Aufgaben:Aufgabe 3.12: Cauchyverteilung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(9 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID207__Sto_A_3_12.png|right|Cauchyverteilung]]
+
[[Datei:P_ID207__Sto_A_3_12.png|right|frame|WDF der Cauchyverteilung]]
 
Die Wahrscheinlichkeitsdichtefunktion der Cauchyverteilung ist wie folgt gegeben:
 
Die Wahrscheinlichkeitsdichtefunktion der Cauchyverteilung ist wie folgt gegeben:
$$f_x(x)=\frac{\rm 1}{\rm 2 \pi}\cdot \frac{\rm 1}{\rm 1+ (\it x/\rm 2)^{\rm 2}}.$$
+
:$$f_x(x)=\frac{\rm 1}{\rm 2 \pi}\cdot \frac{\rm 1}{\rm 1+ (\it x/\rm 2)^{\rm 2}}.$$
  
 
Aus der Grafik ist bereits der extrem langsame Abfall des WDF–Verlaufs zu erkennen.
 
Aus der Grafik ist bereits der extrem langsame Abfall des WDF–Verlaufs zu erkennen.
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]].
+
 
*Insbesondere wird auf die Seite  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Cauchyverteilung|TCauchyverteilung]] Bezug genommen .
+
Hinweise:  
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]].
 +
*Insbesondere wird auf die Seite  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Cauchyverteilung|"Cauchyverteilung"]]  Bezug genommen.
 +
  
  
Zeile 20: Zeile 22:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Verteilungsfunktion $F_x(r)$? Mit welcher Wahrscheinlichkeit ist $x$ betragsm&auml;&szlig;ig kleiner als $2$?
+
{Wie lautet die Verteilungsfunktion&nbsp; $F_x(r)$?&nbsp; Mit welcher Wahrscheinlichkeit ist&nbsp; $x$&nbsp; betragsm&auml;&szlig;ig kleiner als&nbsp; $2$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr} (|x| < 2) \ = $  { 0.5 3% }
+
${\rm Pr} (|x| < 2) \ = \ $  { 50 3% } $ \ \%$
  
  
{Mit welcher Wahrscheinlichkeit ist$x$ betragsm&auml;&szlig;ig gr&ouml;&szlig;er als $4$?
+
{Mit welcher Wahrscheinlichkeit ist&nbsp; $x$&nbsp; betragsm&auml;&szlig;ig gr&ouml;&szlig;er als&nbsp; $4$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr} (|x| > 4) \ = $ { 0.296 3% }
+
${\rm Pr} (|x| > 4) \ = \ $ { 29.6 3% } $ \ \%$
  
  
Zeile 33: Zeile 35:
 
|type="[]"}
 
|type="[]"}
 
+ Die Cauchyverteilung besitzt eine unendlich gro&szlig;e Varianz.
 
+ Die Cauchyverteilung besitzt eine unendlich gro&szlig;e Varianz.
+ Die Tschebyscheff-Ungleichung macht hier keinen Sinn.
+
+ Die Tschebyscheff&ndash;Ungleichung macht hier keinen Sinn.
 
+ Eine in der Natur messbare Zufallsgr&ouml;&szlig;e ist nie cauchyverteilt.
 
+ Eine in der Natur messbare Zufallsgr&ouml;&szlig;e ist nie cauchyverteilt.
  
Zeile 41: Zeile 43:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Vergleicht man die vorgegebene WDF mit der allgemeinen Gleichung im Kapitel 3.7, so erkennt man, dass der Parameter <i>&lambda;</i> = 2 ist. Daraus folgt (nach Integration &uuml;ber die WDF):
+
'''(1)'''&nbsp; Vergleicht man die vorgegebene WDF mit der allgemeinen Gleichung im Theorieteil,&nbsp; so erkennt man,&nbsp; dass der Parameter&nbsp; $\lambda= 2$&nbsp; ist.  
 +
*Daraus folgt&nbsp; (nach Integration &uuml;ber die WDF):
 
:$$F_x ( r ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(\it r/\rm 2).$$
 
:$$F_x ( r ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(\it r/\rm 2).$$
  
:Insbesondere sind
+
*Insbesondere sind
:$$F_x ( r = 2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(1)=\frac{1}{2} + \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.75,$$
+
:$$F_x ( r = +2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(1)=\frac{1}{2} + \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.75,$$
 
:$$F_x ( r = -2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(-1)=\frac{1}{2} - \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.25.$$
 
:$$F_x ( r = -2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(-1)=\frac{1}{2} - \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.25.$$
  
:Daraus ergibt sich die gesuchte Wahrscheinlichkeit als die Differenz zu <u>50%</u>.
+
*Die gesuchte Wahrscheinlichkeit ergibt sich als die Differenz zu  
 +
:$${\rm Pr} (|x| < 2) = 0.75 - 0.25 \hspace{0.15cm}\underline{=50\%}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Nach dem Ergebnis der Teilaufgabe&nbsp; '''(1)'''&nbsp; ist&nbsp; $F_x ( r = 4 )  = 0.5 + 1/\pi = 0.852$.
 +
*Damit gilt f&uuml;r die &bdquo;komplementäre&rdquo; Wahrscheinlichkeit&nbsp; ${\rm Pr} (x > 4)= 0.148$.
 +
*Die gesuchte Wahrscheinlichkeit ist aus Symmetriegründen doppelt so gro&szlig;:
 +
:$${\rm Pr} (|x| >4) \hspace{0.15cm}\underline{ = 29.6\%}.$$
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Nach dem Ergebnis aus (a) ist <i>F<sub>x</sub></i>(4.0) = 0.5 + 1/&pi; = 0.852. Damit gilt f&uuml;r die &bdquo;komplementäre&rdquo; Wahrscheinlichkeit Pr(<i>x</i> > 4) = 0.148. Die gesuchte Wahrscheinlichkeit ist doppelt so gro&szlig;:
 
:$${\rm Pr} (|x| >4) \hspace{0.15cm}\underline{ = 0.296}.$$
 
  
:<b>3.</b>&nbsp;&nbsp;<u>Alle Lösungsvorschläge</u> treffen zu. F&uuml;r die Varianz der Cauchyverteilung gilt nämlich:
+
'''(3)'''&nbsp; <u>Alle Lösungsvorschläge</u> treffen zu:
 +
*F&uuml;r die Varianz der Cauchyverteilung gilt nämlich:
 
:$$\sigma_x^{\rm 2}=\frac{1}{2\pi}\int_{-\infty}^{+\infty}
 
:$$\sigma_x^{\rm 2}=\frac{1}{2\pi}\int_{-\infty}^{+\infty}
 
\hspace{-0.15cm}  
 
\hspace{-0.15cm}  
 
\frac{\it x^{\rm 2}}{\rm 1+(\it x/\rm 2)^{\rm 2}} \,\,{\rm d}x.$$
 
\frac{\it x^{\rm 2}}{\rm 1+(\it x/\rm 2)^{\rm 2}} \,\,{\rm d}x.$$
 
+
*F&uuml;r gro&szlig;e&nbsp; $x$&nbsp; liefert der Integrand den konstanten Wert&nbsp; $4$.&nbsp; Deshalb divergiert das Integral.  
:F&uuml;r gro&szlig;e <i>x</i> liefert der Integrand den konstanten Wert 4. Deshalb divergiert das Integral. Mit <nobr><i>&sigma;<sub>x</sub></i> &#8594; &#8734;</nobr> liefert aber auch die Tschebyscheffsche Ungleichung keine auswertbare Schranke.
+
*Mit&nbsp; $\sigma_x \to \infty$&nbsp; liefert aber auch die Tschebyscheffsche Ungleichung keine auswertbare Schranke.
 
+
*„Nat&uuml;rliche“ Zufallsgr&ouml;&szlig;en (physikalisch interpretierbar) k&ouml;nnen nie cauchyverteilt sein, da sie sonst eine unendlich gro&szlig;e Leistung besitzen m&uuml;ssten.  
„Nat&uuml;rliche“ Zufallsgr&ouml;&szlig;en (physikalisch interpretierbar) k&ouml;nnen nie cauchyverteilt sein, da sie sonst eine unendlich gro&szlig;e Leistung besitzen m&uuml;ssten. Dagegen unterliegt eine „k&uuml;nstliche“ (oder mathematische) Zufallsgr&ouml;&szlig;e - wie z. B. der Quotient zweier mittelwertfreier Gau&szlig;gr&ouml;&szlig;en - nicht dieser Beschr&auml;nkung.
+
*Dagegen unterliegt eine „k&uuml;nstliche“ (oder mathematische) Zufallsgr&ouml;&szlig;e nicht dieser Beschr&auml;nkung.&nbsp; Beispiel: &nbsp; Der Quotient zweier mittelwertfreier Gau&szlig;gr&ouml;&szlig;en.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 3. Februar 2022, 13:30 Uhr

WDF der Cauchyverteilung

Die Wahrscheinlichkeitsdichtefunktion der Cauchyverteilung ist wie folgt gegeben:

$$f_x(x)=\frac{\rm 1}{\rm 2 \pi}\cdot \frac{\rm 1}{\rm 1+ (\it x/\rm 2)^{\rm 2}}.$$

Aus der Grafik ist bereits der extrem langsame Abfall des WDF–Verlaufs zu erkennen.



Hinweise:



Fragebogen

1

Wie lautet die Verteilungsfunktion  $F_x(r)$?  Mit welcher Wahrscheinlichkeit ist  $x$  betragsmäßig kleiner als  $2$?

${\rm Pr} (|x| < 2) \ = \ $

$ \ \%$

2

Mit welcher Wahrscheinlichkeit ist  $x$  betragsmäßig größer als  $4$?

${\rm Pr} (|x| > 4) \ = \ $

$ \ \%$

3

Welche der folgenden Aussagen treffen für die Cauchyverteilung zu?

Die Cauchyverteilung besitzt eine unendlich große Varianz.
Die Tschebyscheff–Ungleichung macht hier keinen Sinn.
Eine in der Natur messbare Zufallsgröße ist nie cauchyverteilt.


Musterlösung

(1)  Vergleicht man die vorgegebene WDF mit der allgemeinen Gleichung im Theorieteil,  so erkennt man,  dass der Parameter  $\lambda= 2$  ist.

  • Daraus folgt  (nach Integration über die WDF):
$$F_x ( r ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(\it r/\rm 2).$$
  • Insbesondere sind
$$F_x ( r = +2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(1)=\frac{1}{2} + \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.75,$$
$$F_x ( r = -2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(-1)=\frac{1}{2} - \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.25.$$
  • Die gesuchte Wahrscheinlichkeit ergibt sich als die Differenz zu
$${\rm Pr} (|x| < 2) = 0.75 - 0.25 \hspace{0.15cm}\underline{=50\%}.$$


(2)  Nach dem Ergebnis der Teilaufgabe  (1)  ist  $F_x ( r = 4 ) = 0.5 + 1/\pi = 0.852$.

  • Damit gilt für die „komplementäre” Wahrscheinlichkeit  ${\rm Pr} (x > 4)= 0.148$.
  • Die gesuchte Wahrscheinlichkeit ist aus Symmetriegründen doppelt so groß:
$${\rm Pr} (|x| >4) \hspace{0.15cm}\underline{ = 29.6\%}.$$


(3)  Alle Lösungsvorschläge treffen zu:

  • Für die Varianz der Cauchyverteilung gilt nämlich:
$$\sigma_x^{\rm 2}=\frac{1}{2\pi}\int_{-\infty}^{+\infty} \hspace{-0.15cm} \frac{\it x^{\rm 2}}{\rm 1+(\it x/\rm 2)^{\rm 2}} \,\,{\rm d}x.$$
  • Für große  $x$  liefert der Integrand den konstanten Wert  $4$.  Deshalb divergiert das Integral.
  • Mit  $\sigma_x \to \infty$  liefert aber auch die Tschebyscheffsche Ungleichung keine auswertbare Schranke.
  • „Natürliche“ Zufallsgrößen (physikalisch interpretierbar) können nie cauchyverteilt sein, da sie sonst eine unendlich große Leistung besitzen müssten.
  • Dagegen unterliegt eine „künstliche“ (oder mathematische) Zufallsgröße nicht dieser Beschränkung.  Beispiel:   Der Quotient zweier mittelwertfreier Gaußgrößen.