. Die Amplitude A ist bei dieser Aufgabe gleich 1 zu setzen.

Das Sinkensignal $υ(t)$ setzt sich aus dem Nutzanteil $α · q(t)$ und dem Rauschanteil $ε(t)$ zusammen. Somit gilt allgemein für das zu bestimmende Signal–zu–Rausch–Leistungsverhältnis: $$ \rho_{v } = \frac{\alpha^2 \cdot P_q}{P_\varepsilon}\hspace{0.05cm}.$$ Dieses wichtige Qualitätskriterium wird häufig mit SNR (englisch: Signal–to–Noise–Ratio) abgekürzt.


Hinweis: Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.2. Beachten Sie bitte auch, dass

  • die Größen $α$ und $α_K$ nicht unbedingt gleich sein müssen,
  • sich alle Leistungen auf den Widerstand 50 Ω beziehen sollen,
  • $P_q$ bei „ZSB–AM ohne Träger” gleichzeitig die Sendeleistung $P_S$ angibt.

Fragebogen

1

{Berechnen Sie die Sendeleistung, bezogen auf den Einheitswiderstand 1 Ω.

$P_q$ =

$V^2$

2

Wie groß ist die Leistung $P_q$ in „W” für den Widerstand R = 50 Ω?

$P_q$ =

$w$

3

Welcher Dämpfungsfaktor ergibt sich für das Gesamtsystem?

$α$ =

$10{-4}$

4

Berechnen Sie die Leistungsdichte der Rauschkomponente $ε(t)$ am Ausgang. Wie groß ist der Wert bei $f = 0$? Es gelte $H_E(f = 0) = 1$.

$Φ_ε(f = 0)$ =

$10^{-19}$ $W/Hz$

5

Wie groß ist die Rauschleistung im Sinkensignal?

$P_ε$ =

$10^{-15 }$ $W$

6

Wie groß ist das Signal–zu–Rausch–Leistungsverhältnis (SNR) an der Sinke? Welcher db–Wert ergibt sich daraus?

$ρ_υ$ =

$10^{5 }$
$10 · lg ρ_υ$ =

$dB$


Musterlösung

1. 2. 3. 4. 5. 6. 7.