Aufgaben:Aufgabe 2.7: Ist der Modulationsgrad zu groß?: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Hüllkurvendemodulation }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |t…“)
 
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID1032__Mod_A_2_7.png|right|]]
 +
Das cosinusförmige Quellensignal $q(t)$ mit Amplitude $A_N = 5 V$ und Frequenz $f_N = 1 kHz$ wird (ZSB–) amplitudenmoduliert. Für das Empfangssignal gilt bei idealem Kanal:
 +
$$r(t) = \left(q(t) + A_{\rm T}\right) \cdot \cos (2\pi \cdot f_{\rm T}\cdot t )\hspace{0.05cm}.$$
 +
Es handelt sich also um die „ZSB–AM mit Träger”.
 +
 
 +
In der Grafik sind neben dem Quellensignal $q(t)$ und dem Empfangssignal $r(t)$ inklusive dessen Hüllkurve $a(t)$ auch das Sinkensignal $υ(t)$ und das Fehlersignal
 +
$$ \varepsilon(t) = v(t) - q(t)$$
 +
dargestellt. Das rot gezeichnete Sinkensignal
 +
$$v_{\rm A}(t) = a(t) - A_{\rm T}$$
 +
gehört zu einem Hüllkurvendemodulator, bei dem von der Hüllkurve $a(t)$ genau der beim Sender zugeführte Träger ($A_T$) subtrahiert wird. Dieses Signal $υ_A(t)$ besitzt ebenso wie das zugehörige Fehlersignal $ε_A(t)$ einen Gleichanteil. Aufgrund der Periodizität kann es durch die folgende Fourierreihe approximiert werden:
 +
$$v_{\rm A}(t) = A_0 + \sum_{n=1}^{6} A_i \cdot \cos (n \cdot \omega_{\rm N}\cdot t ),$$
 +
$${\rm mit}\hspace{0.3cm}A_0  = 0.272\,{\rm V},\hspace{0.3cm}A_1 = 4.480\,{\rm V},\hspace{0.3cm}A_2 = 0.458\,{\rm V},\hspace{0.3cm}A_3 = -0.367\,{\rm V},\hspace{0.3cm}$$
 +
$$A_4  =  0.260\,{\rm V},\hspace{0.3cm}A_5 = -0.155\,{\rm V},\hspace{0.3cm}A_6 = 0.066\,{\rm V}\hspace{0.05cm}.$$
 +
Wird dagegen der Gleichanteil von a(t) durch einen idealen Hochpass eliminiert, so ergeben sich die gleichsignalfreien Signale
 +
$$ v_{\rm B}(t) = \sum_{n=1}^{6} A_i \cdot \cos (n \cdot \omega_{\rm N}\cdot t ),\hspace{0.5cm}\varepsilon_{\rm B}(t) = v_{\rm B}(t) - q(t) = a(t) - A_{\rm T} - A_0 \hspace{0.05cm}.$$
 +
 
 +
'''Hinweis:''' Diese Aufgabe bezieht sich auf das [http://www.lntwww.de/Modulationsverfahren/Qualit%C3%A4tskriterien Kapitel 1.2] und das [http://www.lntwww.de/Modulationsverfahren/H%C3%BCllkurvendemodulation Kapitel 2.3] dieses Buches sowie auf das [http://www.lntwww.de/Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen Kapitel 2.2] im Buch „Lineare zeitinvariante Systeme”.
 +
 
 +
Zur Lösung dieser Aufgabe sind folgende unbestimmte Integrale gegeben:
 +
$$ \int { \cos (a x )}\hspace{0.1cm}{\rm d}x =\frac{1}{a} \cdot \sin (a x ), \hspace{0.5cm} \int { \cos^2 (a x )}\hspace{0.1cm}{\rm d}x = \frac{x}{2} +\frac{1}{4a} \cdot \sin (2a x ).$$
 +
Die Klirrfaktoren berechnen sich entsprechend
 +
$$K_2 = {A_2}/{A_1}, \hspace{0.3cm} K_3 = {A_3}/{A_1}, \hspace{0.1cm} ... \hspace{0.5cm} \Rightarrow \hspace{0.5cm}K = \sqrt{K_2^2 +K_3^2 + ...}\hspace{0.1cm} .$$
 +
 
 +
 
  
  

Version vom 1. Januar 2017, 17:17 Uhr

P ID1032 Mod A 2 7.png

Das cosinusförmige Quellensignal $q(t)$ mit Amplitude $A_N = 5 V$ und Frequenz $f_N = 1 kHz$ wird (ZSB–) amplitudenmoduliert. Für das Empfangssignal gilt bei idealem Kanal: $$r(t) = \left(q(t) + A_{\rm T}\right) \cdot \cos (2\pi \cdot f_{\rm T}\cdot t )\hspace{0.05cm}.$$ Es handelt sich also um die „ZSB–AM mit Träger”.

In der Grafik sind neben dem Quellensignal $q(t)$ und dem Empfangssignal $r(t)$ inklusive dessen Hüllkurve $a(t)$ auch das Sinkensignal $υ(t)$ und das Fehlersignal $$ \varepsilon(t) = v(t) - q(t)$$ dargestellt. Das rot gezeichnete Sinkensignal $$v_{\rm A}(t) = a(t) - A_{\rm T}$$ gehört zu einem Hüllkurvendemodulator, bei dem von der Hüllkurve $a(t)$ genau der beim Sender zugeführte Träger ($A_T$) subtrahiert wird. Dieses Signal $υ_A(t)$ besitzt ebenso wie das zugehörige Fehlersignal $ε_A(t)$ einen Gleichanteil. Aufgrund der Periodizität kann es durch die folgende Fourierreihe approximiert werden: $$v_{\rm A}(t) = A_0 + \sum_{n=1}^{6} A_i \cdot \cos (n \cdot \omega_{\rm N}\cdot t ),$$ $${\rm mit}\hspace{0.3cm}A_0 = 0.272\,{\rm V},\hspace{0.3cm}A_1 = 4.480\,{\rm V},\hspace{0.3cm}A_2 = 0.458\,{\rm V},\hspace{0.3cm}A_3 = -0.367\,{\rm V},\hspace{0.3cm}$$ $$A_4 = 0.260\,{\rm V},\hspace{0.3cm}A_5 = -0.155\,{\rm V},\hspace{0.3cm}A_6 = 0.066\,{\rm V}\hspace{0.05cm}.$$ Wird dagegen der Gleichanteil von a(t) durch einen idealen Hochpass eliminiert, so ergeben sich die gleichsignalfreien Signale $$ v_{\rm B}(t) = \sum_{n=1}^{6} A_i \cdot \cos (n \cdot \omega_{\rm N}\cdot t ),\hspace{0.5cm}\varepsilon_{\rm B}(t) = v_{\rm B}(t) - q(t) = a(t) - A_{\rm T} - A_0 \hspace{0.05cm}.$$

Hinweis: Diese Aufgabe bezieht sich auf das Kapitel 1.2 und das Kapitel 2.3 dieses Buches sowie auf das Kapitel 2.2 im Buch „Lineare zeitinvariante Systeme”.

Zur Lösung dieser Aufgabe sind folgende unbestimmte Integrale gegeben: $$ \int { \cos (a x )}\hspace{0.1cm}{\rm d}x =\frac{1}{a} \cdot \sin (a x ), \hspace{0.5cm} \int { \cos^2 (a x )}\hspace{0.1cm}{\rm d}x = \frac{x}{2} +\frac{1}{4a} \cdot \sin (2a x ).$$ Die Klirrfaktoren berechnen sich entsprechend $$K_2 = {A_2}/{A_1}, \hspace{0.3cm} K_3 = {A_3}/{A_1}, \hspace{0.1cm} ... \hspace{0.5cm} \Rightarrow \hspace{0.5cm}K = \sqrt{K_2^2 +K_3^2 + ...}\hspace{0.1cm} .$$



Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.