Aufgaben:Aufgabe 2.6: Zweiwegekanal: Unterschied zwischen den Versionen
Aus LNTwww
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID912__LZI_A_2_6.png|right| | + | [[Datei:P_ID912__LZI_A_2_6.png|right|frame|Impulsantwort des Zweiwegekanals]] |
− | Der so genannte Zweiwegekanal wird durch folgende Impulsantwort charakterisiert (mit $T_1 < T_2$ | + | Der so genannte Zweiwegekanal wird durch folgende Impulsantwort charakterisiert $($mit $T_1 < T_2)$: |
− | $$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( | + | :$$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( |
t - T_2).$$ | t - T_2).$$ | ||
− | *Bis auf wenige Kombinationen der Systemparameter $z_1$, $T_1$, $z_2$ und $T_2$ wird dieser Kanal zu linearen Verzerrungen führen. | + | *Bis auf wenige Kombinationen der Systemparameter $z_1$, $T_1$, $z_2$ und $T_2$ wird dieser Kanal zu linearen Verzerrungen führen. |
− | * Man spricht nur dann von einem verzerrungsfreien Kanal, wenn durch ihn kein einziges Eingangssignal verzerrt wird. | + | * Man spricht nur dann von einem verzerrungsfreien Kanal, wenn durch ihn kein einziges Eingangssignal verzerrt wird. |
− | *Das bedeutet: Auch | + | * Das bedeutet: Auch beim Zweiwegekanal kann es Sonderfälle geben, bei denen tatsächlich $y(t) = \alpha \cdot x(t - \tau)$ gilt. |
Als Testsignale werden an den Systemeingang angelegt: | Als Testsignale werden an den Systemeingang angelegt: | ||
− | * ein [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Diracpuls]] $x_1(t)$ im Zeitabstand $T_0 = 1 \ \rm ms$ | + | * ein [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Diracpuls]] $x_1(t)$ im Zeitabstand $T_0 = 1 \ \rm ms$, dessen Spektralfunktion $X_1(f)$ ebenfalls ein Diracpuls ist, <br>und zwar mit Abstand $f_0 = 1/T_0 = 1 \ \rm kHz$: |
− | :$$x_1(t) = \sum_{n = - \infty}^{+\infty} \delta ( t - n \cdot T_0) , | + | :$$x_1(t) = \sum_{n = - \infty}^{+\infty} \delta ( t - n \cdot T_0) ,\hspace{0.5cm} X_1(f) = T_0 \cdot \sum_{k = - \infty}^{+\infty} \delta ( f - k |
− | |||
− | |||
\cdot f_0) ,$$ | \cdot f_0) ,$$ | ||
− | * ein Cosinussignal mit der Frequenz $f_2 = 250 \ \rm Hz$: | + | * ein Cosinussignal mit der Frequenz $f_2 = 250 \ \rm Hz$: |
:$$x_2(t) = \cos(2 \pi \cdot f_2 \cdot t) ,$$ | :$$x_2(t) = \cos(2 \pi \cdot f_2 \cdot t) ,$$ | ||
− | * die Summe zweier Cosinussignale mit den Frequenzen $f_2 = 250 \ \rm Hz$ und $f_3 = 1250 \ \rm Hz$: | + | * die Summe zweier Cosinussignale mit den Frequenzen $f_2 = 250 \ \rm Hz$ und $f_3 = 1250 \ \rm Hz$: |
:$$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$ | :$$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$ | ||
− | + | ||
− | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]]. | + | |
− | + | ||
− | *Um Ihnen | + | |
− | $$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$ | + | |
+ | Hinweise: | ||
+ | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]]. | ||
+ | |||
+ | *Um Ihnen Rechnungen zu ersparen, geben wir das Ergebnis für den Parametersatz $\big [z_1 = 1$, $T_1 = 0$, $z_2 =0.5$, $T_2 = 1 \ \rm ms\big ]$ an: | ||
+ | :$$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$ | ||
Zeile 35: | Zeile 38: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welche der | + | {Welche der folgenden Aussagen sind zutreffend? |
|type="[]"} | |type="[]"} | ||
− | + Der Parametersatz & | + | + Der Parametersatz $\big[z_1 = 1$, $T_1 = 0$, $z_2 =0 \big]$ ist der einzig mögliche zur Beschreibung des idealen Kanals. |
− | + Jeder verzerrungsfreie Kanal wird durch die beiden Kombinationen & | + | + Jeder verzerrungsfreie Kanal wird durch die beiden Kombinationen $\big[z_1 \ne 0, \; z_2 = 0 \big]$ bzw. $\big[z_1 = 0, \; z_2 \ne 0 \big]$ erfasst. |
− | - Die Werte & | + | - Die Werte $\big[z_1 \ne 0\big]$ und $\big[z_2 \ne 0\big]$ führen zu einem verzerrungsfreien Kanal, wenn $T_1$ und $T_2$ bestmöglich angepasst sind. |
− | {Es gelte $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$ | + | {Es gelte $\big[z_1 = 1$, $T_1 = 0$, $z_2 =0.5$, $T_2 = 1 \ \rm ms\big ]$. Berechnen Sie den Frequenzgang $H(f)$ dieses Kanals. <br>Welche Werte gibt es bei Vielfachen von $1 \ \rm kHz$? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Re}[H(f = n \cdot 1 \ {\rm kHz})] \ =$ { 1.5 3% } | + | ${\rm Re}\big[H(f = n \cdot 1 \ {\rm kHz})\big] \ = \ $ { 1.5 3% } |
− | ${\rm Im}[H(f = n \cdot 1 \ {\rm kHz})] \ =$ { 0. } | + | ${\rm Im}\big[H(f = n \cdot 1 \ {\rm kHz})\big] \ = \ $ { 0. } |
− | {Am Eingang des Systems mit gleichen Parametern wie in | + | {Am Eingang des Systems mit gleichen Parametern wie in Teilaufgabe '''(2)''' liegt nun der Diracpuls $x_1(t)$ an. <br>Welche Aussagen treffen für das Ausgangssignal $y_1(t)$ zu? |
|type="[]"} | |type="[]"} | ||
− | + $y_1(t)$ ist gegenüber $x_1(t)$ um eine Konstante gedämpft/verstärkt. | + | + $y_1(t)$ ist gegenüber $x_1(t)$ um eine Konstante gedämpft/verstärkt. |
− | - $y_1(t)$ ist gegenüber $x_1(t)$ verschoben. | + | - $y_1(t)$ ist gegenüber $x_1(t)$ verschoben. |
− | - $y_1(t)$ | + | - $y_1(t)$ weist gegenüber $x_1(t)$ Verzerrungen auf. |
− | {Berechnen Sie das Signal $y_2(t)$ als Systemantwort auf das Cosinussignal $x_2(t)$. Welcher Signalwert tritt zum Zeitpunkt $t = 0$ auf? | + | {Berechnen Sie das Signal $y_2(t)$ als Systemantwort auf das Cosinussignal $x_2(t)$. Welcher Signalwert tritt zum Zeitpunkt $t = 0$ auf? |
|type="{}"} | |type="{}"} | ||
− | $y_2(t = 0) \ =$ { 0.996 3% } | + | $y_2(t = 0) \ = \ $ { 0.996 3% } |
− | {Welche Aussagen treffen bezüglich der Signale | + | {Welche Aussagen treffen bezüglich der Signale $x_3(t)$ und $y_3(t)$ zu? |
|type="[]"} | |type="[]"} | ||
− | - $y_3(t)$ weist gegenüber $x_3(t)$ keine Verzerrungen auf. | + | - $y_3(t)$ weist gegenüber $x_3(t)$ keine Verzerrungen auf. |
− | - $y_3(t)$ weist gegenüber $x_3(t)$ Dämpfungsverzerrungen auf. | + | - $y_3(t)$ weist gegenüber $x_3(t)$ Dämpfungsverzerrungen auf. |
− | + $y_3(t)$ weist gegenüber $x_3(t)$ Phasenverzerrungen auf. | + | + $y_3(t)$ weist gegenüber $x_3(t)$ Phasenverzerrungen auf. |
Zeile 71: | Zeile 74: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Mit $z_1 = 1$, $T_1 = 0$ | + | '''(1)''' Richtig sind die <u>Aussagen 1 und 2</u>: |
− | $$H(f)= z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1},$$ | + | *Mit $z_1 = 1$, $T_1 = 0$, $z_2 =0$ ist $h(t) = \delta(t)$ und dementsprechend $H(f) = 1$, so dass stets $y(t) = x(t)$ gelten wird. |
+ | *Jede verzerrungsfreie Kanalimpulsantwort $h(t)$ besteht aus einer einzigen Diracfunktion,  zum Beispiel bei $t = T_1$. | ||
+ | *Dieser Fall ist im Modell durch $z_2 =0$ berücksichtigt. Damit lautet der Frequenzgang: | ||
+ | :$$H(f)= z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$ | ||
+ | *Dagegen wird der Kanal immer dann zu linearen Verzerrungen führen, wenn gleichzeitig $z_1$ und $z_2$ von Null verschieden sind. | ||
− | |||
− | '''(2)''' Die Fouriertransformation der Impulsantwort | + | '''(2)''' Die Fouriertransformation der Impulsantwort $h(t)$ führt auf die Gleichung: |
− | $$H(f) = z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2} | + | :$$H(f) = z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2} |
.$$ | .$$ | ||
− | Mit | + | *Mit $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$ und $T_2 = 1 \ \rm ms$ erhält man daraus: |
− | $$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$ | + | :$$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$ |
− | Aufgeschlüsselt nach Real– und Imaginärteil liefert dies: | + | *Aufgeschlüsselt nach Real– und Imaginärteil liefert dies: |
− | $${\rm Re}[H(f)] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm ms}) | + | :$${\rm Re}\big[H(f)\big] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Re}[H(f = f_1 =1 \ \rm kHz)] = 1.5}, $$ |
− | {\rm Im}[H(f)] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm ms}) | + | :$${\rm Im}\big[H(f)\big] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Im}\big[H(f = f_1 =1 \ \rm kHz)\big] = 0}, $$ |
− | |||
− | '''(3)''' Aus | + | '''(3)''' Richtig ist nur die <u>erste Antwort</u>: |
+ | *Aus '''(2)''' folgt für alle Vielfachen von $f_1 =1 \ \rm kHz$ ⇒ $f= n \cdot f_1$ die Betragsfunktion $|H(f)| = 1.5$ und die Phasenfunktion $b(f) \equiv 0$. | ||
+ | *Damit ist für diese diskreten Frequenzwerte auch die Phasenlaufzeit jeweils Null. | ||
+ | *Da aber das Spektrum $X_1(f)$ des Diracpulses genau bei diesen Frequenzen Spektrallinien aufweist, gilt $y_1(t) = 1.5 \cdot x_1(t)$. | ||
+ | |||
+ | |||
'''(4)''' Die Betragsfunktion lautet: | '''(4)''' Die Betragsfunktion lautet: | ||
− | $$|H(f)| = \sqrt{{\rm Re}[H(f)]^2 + {\rm Im}[H(f)]^2} | + | :$$|H(f)| = \sqrt{{\rm Re}[H(f)]^2 + {\rm Im}[H(f)]^2} $$ |
− | = \sqrt{1 + 0.25 \cdot \cos^2(2 \pi f \cdot T_2)+ \cos(2 \pi f \cdot T_2) + 0.25 \cdot \sin^2(2 \pi f \cdot T_2)} | + | :$$\Rightarrow \; |H(f)| = \sqrt{1 + 0.25 \cdot \cos^2(2 \pi f \cdot T_2)+ \cos(2 \pi f \cdot T_2) + 0.25 \cdot \sin^2(2 \pi f \cdot T_2)} |
= \sqrt{1.25 + \cos(2 \pi f \cdot T_2) }.$$ | = \sqrt{1.25 + \cos(2 \pi f \cdot T_2) }.$$ | ||
− | Für die Frequenz | + | *Für die Frequenz $f_2 =0.25 \ \rm kHz$ erhält man somit: |
− | $$|H(f)| = \sqrt{1.25 + \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$ | + | :$$|H(f)| = \sqrt{1.25 + \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$ |
− | Die Phasenfunktion lautet allgemein bzw. bei der Frequenz | + | *Die Phasenfunktion lautet allgemein bzw. bei der Frequenz $f_2 =0.25 \ \rm kHz$: |
− | $$b(f) = - {\rm arctan}\hspace{0.1cm}\frac{{\rm Im}[H(f)]}{{\rm | + | :$$b(f) = - {\rm arctan}\hspace{0.1cm}\frac{{\rm Im}[H(f)]}{{\rm |
Re}[H(f)]} = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(2 | Re}[H(f)]} = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(2 | ||
\pi f T_2)}{1+0.5 \cdot \cos(2 \pi f T_2)},$$ | \pi f T_2)}{1+0.5 \cdot \cos(2 \pi f T_2)},$$ | ||
Zeile 108: | Zeile 118: | ||
arctan}\hspace{0.1cm}\frac{0.5}{1} = 0.464.$$ | arctan}\hspace{0.1cm}\frac{0.5}{1} = 0.464.$$ | ||
− | + | *Damit beträgt die Phasenlaufzeit für diese Frequenz: | |
:$$\tau_2 = \frac {b(f_2)}{2 \pi f_2} = \frac {0.464}{2 \pi \cdot | :$$\tau_2 = \frac {b(f_2)}{2 \pi f_2} = \frac {0.464}{2 \pi \cdot | ||
0.25\,{\rm kHz}} \approx 0.3\,{\rm ms},$$ | 0.25\,{\rm kHz}} \approx 0.3\,{\rm ms},$$ | ||
− | + | * Für das Ausgangssignal gilt somit: | |
:$$y_2(t) = 1.118 \cdot \cos(2 \pi \cdot 0.25\,{\rm kHz}\cdot (t - | :$$y_2(t) = 1.118 \cdot \cos(2 \pi \cdot 0.25\,{\rm kHz}\cdot (t - | ||
0.3\,{\rm ms})).$$ | 0.3\,{\rm ms})).$$ | ||
− | Der Signalwert zum Nullzeitpunkt ist somit: | + | *Der Signalwert zum Nullzeitpunkt ist somit: |
− | $$y_2(t=0) = 1.118 \cdot \cos(-2 \pi \cdot 0.25\,{\rm kHz} \cdot | + | :$$y_2(t=0) = 1.118 \cdot \cos(-2 \pi \cdot 0.25\,{\rm kHz} \cdot |
0.3\,{\rm ms}) \approx 1.118 \cdot 0.891 \hspace{0.15cm}\underline{= 0.996}.$$ | 0.3\,{\rm ms}) \approx 1.118 \cdot 0.891 \hspace{0.15cm}\underline{= 0.996}.$$ | ||
− | |||
− | Mit | + | '''(5)''' Beide Frequenzen haben den gleichen Dämpfungsfaktor $\alpha = 1.118$ , daher sind keine Dämpfungsverzerrungen festzustellen. |
− | $$b(f = f_3) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( | + | |
+ | *Mit $f_3 = 1.25 \ \rm kHz$ und $T_2 = 1 \ \rm ms$ ergibt sich für die Phasenfunktion: | ||
+ | :$$b(f = f_3) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( | ||
2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$ | 2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$ | ||
− | also genau der gleiche Wert wie bei der Frequenz | + | :also genau der gleiche Wert wie bei der Frequenz $f_2 = 0.25 \ \rm kHz$. |
+ | *Trotzdem kommt es aber nun zu Phasenverzerrungen, da für $f_3$ die Phasenlaufzeit nur mehr $\tau = 60 \ µ \rm s$ beträgt. | ||
− | Für das Ausgangssignal kann also geschrieben werden: | + | *Für das Ausgangssignal kann also geschrieben werden: |
− | $$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm ms}) + | + | :$$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm ms}) + |
1.118 | 1.118 | ||
− | \cdot \cos(2 \pi f_3 \cdot (t - 0.06\,{\rm ms}) | + | \cdot \cos(2 \pi f_3 \cdot (t - 0.06\,{\rm ms})$$ |
− | = 1.118 \cdot \cos(2 \pi f_2 \cdot t - 27^\circ) + 1.118 \cdot | + | :$$\Rightarrow \; \; y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot t - 27^\circ) + 1.118 \cdot |
\cos(2 \pi f_3 \cdot t - 27^\circ).$$ | \cos(2 \pi f_3 \cdot t - 27^\circ).$$ | ||
− | + | Richtig ist demnach die <u>Antwort 3</u>: | |
+ | *Es gibt also Phasenverzerrungen, obwohl für beide Schwingungen die gleichen Phasenwerte $\varphi_2 = \varphi_3= 27^\circ$ gelten. | ||
+ | *Damit keine Phasenverzerrungen auftreten, müssten | ||
+ | **die Phasenlaufzeiten $\tau_2$ und $\tau_3$ gleich sein, und | ||
+ | **die Phasenwerte $\varphi_2$ und $\varphi_3$ linear mit den zugehörigen Frequenzen ansteigen. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Aktuelle Version vom 6. Oktober 2021, 10:00 Uhr
Der so genannte Zweiwegekanal wird durch folgende Impulsantwort charakterisiert $($mit $T_1 < T_2)$:
- $$h(t) = z_1 \cdot \delta ( t - T_1) + z_2 \cdot \delta ( t - T_2).$$
- Bis auf wenige Kombinationen der Systemparameter $z_1$, $T_1$, $z_2$ und $T_2$ wird dieser Kanal zu linearen Verzerrungen führen.
- Man spricht nur dann von einem verzerrungsfreien Kanal, wenn durch ihn kein einziges Eingangssignal verzerrt wird.
- Das bedeutet: Auch beim Zweiwegekanal kann es Sonderfälle geben, bei denen tatsächlich $y(t) = \alpha \cdot x(t - \tau)$ gilt.
Als Testsignale werden an den Systemeingang angelegt:
- ein Diracpuls $x_1(t)$ im Zeitabstand $T_0 = 1 \ \rm ms$, dessen Spektralfunktion $X_1(f)$ ebenfalls ein Diracpuls ist,
und zwar mit Abstand $f_0 = 1/T_0 = 1 \ \rm kHz$:
- $$x_1(t) = \sum_{n = - \infty}^{+\infty} \delta ( t - n \cdot T_0) ,\hspace{0.5cm} X_1(f) = T_0 \cdot \sum_{k = - \infty}^{+\infty} \delta ( f - k \cdot f_0) ,$$
- ein Cosinussignal mit der Frequenz $f_2 = 250 \ \rm Hz$:
- $$x_2(t) = \cos(2 \pi \cdot f_2 \cdot t) ,$$
- die Summe zweier Cosinussignale mit den Frequenzen $f_2 = 250 \ \rm Hz$ und $f_3 = 1250 \ \rm Hz$:
- $$x_3(t) = \cos(2 \pi \cdot f_2 \cdot t) + \cos(2 \pi \cdot f_3 \cdot t) .$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Lineare Verzerrungen.
- Um Ihnen Rechnungen zu ersparen, geben wir das Ergebnis für den Parametersatz $\big [z_1 = 1$, $T_1 = 0$, $z_2 =0.5$, $T_2 = 1 \ \rm ms\big ]$ an:
- $$|H(f = f_2)| = |H(f = f_3)| = \sqrt{1.25} \approx 1.118, \; \; \; \; b(f = f_2) = b(f = f_3) = \arctan (0.5) \approx 0.464.$$
Fragebogen
Musterlösung
(1) Richtig sind die Aussagen 1 und 2:
- Mit $z_1 = 1$, $T_1 = 0$, $z_2 =0$ ist $h(t) = \delta(t)$ und dementsprechend $H(f) = 1$, so dass stets $y(t) = x(t)$ gelten wird.
- Jede verzerrungsfreie Kanalimpulsantwort $h(t)$ besteht aus einer einzigen Diracfunktion,  zum Beispiel bei $t = T_1$.
- Dieser Fall ist im Modell durch $z_2 =0$ berücksichtigt. Damit lautet der Frequenzgang:
- $$H(f)= z_1\cdot {\rm e}^{-{\rm j}\cdot \hspace{0.05cm}2 \pi f T_1} \ \Rightarrow \ y(t) = z_1 \cdot x(t- T_1).$$
- Dagegen wird der Kanal immer dann zu linearen Verzerrungen führen, wenn gleichzeitig $z_1$ und $z_2$ von Null verschieden sind.
(2) Die Fouriertransformation der Impulsantwort $h(t)$ führt auf die Gleichung:
- $$H(f) = z_1\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ z_2\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2} .$$
- Mit $z_1 = 1$, $T_1 = 0$, $z_2 =0.5$ und $T_2 = 1 \ \rm ms$ erhält man daraus:
- $$H(f) =1 + 0.5 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}.$$
- Aufgeschlüsselt nach Real– und Imaginärteil liefert dies:
- $${\rm Re}\big[H(f)\big] = 1 + 0.5 \cdot \cos(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Re}[H(f = f_1 =1 \ \rm kHz)] = 1.5}, $$
- $${\rm Im}\big[H(f)\big] = -0.5 \cdot \sin(2 \pi f \cdot 1\,{\rm ms}) \ \Rightarrow \ \underline{{\rm Im}\big[H(f = f_1 =1 \ \rm kHz)\big] = 0}, $$
(3) Richtig ist nur die erste Antwort:
- Aus (2) folgt für alle Vielfachen von $f_1 =1 \ \rm kHz$ ⇒ $f= n \cdot f_1$ die Betragsfunktion $|H(f)| = 1.5$ und die Phasenfunktion $b(f) \equiv 0$.
- Damit ist für diese diskreten Frequenzwerte auch die Phasenlaufzeit jeweils Null.
- Da aber das Spektrum $X_1(f)$ des Diracpulses genau bei diesen Frequenzen Spektrallinien aufweist, gilt $y_1(t) = 1.5 \cdot x_1(t)$.
(4) Die Betragsfunktion lautet:
- $$|H(f)| = \sqrt{{\rm Re}[H(f)]^2 + {\rm Im}[H(f)]^2} $$
- $$\Rightarrow \; |H(f)| = \sqrt{1 + 0.25 \cdot \cos^2(2 \pi f \cdot T_2)+ \cos(2 \pi f \cdot T_2) + 0.25 \cdot \sin^2(2 \pi f \cdot T_2)} = \sqrt{1.25 + \cos(2 \pi f \cdot T_2) }.$$
- Für die Frequenz $f_2 =0.25 \ \rm kHz$ erhält man somit:
- $$|H(f)| = \sqrt{1.25 + \cos(\frac{\pi}{2} ) }= \sqrt{1.25} = 1.118.$$
- Die Phasenfunktion lautet allgemein bzw. bei der Frequenz $f_2 =0.25 \ \rm kHz$:
- $$b(f) = - {\rm arctan}\hspace{0.1cm}\frac{{\rm Im}[H(f)]}{{\rm Re}[H(f)]} = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin(2 \pi f T_2)}{1+0.5 \cdot \cos(2 \pi f T_2)},$$
- $$b(f = f_2) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( \pi/2)}{1+0.5 \cdot \cos(\pi/2)}={\rm arctan}\hspace{0.1cm}\frac{0.5}{1} = 0.464.$$
- Damit beträgt die Phasenlaufzeit für diese Frequenz:
- $$\tau_2 = \frac {b(f_2)}{2 \pi f_2} = \frac {0.464}{2 \pi \cdot 0.25\,{\rm kHz}} \approx 0.3\,{\rm ms},$$
- Für das Ausgangssignal gilt somit:
- $$y_2(t) = 1.118 \cdot \cos(2 \pi \cdot 0.25\,{\rm kHz}\cdot (t - 0.3\,{\rm ms})).$$
- Der Signalwert zum Nullzeitpunkt ist somit:
- $$y_2(t=0) = 1.118 \cdot \cos(-2 \pi \cdot 0.25\,{\rm kHz} \cdot 0.3\,{\rm ms}) \approx 1.118 \cdot 0.891 \hspace{0.15cm}\underline{= 0.996}.$$
(5) Beide Frequenzen haben den gleichen Dämpfungsfaktor $\alpha = 1.118$ , daher sind keine Dämpfungsverzerrungen festzustellen.
- Mit $f_3 = 1.25 \ \rm kHz$ und $T_2 = 1 \ \rm ms$ ergibt sich für die Phasenfunktion:
- $$b(f = f_3) = - {\rm arctan}\hspace{0.1cm}\frac{-0.5 \cdot \sin( 2.5 \pi)}{1+0.5 \cdot \cos(2.5 \pi)}= 0.464 = b(f = f_2),$$
- also genau der gleiche Wert wie bei der Frequenz $f_2 = 0.25 \ \rm kHz$.
- Trotzdem kommt es aber nun zu Phasenverzerrungen, da für $f_3$ die Phasenlaufzeit nur mehr $\tau = 60 \ µ \rm s$ beträgt.
- Für das Ausgangssignal kann also geschrieben werden:
- $$y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot (t - 0.3\,{\rm ms}) + 1.118 \cdot \cos(2 \pi f_3 \cdot (t - 0.06\,{\rm ms})$$
- $$\Rightarrow \; \; y_3(t) = 1.118 \cdot \cos(2 \pi f_2 \cdot t - 27^\circ) + 1.118 \cdot \cos(2 \pi f_3 \cdot t - 27^\circ).$$
Richtig ist demnach die Antwort 3:
- Es gibt also Phasenverzerrungen, obwohl für beide Schwingungen die gleichen Phasenwerte $\varphi_2 = \varphi_3= 27^\circ$ gelten.
- Damit keine Phasenverzerrungen auftreten, müssten
- die Phasenlaufzeiten $\tau_2$ und $\tau_3$ gleich sein, und
- die Phasenwerte $\varphi_2$ und $\varphi_3$ linear mit den zugehörigen Frequenzen ansteigen.