Aufgaben:Aufgabe 2.10: ESB-AM mit Kanalverzerrungen: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Einseitenbandmodulation }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |t…“) |
Safwen (Diskussion | Beiträge) |
||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:|right|]] | + | [[Datei:P_ID1045__Mod_A_2_9.png|right|]] |
+ | Wir betrachten die Übertragung des Quellensignals | ||
+ | $$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$ | ||
+ | über einen Gauß–Bandpasskanal mit der Mittenfrequenz $f_M = 48 kHz$. Diese unterscheidet sich von der bei der Modulation verwendeten Trägerfrequenz $f_T = 50 kHz$. Die Frequenzen $f_2$ und $f_4$ stehen als Abkürzungen für 2 kHz bzw. 4 kHz. | ||
+ | |||
+ | Untersucht werden sollen folgende Modulationsverfahren mit dem jeweiligen Spektrum $S_+(f)$ – des analytischen Signals – entsprechend der oberen Grafik: | ||
+ | :* ZSB–AM (alle vier Spektrallinien bei 46 kHz, 48 kHz, 52 kHz und 54 kHz), | ||
+ | :*OSB–AM (blaue Spektrallinien bei 52 kHz und 54 kHz), | ||
+ | :* USB–AM (grüne Spektrallinien bei 46 kHz und 48 kHz). | ||
+ | |||
+ | Verwendet wird jeweils ein Synchrondemodulator, der zunächst das empfängerseitige Trägersignal | ||
+ | $$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm OSB, USB} \hspace{0.05cm} \\ \end{array}$$ | ||
+ | multiplikativ zusetzt und anschließend die Anteile um die doppelte Trägerfrequenz vollständig unterdrückt. Bei idealem Kanal $H_K(f) = 1$ würde somit in allen Fällen $υ(t) = q(t)$ gelten. | ||
+ | |||
+ | Der hier betrachtete Gaußkanal ist durch folgende Stützwerte gegeben: | ||
+ | $$ H_{\rm K}(f = 46\,{\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\,{\rm kHz}) = 1.000,$$ | ||
+ | $$ H_{\rm K}(f = 52\,{\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\,{\rm kHz}) = 0.754\hspace{0.05cm}.$$ | ||
+ | Schreiben Sie das Sinkensignal jeweils in der Form | ||
+ | $$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$ | ||
+ | Alle Berechnungen sind sowohl für eine perfekte Phasensynchronisation ($Δϕ_T = 0$) als auch für einen Phasenversatz von $Δϕ_T = 30°$ durchzuführen. Dieser liegt zum Beispiel dann vor, wenn das sendeseitige Trägersignal cosinusförmig verläuft und für das empfangsseitige Trägersignal gilt: | ||
+ | $$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$ | ||
+ | '''Hinweis:''' Die Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://www.lntwww.de/Modulationsverfahren/Synchrondemodulation Kapitel 2.2] und [http://www.lntwww.de/Modulationsverfahren/Einseitenbandmodulation Kapitel 2.4]. | ||
Version vom 2. Januar 2017, 09:45 Uhr
Wir betrachten die Übertragung des Quellensignals $$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$ über einen Gauß–Bandpasskanal mit der Mittenfrequenz $f_M = 48 kHz$. Diese unterscheidet sich von der bei der Modulation verwendeten Trägerfrequenz $f_T = 50 kHz$. Die Frequenzen $f_2$ und $f_4$ stehen als Abkürzungen für 2 kHz bzw. 4 kHz.
Untersucht werden sollen folgende Modulationsverfahren mit dem jeweiligen Spektrum $S_+(f)$ – des analytischen Signals – entsprechend der oberen Grafik:
- ZSB–AM (alle vier Spektrallinien bei 46 kHz, 48 kHz, 52 kHz und 54 kHz),
- OSB–AM (blaue Spektrallinien bei 52 kHz und 54 kHz),
- USB–AM (grüne Spektrallinien bei 46 kHz und 48 kHz).
Verwendet wird jeweils ein Synchrondemodulator, der zunächst das empfängerseitige Trägersignal $$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm OSB, USB} \hspace{0.05cm} \\ \end{array}$$ multiplikativ zusetzt und anschließend die Anteile um die doppelte Trägerfrequenz vollständig unterdrückt. Bei idealem Kanal $H_K(f) = 1$ würde somit in allen Fällen $υ(t) = q(t)$ gelten.
Der hier betrachtete Gaußkanal ist durch folgende Stützwerte gegeben: $$ H_{\rm K}(f = 46\,{\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\,{\rm kHz}) = 1.000,$$ $$ H_{\rm K}(f = 52\,{\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\,{\rm kHz}) = 0.754\hspace{0.05cm}.$$ Schreiben Sie das Sinkensignal jeweils in der Form $$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$ Alle Berechnungen sind sowohl für eine perfekte Phasensynchronisation ($Δϕ_T = 0$) als auch für einen Phasenversatz von $Δϕ_T = 30°$ durchzuführen. Dieser liegt zum Beispiel dann vor, wenn das sendeseitige Trägersignal cosinusförmig verläuft und für das empfangsseitige Trägersignal gilt: $$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$ Hinweis: Die Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 2.2 und Kapitel 2.4.
Fragebogen
Musterlösung