Stochastische Signaltheorie/Gleichverteilte Zufallsgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(8 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
 
==Allgemeine Beschreibung und Definition==
 
==Allgemeine Beschreibung und Definition==
 +
<br>
 +
[[Datei:P_ID45__Sto_T_3_4_S1_neu100.png |frame|Gleichverteilung:&nbsp; <br>Wahrscheinlichkeitsdichtefunktion&nbsp; (links), Verteilungsfunktion (rechts)]]
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Eine Zufallsgröße&nbsp; $x$&nbsp; nennt man&nbsp; '''gleichverteilt''',&nbsp; wenn sie nur Werte im Bereich von&nbsp; $x_{\rm min}$&nbsp; bis&nbsp; $x_{\rm max}$&nbsp; annehmen kann,&nbsp; und zwar mit gleicher Wahrscheinlichkeit.
  
Die Grafik zeigt links die Wahrscheinlichkeitsdichtefunktion (abgekürzt WDF) und rechts die Verteilungsfunktion (kurz VTF) einer gleichverteilten Zufallsgröße $x$.
+
Die Grafik zeigt  
 +
*links die Wahrscheinlichkeitsdichtefunktion&nbsp; $f_{x}(x)$,
 +
*rechts die Verteilungsfunktion&nbsp; $F_{x}(r)$
  
[[Datei:P_ID45__Sto_T_3_4_S1_neu100.png |WDF und VTF der Gleichverteilung]]
 
  
{{Definition}}''':''' &nbsp; Eine Zufallsgröße $x$ bezeichnet man als '''gleichverteilt''', wenn sie nur Werte im Bereich von $x_{\rm min}$ bis $x_{\rm max}$ annehmen kann, und zwar mit gleicher Wahrscheinlichkeit. {{end}}<br>
+
einer solchen  gleichverteilten Zufallsgröße&nbsp; $x$.}}
  
  
Aus der Grafik und der Definition können folgende Eigenschaften abgeleitet werden:  
+
Aus der Grafik und obiger Definition können folgende Eigenschaften abgeleitet werden:  
*Die WDF $f_{x}(x)$ besitzt im Bereich von $x_{\rm min}$ bis $x_{\rm max}$ den konstanten Wert $1/(x_{\rm max} - x_{\rm min})$, wobei an den beiden Bereichsgrenzen für $f_{x}(x)$ jeweils nur der halbe Wert also der Mittelwert zwischen links- und rechtsseitigem Grenzwert – zu setzen ist.  
+
*Die Wahrscheinlichkeitsdichtefunktion&nbsp; $\rm (WDF)$&nbsp; besitzt im Bereich von&nbsp; $x_{\rm min}$&nbsp; bis&nbsp; $x_{\rm max}$&nbsp; den konstanten Wert&nbsp; $1/(x_{\rm max} - x_{\rm min})$.&nbsp;
*Die Verteilungsfunktion $F_{x}(r)$ steigt im Bereich von $x_{\rm min}$ bis $x_{\rm max}$ linear von $0$ auf $1$ linear an.   
+
*An den Bereichsgrenzen ist für&nbsp; $f_{x}(x)$&nbsp; jeweils nur der halbe Wert zu setzen, &nbsp; also der Mittelwert zwischen links&ndash; und rechtsseitigem Grenzwert.  
*Mittelwert und Streuung haben bei der Gleichverteilung die folgenden Werte:
+
*Die Verteilungsfunktion&nbsp; $\rm (VTF)$&nbsp; steigt im Bereich von&nbsp; $x_{\rm min}$&nbsp; bis&nbsp; $x_{\rm max}$&nbsp; linear von&nbsp; $0$&nbsp; auf&nbsp; $1$&nbsp; an.   
$$m_{\rm 1} = \frac{\it x_ {\rm max} \rm + \it x_{\rm min}}{2},\hspace{0.5cm}
+
*Mittelwert, Varianz und Streuung haben bei der Gleichverteilung die folgenden Werte:
 +
:$$m_{\rm 1} = \frac{\it x_ {\rm max} \rm + \it x_{\rm min}}{2},\hspace{0.5cm}
 +
\sigma^2 = \frac{[x_{\rm max} - x_{\rm min}]^2}{12},\hspace{0.5cm}
 
\sigma = \frac{\it x_{\rm max} - \it x_{\rm min}}{2 \sqrt{3}}.$$
 
\sigma = \frac{\it x_{\rm max} - \it x_{\rm min}}{2 \sqrt{3}}.$$
*Bei symmetrischer WDF &nbsp; &rArr; &nbsp; $x_{\rm min} = –x_{\rm max}$ erhält man als Sonderfall $m_1 = 0$ und die Varianz $σ^2 = x_{\rm max}^2/3.$
+
*Bei symmetrischer WDF &nbsp; &rArr; &nbsp; $x_{\rm min} = -x_{\rm max}$&nbsp; erhält man als Sonderfall den Mittelwert&nbsp; $m_1 = 0$&nbsp; und die Varianz&nbsp; $σ^2 = x_{\rm max}^2/3.$
  
  
{{Beispiel}}''':''' &nbsp; Hier sehen Sie zwei Signalverläufe mit gleichförmiger Amplitudenverteilung.
+
{{GraueBox|TEXT= 
*Links ist statistische Unabhängigkeit der einzelnen Abtastwerte vorausgesetzt, das heißt, $x_ν$ kann alle Werte zwischen $x_{\rm min}$ und $x_{\rm max}$ mit gleicher Wahrscheinlichkeit annehmen, und zwar unabhängig von der Vergangenheit $(x_{ν–1}, x_{ν–2}, ...).$
+
$\text{Beispiel 1:}$&nbsp;  
*Beim rechten Signal $y(t)$ ist diese Unabhängigkeit aufeinanderfolgender Signalwerte nicht mehr gegeben. Vielmehr stellt dieses Sägezahnsignal ein deterministisches Signal dar.  
+
Die Grafik zeigt zwei Signalverläufe mit gleichförmiger Amplitudenverteilung.
  
 +
[[Datei:P_ID618__Sto_T_3_4_S2_neu100.png |right|frame|Beispiele gleichverteilter Signale]]
  
[[Datei:P_ID618__Sto_T_3_4_S2_neu100.png |Beispiele gleichverteilter Signale]]
+
{{end}}<br>
+
*Links ist statistische Unabhängigkeit der einzelnen Abtastwerte vorausgesetzt,&nbsp; das heißt,&nbsp; die Zufallsgröße&nbsp; $x_ν$&nbsp; kann alle Werte zwischen&nbsp; $x_{\rm min}$&nbsp; und&nbsp; $x_{\rm max}$&nbsp; mit gleicher Wahrscheinlichkeit annehmen,&nbsp; und zwar unabhängig von der Vergangenheit&nbsp; $(x_{ν–1}, x_{ν–2}, \hspace{0.1cm}\text{...}).$
 +
 
 +
 
 +
*Beim rechten Signal&nbsp; $y(t)$&nbsp; ist diese Unabhängigkeit aufeinanderfolgender Signalwerte nicht mehr gegeben.&nbsp; Vielmehr stellt dieses Sägezahnsignal ein deterministisches Signal dar.}}
  
 
==Bedeutung der Gleichverteilung für die Nachrichtentechnik==
 
==Bedeutung der Gleichverteilung für die Nachrichtentechnik==
Die Bedeutung gleichverteilter Zufallsgrößen für die Informations- und Kommunikationstechnik ist darauf zurückzuführen, dass diese WDF–Form aus Sicht der Informationstheorie unter der Nebenbedingung [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Leistungs.E2.80.93_und_Spitzenwertbegrenzung|Spitzenwertbegrenzung]] ein Optimum darstellt. Mit keiner anderen Verteilung als der Gleichverteilung erreicht man unter dieser Voraussetzung eine größere [[Informationstheorie/Differentielle_Entropie#Differentielle_Entropie_einiger_spitzenwertbegrenzter_Zufallsgr.C3.B6.C3.9Fen|differentielle Entropie]].  Mit dieser Thematik beschäftigt sich das Kapitel  [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]]  im Buch &bdquo;Informationstheorie&rdquo;.  
+
<br>
 +
Die Bedeutung gleichverteilter Zufallsgrößen für die Informations&ndash; und Kommunikationstechnik ist darauf zurückzuführen,&nbsp; dass diese WDF–Form aus Sicht der Informationstheorie unter der Nebenbedingung&nbsp; [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Leistungs.E2.80.93_und_Spitzenwertbegrenzung|Spitzenwertbegrenzung]]&nbsp; ein Optimum darstellt:
 +
*Mit keiner anderen Verteilung als der Gleichverteilung erreicht man unter dieser Voraussetzung eine größere&nbsp; [[Informationstheorie/Differentielle_Entropie#Differentielle_Entropie_einiger_spitzenwertbegrenzter_Zufallsgr.C3.B6.C3.9Fen|differentielle Entropie]].   
 +
*Mit dieser Thematik beschäftigt sich das Kapitel&nbsp; [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]]&nbsp; im Buch &bdquo;Informationstheorie&rdquo;.  
  
Daneben sind unter Anderem noch folgende Punkte zu nennen:
 
*Die Bedeutung der Gleichverteiltung für die Simulation nachrichtentechnischer Systeme ist darauf zurückzuführen, dass man entsprechende &bdquo;Pseudo–Zufallsgeneratoren&rdquo; relativ einfach realisieren kann, und dass sich daraus andere Verteilungen wie zum Beispiel die [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgröße#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Gaußverteilung]] und die [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Einseitige_Exponentialverteilung|Exponentialverteilung]] leicht ableiten lassen.
 
*In der ''Bildverarbeitung & Bildcodierung'' wird häufig vereinfachend mit der Gleichverteilung anstelle der tatsächlichen, meist sehr viel komplizierteren Verteilung des Originalbildes gerechnet, da der Unterschied des Informationsgehaltes zwischen einem ''natürlichen Bild'' und dem auf der Gleichverteilung basierenden Modell relativ gering ist.
 
*Für die Modellierung übertragungstechnischer Systeme sind gleichverteilte Zufallsgrößen dagegen die Ausnahme. Ein Beispiel für eine tatsächlich (nahezu) gleichverteilte Zufallsgröße ist die Phase bei kreissymmetrischen Störungen, wie sie beispielsweise bei ''Quadraturmodulationsverfahren'' auftreten.
 
  
 +
{{BlaueBox|TEXT=
 +
$\text{Daneben sind unter Anderem noch folgende Punkte zu nennen:}$
  
Das folgende interaktive Tool berechnet unter Anderem die Kenngrößen der Gleichverteilung für beliebige Parameter $x_{\rm min}$ und $x_{\rm max}$ (''Hinweis:'' In dieser Multimedia–Anwendung wird die Gleichverteilung als „Rechteck” bezeichnet) :
+
'''(1)''' &nbsp; Die Bedeutung der Gleichverteilung für die Simulation nachrichtentechnischer Systeme ist darauf zurückzuführen,&nbsp; dass man entsprechende &bdquo;Pseudo–Zufallsgeneratoren&rdquo; relativ einfach realisieren kann,&nbsp; und dass sich daraus andere Verteilungen wie zum Beispiel die&nbsp; [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgröße#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Gaußverteilung]]&nbsp; und die&nbsp; [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Einseitige_Exponentialverteilung|Exponentialverteilung]]&nbsp; leicht ableiten lassen.
  
[[WDF, VTF und Momente spezieller Verteilungen]] 
+
'''(2)''' &nbsp; In der&nbsp; "Bildverarbeitung & Bildcodierung"&nbsp; wird oft vereinfachend mit der Gleichverteilung anstelle der tatsächlichen, meist sehr viel komplizierteren Verteilung des Originalbildes gerechnet,&nbsp; da der Unterschied des Informationsgehaltes zwischen natürlichem Bild und dem auf der Gleichverteilung basierenden Modell eher gering ist.
  
 +
'''(3)''' &nbsp; Für die Modellierung übertragungstechnischer Systeme sind gleichverteilte Zufallsgrößen die Ausnahme.&nbsp; Ein Beispiel für eine tatsächlich&nbsp; (nahezu)&nbsp; gleichverteilte Zufallsgröße ist die Phase bei kreissymmetrischen Störungen, wie sie beispielsweise bei&nbsp; "Quadratur&ndash;Amplitudenmodulationsverfahren"&nbsp; $\rm (QAM)$&nbsp; auftreten.}}
  
  
==Erzeugung einer Gleichverteilung mit PN-Generatoren==
+
Das interaktive Applet&nbsp; [[Applets:WDF,_VTF_und_Momente_spezieller_Verteilungen_(Applet)|"WDF, VTF und Momente spezieller Verteilungen"]]&nbsp;  berechnet alle Kenngrößen der Gleichverteilung für beliebige Parameter&nbsp; $x_{\rm min}$&nbsp; und&nbsp; $x_{\rm max}$.  
Die heute verwendeten Zufallsgeneratoren sind meist '''pseudozufällig'''. Das bedeutet, dass die erzeugte Folge als das Ergebnis eines festen Algorithmuses eigentlich deterministisch ist, für den Anwender jedoch aufgrund der großen Periodenlänge $P$ als stochastisch erscheint. Mehr hierzu im Kapitel [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen|Erzeugung von diskreten Zufallsgrößen]].
 
  
Für die Systemsimulation haben Pseudozufallsgeneratoren gegenüber echten Zufallsgeneratoren den entscheidenden Vorteil, dass die erzeugten Zufallsfolgen ohne Speicherung reproduzierbar sind, was zum einen den Vergleich verschiedener Systemmodelle ermöglicht und auch die Fehlersuche wesentlich erleichtert. Ein Zufallsgenerator sollte dabei folgende Kriterien erfüllen:
 
*Die Zufallsgrößen $x_ν$ einer generierten Folge sollten mit sehr guter Näherung gleichverteilt sein. Bei wertdiskreter Darstellung an einem Rechner erfordert dies unter Anderem eine hinreichend ''hohe Bitauflösung,'' zum Beispiel mit 32 oder 64 Bit pro Abtastwert.
 
*Bildet man aus der sequentiellen Zufallsfolge $〈x_ν〉$ jeweils nichtüberlappende Paare von Zufallsgrößen, beispielsweise $(x_ν, x_{ν+1}), (x_{ν+2}, x_{ν+3})$, ... , so sollten diese ''Tupel'' in einer zweidimensionalen Darstellung innerhalb eines Quadrates ebenfalls gleichverteilt sein.
 
*Bildet man aus der sequentiellen Folge $〈x_ν〉$ nicht überlappende $n$-''Tupel'' von Zufallsgrößen  ⇒  $(x_ν, ... , x_{ν+n–1}), (x_{ν+n}, ... , x_{ν+2n–1})$ usw., so sollten auch diese innerhalb eines $n$-dimensionalen Würfels möglichst die Gleichverteilung ergeben.
 
  
 +
==Erzeugung einer Gleichverteilung mit Pseudo&ndash;Noise&ndash;Generatoren==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition}$&nbsp; Die heute verwendeten Zufallsgeneratoren sind meist&nbsp; '''pseudozufällig'''.&nbsp; Das bedeutet,
 +
*dass die erzeugte Folge als das Ergebnis eines festen Algorithmuses eigentlich deterministisch ist,
 +
*für den Anwender jedoch aufgrund der großen Periodenlänge&nbsp; $P$&nbsp; als stochastisch erscheint.
 +
 +
 +
Mehr hierzu im Kapitel&nbsp; [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen|Erzeugung von diskreten Zufallsgrößen]]. }}
 +
 +
 +
Für die Systemsimulation haben Pseudo&ndash;Noise&nbsp; $\rm (PN)$&ndash;Generatoren gegenüber echten Zufallsgeneratoren den entscheidenden Vorteil,&nbsp; dass die erzeugten Zufallsfolgen ohne Speicherung reproduzierbar sind,&nbsp; was
 +
*zum einen den Vergleich verschiedener Systemmodelle ermöglicht,&nbsp; und
 +
*auch die Fehlersuche wesentlich erleichtert.
 +
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Ein Zufallsgenerator sollte dabei folgende Kriterien erfüllen:}$
 +
 +
'''(1)''' &nbsp; Die Zufallsgrößen&nbsp; $x_ν$&nbsp; einer generierten Folge sollten mit sehr guter Näherung gleichverteilt sein.&nbsp; Bei wertdiskreter Darstellung an einem Rechner erfordert dies unter anderem eine hinreichend&nbsp; hohe Bitauflösung,&nbsp; zum Beispiel mit&nbsp; $32$&nbsp; oder&nbsp; $64$&nbsp; Bit pro Abtastwert.
 +
 +
'''(2)''' &nbsp; Bildet man aus der sequentiellen Zufallsfolge&nbsp; $〈x_ν〉$&nbsp; jeweils nichtüberlappende Paare von Zufallsgrößen,&nbsp; beispielsweise&nbsp; $(x_ν, x_{ν+1})$,&nbsp; $(x_{ν+2}$,&nbsp; $x_{ν+3})$, ... ,&nbsp; so sollten diese&nbsp; "Zweier&ndash;Tupel"&nbsp; in einer zweidimensionalen Darstellung innerhalb eines Quadrates ebenfalls gleichverteilt sein.
 +
 +
'''(3)''' &nbsp; Bildet man aus der sequentiellen Folge&nbsp; $〈x_ν〉$&nbsp; nicht überlappende&nbsp; "$n$&ndash;Tupel" &nbsp; von Zufallsgrößen &nbsp; ⇒ &nbsp; $(x_ν$, ... , $x_{ν+n–1})$,&nbsp; $(x_{ν+n}$, ... , $x_{ν+2n–1})$&nbsp; usw.,&nbsp; so sollten auch diese innerhalb eines&nbsp; $n$&ndash;dimensionalen Würfels möglichst die Gleichverteilung ergeben.}}
 +
 +
 +
Anmerkung:
 +
*Die erste Forderung bezieht sich ausschließlich auf die&nbsp; "Amplitudenverteilung"&nbsp; $\rm (WDF)$&nbsp; und ist im Allgemeinen leichter zu erfüllen.
 +
*Die weiteren Forderungen gewährleisten eine&nbsp; "ausreichende Zufälligkeit"&nbsp; der Folge.&nbsp; Sie betreffen die statistische Unabhängigkeit aufeinander folgender Zufallswerte.
  
Die erste Forderung bezieht sich ausschließlich auf die ''Amplitudenverteilung'' (WDF) und ist im Allgemeinen leichter zu erfüllen. Die beiden weiteren Forderungen sollen eine „ausreichende Zufälligkeit” der Folge gewährleisten. Sie betreffen die statistische Unabhängigkeit aufeinander folgender Zufallswerte.
 
  
 
==Multiplicative Congruental Generator==
 
==Multiplicative Congruental Generator==
Das bekannteste Verfahren ''Multiplicative Congruental Generator'' zur Erzeugung einer Folge $〈x_ν〉$ mit gleichverteilten Werten zwischen $0$ und $1$ benutzt die lineare Kongruenz. Das Prinzip wird hier nur stichpunktartig angegeben:  
+
<br>
 +
$\text{Multiplicative Congruental Generator}$ &nbsp; ist das bekannteste Verfahren  zur Erzeugung einer Folge&nbsp; $〈 x_\nu 〉$&nbsp; mit gleichverteilten Werten&nbsp; $ x_\nu$&nbsp; zwischen&nbsp; $0$&nbsp; und&nbsp; $1$.&nbsp; Diese Methode wird hier stichpunktartig angegeben:  
  
'''(1)''' &nbsp;  Diese Zufallsgeneratoren basieren auf der sukzessiven Manipulation einer Integervariablen $k$. Geschieht die Zahlendarstellung im Rechner mit $L$ Bit, so nimmt diese Variable bei geeigneter Behandlung des Vorzeichenbits alle Werte zwischen $1$ und $2^{L − 1}$ jeweils genau einmal an.  
+
'''(1)''' &nbsp;  Diese Zufallsgeneratoren basieren auf der sukzessiven Manipulation einer Integervariablen&nbsp; $k$.&nbsp; Geschieht die Zahlendarstellung im Rechner mit&nbsp; $L$&nbsp; Bit,&nbsp; so nimmt diese Variable bei geeigneter Behandlung des Vorzeichenbits alle Werte zwischen&nbsp; $1$&nbsp; und&nbsp; $2^{L − 1}$&nbsp; jeweils genau einmal an.  
  
'''(2)''' &nbsp;  Die hieraus abgeleitete Zufallsgröße  
+
'''(2)''' &nbsp;  Die hieraus abgeleitete Zufallsgröße&nbsp; $x={k}/{\rm 2^{\it L - \rm 1}}$&nbsp; ist ebenfalls diskret&nbsp; $($mit Stufenzahl&nbsp; $M = 2^{L– 1})$:
:$$x={k}/({\rm 2^{\it L - \rm 1}}) = k\cdot \Delta x \in  \{\Delta x, \hspace{0.05cm}2\cdot \Delta x, ... , \hspace{0.05cm}1-\Delta x,\hspace{0.05cm} 1\}$$
+
:$$x={k}/{\rm 2^{\it L - \rm 1}} = k\cdot \Delta x \in  \{\Delta x, \hspace{0.05cm}2\cdot \Delta x,\hspace{0.05cm}\text{ ...}\hspace{0.05cm} , \hspace{0.05cm}1-\Delta x,\hspace{0.05cm} 1\}.$$
ist demnach ebenfalls diskret (mit Stufenzahl $M = 2^{L– 1})$. Ist die Bitanzahl $L$ hinreichend groß, so ist der Abstand $Δx = 1/(2^{L– 1})$ zwischen zwei möglichen Werten sehr klein, und man kann $x$ im Rahmen der Simulationsgenauigkeit durchaus als eine kontinuierliche Zufallsgröße interpretieren.  
+
:Ist die Bitanzahl&nbsp; $L$&nbsp; hinreichend groß,&nbsp; so ist der Abstand&nbsp; $Δx = 1/2^{L– 1}$&nbsp; zwischen zwei möglichen Werten sehr klein,&nbsp; und man kann&nbsp; $x$&nbsp; im Rahmen der Simulationsgenauigkeit durchaus als eine wertkontinuierliche Zufallsgröße interpretieren.  
  
'''(3)''' &nbsp; Die rekursive Generierungsvorschrift eines solchen ''Multiplicative Congruential Generators'' lautet:  
+
'''(3)''' &nbsp; Die rekursive Generierungsvorschrift eines solchen&nbsp; "Multiplicative Congruential Generators"&nbsp; lautet:  
 
:$$k_\nu=(a\cdot k_{\nu-1})\hspace{0.1cm} \rm mod \hspace{0.1cm} \it m.$$
 
:$$k_\nu=(a\cdot k_{\nu-1})\hspace{0.1cm} \rm mod \hspace{0.1cm} \it m.$$
  
'''(4)''' &nbsp; Die statistischen Eigenschaften der Folge hängen entscheidend von den Parametern $a$ und $m$ ab. Der Startwert $k_0$ hat dagegen für die Statistik eine eher untergeordnete Bedeutung.  
+
'''(4)''' &nbsp; Die statistischen Eigenschaften der Folge hängen entscheidend von den Parametern&nbsp; $a$&nbsp; und&nbsp; $m$&nbsp; ab.&nbsp; Der Startwert&nbsp; $k_0$&nbsp; hat dagegen für die Statistik eine eher untergeordnete Bedeutung.  
  
'''(5)''' &nbsp; Die besten Ergebnisse erzielt man mit der Basis $m =2^l–1$, wobei $l$ eine beliebige natürliche Zahl angibt. Weit verbreitet ist bei Rechnern mit 32 Bit-Architektur und einem Vorzeichenbit die Basis $m = 2^{31} 1 = 2\hspace{0.05cm}147\hspace{0.05cm}483\hspace{0.05cm}647.$ Ein entsprechender Algorithmus lautet:  
+
'''(5)''' &nbsp; Die besten Ergebnisse erzielt man mit der Basis &nbsp; $m =2\hspace{0.05cm}^l-1$,&nbsp; wobei&nbsp; $l$&nbsp; eine beliebige natürliche Zahl angibt.&nbsp; Weit verbreitet ist bei Rechnern mit 32 Bit-Architektur und einem Vorzeichenbit die Basis&nbsp; $m = 2^{31} - 1 = 2\hspace{0.08cm}147\hspace{0.08cm}483\hspace{0.08cm}647$.&nbsp; Ein entsprechender Algorithmus lautet:  
 
:$$k_\nu=(16807\cdot k_{\nu-1})\hspace{0.1cm} \rm mod\hspace{0.1cm}(2^{31}-1).$$
 
:$$k_\nu=(16807\cdot k_{\nu-1})\hspace{0.1cm} \rm mod\hspace{0.1cm}(2^{31}-1).$$
  
'''(6)''' &nbsp; Für einen solchen Generator ist nur der Startwert $k_0 = 0$ nicht erlaubt. Für alle anderen Startwerte beträgt die Periodendauer $P = 2^{31} 2.$
+
'''(6)''' &nbsp; Für einen solchen Generator ist nur der Startwert&nbsp; $k_0 = 0$&nbsp; nicht erlaubt.&nbsp; Für&nbsp; $k_0 \ne 0$&nbsp; beträgt die Periodendauer&nbsp; $P = 2^{31} - 2.$
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
[[Datei:P_ID920__Sto_T_3_4_S5.png |right|frame| Multiplicative Congruental Generator (C-Programm)]] 
 +
$\text{Beispiel 2:}$&nbsp; Wir analysieren den oben beschriebenen&nbsp; "Multiplicative Congruental Generator"&nbsp; genauer:
 +
 
 +
 
 +
*Den Algorithmus kann man allerdings auf einem 32 Bit&ndash;Rechner nicht direkt implementieren, da das Multiplikationsergebnis bis zu 46 Bit benötigt.
  
 +
 +
*Er kann aber so abgewandelt werden,&nbsp; dass zu keinem Zeitpunkt der Berechnung der 32 Bit&ndash;Integerzahlenbereich überschritten wird.
  
Dieser Algorithmus kann auf einem 32 Bit-Rechner allerdings nicht direkt implementiert werden, da das Ergebnis der Multiplikation bis zu 46 Bit beansprucht. Er kann aber so abgewandelt werden, dass zu keinem Zeitpunkt der Berechnung der Integerzahlenbereich von 32 Bit überschritten wird. Das so modifizierte C-Programm &bdquo;uniform( )&bdquo; ist nachfolgend angegeben.
 
  
[[Datei:P_ID920__Sto_T_3_4_S5.png | Multiplicative Congruental Generator (C-Programm)]]
+
*Das so modifizierte C-Programm&nbsp; $\text{uniform( )}$&nbsp; ist rechts angegeben.}}
  
 
==Aufgaben zum Kapitel==
 
==Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:3.5 Dreieck- und Trapezsignal|Aufgabe 3.5: Dreieck&ndash; und Trapezsignal]]
  
[[Aufgaben:3.5 Dreieck- und Trapezsignal|Aufgabe 3.5: &nbsp; Dreieck- und Trapezsignal]]
+
[[Aufgaben:3.5Z Antennengebiete|Aufgabe 3.5Z: Antennengebiete]]
 
 
[[Aufgaben:3.5Z Antennengebiete|Zusatzaufgabe 3.5Z: &nbsp; Antennengebiete]]
 
  
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 12. Januar 2022, 15:09 Uhr

Allgemeine Beschreibung und Definition


Gleichverteilung: 
Wahrscheinlichkeitsdichtefunktion  (links), Verteilungsfunktion (rechts)

$\text{Definition:}$  Eine Zufallsgröße  $x$  nennt man  gleichverteilt,  wenn sie nur Werte im Bereich von  $x_{\rm min}$  bis  $x_{\rm max}$  annehmen kann,  und zwar mit gleicher Wahrscheinlichkeit.

Die Grafik zeigt

  • links die Wahrscheinlichkeitsdichtefunktion  $f_{x}(x)$,
  • rechts die Verteilungsfunktion  $F_{x}(r)$


einer solchen gleichverteilten Zufallsgröße  $x$.


Aus der Grafik und obiger Definition können folgende Eigenschaften abgeleitet werden:

  • Die Wahrscheinlichkeitsdichtefunktion  $\rm (WDF)$  besitzt im Bereich von  $x_{\rm min}$  bis  $x_{\rm max}$  den konstanten Wert  $1/(x_{\rm max} - x_{\rm min})$. 
  • An den Bereichsgrenzen ist für  $f_{x}(x)$  jeweils nur der halbe Wert zu setzen,   also der Mittelwert zwischen links– und rechtsseitigem Grenzwert.
  • Die Verteilungsfunktion  $\rm (VTF)$  steigt im Bereich von  $x_{\rm min}$  bis  $x_{\rm max}$  linear von  $0$  auf  $1$  an.
  • Mittelwert, Varianz und Streuung haben bei der Gleichverteilung die folgenden Werte:
$$m_{\rm 1} = \frac{\it x_ {\rm max} \rm + \it x_{\rm min}}{2},\hspace{0.5cm} \sigma^2 = \frac{[x_{\rm max} - x_{\rm min}]^2}{12},\hspace{0.5cm} \sigma = \frac{\it x_{\rm max} - \it x_{\rm min}}{2 \sqrt{3}}.$$
  • Bei symmetrischer WDF   ⇒   $x_{\rm min} = -x_{\rm max}$  erhält man als Sonderfall den Mittelwert  $m_1 = 0$  und die Varianz  $σ^2 = x_{\rm max}^2/3.$


$\text{Beispiel 1:}$  Die Grafik zeigt zwei Signalverläufe mit gleichförmiger Amplitudenverteilung.

Beispiele gleichverteilter Signale


  • Links ist statistische Unabhängigkeit der einzelnen Abtastwerte vorausgesetzt,  das heißt,  die Zufallsgröße  $x_ν$  kann alle Werte zwischen  $x_{\rm min}$  und  $x_{\rm max}$  mit gleicher Wahrscheinlichkeit annehmen,  und zwar unabhängig von der Vergangenheit  $(x_{ν–1}, x_{ν–2}, \hspace{0.1cm}\text{...}).$


  • Beim rechten Signal  $y(t)$  ist diese Unabhängigkeit aufeinanderfolgender Signalwerte nicht mehr gegeben.  Vielmehr stellt dieses Sägezahnsignal ein deterministisches Signal dar.

Bedeutung der Gleichverteilung für die Nachrichtentechnik


Die Bedeutung gleichverteilter Zufallsgrößen für die Informations– und Kommunikationstechnik ist darauf zurückzuführen,  dass diese WDF–Form aus Sicht der Informationstheorie unter der Nebenbedingung  Spitzenwertbegrenzung  ein Optimum darstellt:

  • Mit keiner anderen Verteilung als der Gleichverteilung erreicht man unter dieser Voraussetzung eine größere  differentielle Entropie.
  • Mit dieser Thematik beschäftigt sich das Kapitel  Differentielle Entropie  im Buch „Informationstheorie”.


$\text{Daneben sind unter Anderem noch folgende Punkte zu nennen:}$

(1)   Die Bedeutung der Gleichverteilung für die Simulation nachrichtentechnischer Systeme ist darauf zurückzuführen,  dass man entsprechende „Pseudo–Zufallsgeneratoren” relativ einfach realisieren kann,  und dass sich daraus andere Verteilungen wie zum Beispiel die  Gaußverteilung  und die  Exponentialverteilung  leicht ableiten lassen.

(2)   In der  "Bildverarbeitung & Bildcodierung"  wird oft vereinfachend mit der Gleichverteilung anstelle der tatsächlichen, meist sehr viel komplizierteren Verteilung des Originalbildes gerechnet,  da der Unterschied des Informationsgehaltes zwischen natürlichem Bild und dem auf der Gleichverteilung basierenden Modell eher gering ist.

(3)   Für die Modellierung übertragungstechnischer Systeme sind gleichverteilte Zufallsgrößen die Ausnahme.  Ein Beispiel für eine tatsächlich  (nahezu)  gleichverteilte Zufallsgröße ist die Phase bei kreissymmetrischen Störungen, wie sie beispielsweise bei  "Quadratur–Amplitudenmodulationsverfahren"  $\rm (QAM)$  auftreten.


Das interaktive Applet  "WDF, VTF und Momente spezieller Verteilungen"  berechnet alle Kenngrößen der Gleichverteilung für beliebige Parameter  $x_{\rm min}$  und  $x_{\rm max}$.


Erzeugung einer Gleichverteilung mit Pseudo–Noise–Generatoren


$\text{Definition}$  Die heute verwendeten Zufallsgeneratoren sind meist  pseudozufällig.  Das bedeutet,

  • dass die erzeugte Folge als das Ergebnis eines festen Algorithmuses eigentlich deterministisch ist,
  • für den Anwender jedoch aufgrund der großen Periodenlänge  $P$  als stochastisch erscheint.


Mehr hierzu im Kapitel  Erzeugung von diskreten Zufallsgrößen.


Für die Systemsimulation haben Pseudo–Noise  $\rm (PN)$–Generatoren gegenüber echten Zufallsgeneratoren den entscheidenden Vorteil,  dass die erzeugten Zufallsfolgen ohne Speicherung reproduzierbar sind,  was

  • zum einen den Vergleich verschiedener Systemmodelle ermöglicht,  und
  • auch die Fehlersuche wesentlich erleichtert.


$\text{Ein Zufallsgenerator sollte dabei folgende Kriterien erfüllen:}$

(1)   Die Zufallsgrößen  $x_ν$  einer generierten Folge sollten mit sehr guter Näherung gleichverteilt sein.  Bei wertdiskreter Darstellung an einem Rechner erfordert dies unter anderem eine hinreichend  hohe Bitauflösung,  zum Beispiel mit  $32$  oder  $64$  Bit pro Abtastwert.

(2)   Bildet man aus der sequentiellen Zufallsfolge  $〈x_ν〉$  jeweils nichtüberlappende Paare von Zufallsgrößen,  beispielsweise  $(x_ν, x_{ν+1})$,  $(x_{ν+2}$,  $x_{ν+3})$, ... ,  so sollten diese  "Zweier–Tupel"  in einer zweidimensionalen Darstellung innerhalb eines Quadrates ebenfalls gleichverteilt sein.

(3)   Bildet man aus der sequentiellen Folge  $〈x_ν〉$  nicht überlappende  "$n$–Tupel"   von Zufallsgrößen   ⇒   $(x_ν$, ... , $x_{ν+n–1})$,  $(x_{ν+n}$, ... , $x_{ν+2n–1})$  usw.,  so sollten auch diese innerhalb eines  $n$–dimensionalen Würfels möglichst die Gleichverteilung ergeben.


Anmerkung:

  • Die erste Forderung bezieht sich ausschließlich auf die  "Amplitudenverteilung"  $\rm (WDF)$  und ist im Allgemeinen leichter zu erfüllen.
  • Die weiteren Forderungen gewährleisten eine  "ausreichende Zufälligkeit"  der Folge.  Sie betreffen die statistische Unabhängigkeit aufeinander folgender Zufallswerte.


Multiplicative Congruental Generator


$\text{Multiplicative Congruental Generator}$   ist das bekannteste Verfahren zur Erzeugung einer Folge  $〈 x_\nu 〉$  mit gleichverteilten Werten  $ x_\nu$  zwischen  $0$  und  $1$.  Diese Methode wird hier stichpunktartig angegeben:

(1)   Diese Zufallsgeneratoren basieren auf der sukzessiven Manipulation einer Integervariablen  $k$.  Geschieht die Zahlendarstellung im Rechner mit  $L$  Bit,  so nimmt diese Variable bei geeigneter Behandlung des Vorzeichenbits alle Werte zwischen  $1$  und  $2^{L − 1}$  jeweils genau einmal an.

(2)   Die hieraus abgeleitete Zufallsgröße  $x={k}/{\rm 2^{\it L - \rm 1}}$  ist ebenfalls diskret  $($mit Stufenzahl  $M = 2^{L– 1})$:

$$x={k}/{\rm 2^{\it L - \rm 1}} = k\cdot \Delta x \in \{\Delta x, \hspace{0.05cm}2\cdot \Delta x,\hspace{0.05cm}\text{ ...}\hspace{0.05cm} , \hspace{0.05cm}1-\Delta x,\hspace{0.05cm} 1\}.$$
Ist die Bitanzahl  $L$  hinreichend groß,  so ist der Abstand  $Δx = 1/2^{L– 1}$  zwischen zwei möglichen Werten sehr klein,  und man kann  $x$  im Rahmen der Simulationsgenauigkeit durchaus als eine wertkontinuierliche Zufallsgröße interpretieren.

(3)   Die rekursive Generierungsvorschrift eines solchen  "Multiplicative Congruential Generators"  lautet:

$$k_\nu=(a\cdot k_{\nu-1})\hspace{0.1cm} \rm mod \hspace{0.1cm} \it m.$$

(4)   Die statistischen Eigenschaften der Folge hängen entscheidend von den Parametern  $a$  und  $m$  ab.  Der Startwert  $k_0$  hat dagegen für die Statistik eine eher untergeordnete Bedeutung.

(5)   Die besten Ergebnisse erzielt man mit der Basis   $m =2\hspace{0.05cm}^l-1$,  wobei  $l$  eine beliebige natürliche Zahl angibt.  Weit verbreitet ist bei Rechnern mit 32 Bit-Architektur und einem Vorzeichenbit die Basis  $m = 2^{31} - 1 = 2\hspace{0.08cm}147\hspace{0.08cm}483\hspace{0.08cm}647$.  Ein entsprechender Algorithmus lautet:

$$k_\nu=(16807\cdot k_{\nu-1})\hspace{0.1cm} \rm mod\hspace{0.1cm}(2^{31}-1).$$

(6)   Für einen solchen Generator ist nur der Startwert  $k_0 = 0$  nicht erlaubt.  Für  $k_0 \ne 0$  beträgt die Periodendauer  $P = 2^{31} - 2.$


Multiplicative Congruental Generator (C-Programm)

$\text{Beispiel 2:}$  Wir analysieren den oben beschriebenen  "Multiplicative Congruental Generator"  genauer:


  • Den Algorithmus kann man allerdings auf einem 32 Bit–Rechner nicht direkt implementieren, da das Multiplikationsergebnis bis zu 46 Bit benötigt.


  • Er kann aber so abgewandelt werden,  dass zu keinem Zeitpunkt der Berechnung der 32 Bit–Integerzahlenbereich überschritten wird.


  • Das so modifizierte C-Programm  $\text{uniform( )}$  ist rechts angegeben.

Aufgaben zum Kapitel


Aufgabe 3.5: Dreieck– und Trapezsignal

Aufgabe 3.5Z: Antennengebiete