Aufgaben:Aufgabe 4.8: Rautenförmige 2D-WDF: Unterschied zwischen den Versionen
(11 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID412__Sto_A_4_8.png|right|Rautenförmige 2D-WDF]] | + | [[Datei:P_ID412__Sto_A_4_8.png|right|frame|Rautenförmige 2D-WDF]] |
− | Wir betrachten eine 2D–Zufallsgröße $(x, y)$, deren Komponenten sich jeweils als Linearkombinationen zweier Zufallsgrößen $u$ und $v$ ergeben: | + | Wir betrachten eine 2D–Zufallsgröße $(x,\hspace{0.08cm} y)$, deren Komponenten sich jeweils als Linearkombinationen zweier Zufallsgrößen $u$ und $v$ ergeben: |
:$$x=2u-2v+1,$$ | :$$x=2u-2v+1,$$ | ||
:$$y=u+3v.$$ | :$$y=u+3v.$$ | ||
Weiter ist zu beachten: | Weiter ist zu beachten: | ||
− | *Die zwei statistisch unabhängigen Zufallsgrößen $u$ und $v$ sind jeweils gleichverteilt zwischen $0$ und $1$. | + | *Die zwei statistisch unabhängigen Zufallsgrößen $u$ und $v$ sind jeweils gleichverteilt zwischen $0$ und $1$. |
− | *In der Abbildung sehen Sie die 2D–WDF. Innerhalb des blau eingezeichneten Parallelogramms gilt: | + | *In der Abbildung sehen Sie die 2D–WDF. Innerhalb des blau eingezeichneten Parallelogramms gilt: |
+ | :$$f_{xy}(x,\hspace{0.08cm} y) = H = {\rm const.}$$ | ||
*Außerhalb des Parallelogramms sind keine Werte möglich: $f_{xy}(x, y) = 0$. | *Außerhalb des Parallelogramms sind keine Werte möglich: $f_{xy}(x, y) = 0$. | ||
− | + | ||
− | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]]. | + | |
− | *Bezug genommen wird auch auf die Seite [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen# | + | |
− | *Gehen Sie - wenn möglich - von den | + | |
− | + | ||
+ | Hinweise: | ||
+ | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]]. | ||
+ | *Bezug genommen wird auch auf die Seite [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen#Regressionsgerade|Regressionsgerade]]. | ||
+ | *Wir verweisen hier auch auf das interaktive Applet [[Applets:Korrelationskoeffizient_%26_Regressionsgerade|Korrelationskoeffizient und Regressionsgerade]]. | ||
+ | *Gehen Sie - wenn möglich - von den angegebenen Gleichungen aus. Nutzen Sie die Informationen der obigen Skizze vorwiegend nur zur Kontrolle Ihrer Ergebnisse. | ||
+ | |||
+ | |||
+ | |||
Zeile 24: | Zeile 33: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie groß ist die Höhe $H$ der 2D–WDF innerhalb des Parallelogramms? | + | {Wie groß ist die Höhe $H$ der 2D–WDF innerhalb des Parallelogramms? |
|type="{}"} | |type="{}"} | ||
− | $H \ =$ { 0.125 3% } | + | $H \ = \ $ { 0.125 3% } |
− | {Welche Werte von $u$ und $v$ liegen dem Eckpunkt $(-1, 3)$ zugrunde? | + | {Welche Werte von $u$ und $v$ liegen dem Eckpunkt $(-1,\hspace{0.08cm} 3)$ zugrunde? |
|type="{}"} | |type="{}"} | ||
− | $u \ =$ { 0. } | + | $u \ = \ $ { 0. } |
− | $v \ =$ { 1 3% } | + | $v \ = \ $ { 1 3% } |
− | {Berechnen Sie den Korrelationskoeffizienten $\rho_{xy}$. | + | {Berechnen Sie den Korrelationskoeffizienten $\rho_{xy}$. |
|type="{}"} | |type="{}"} | ||
− | $\rho_{xy}\ =$ { 0. | + | $\rho_{xy}\ = \ $ { -0.457--0.437 } |
− | {Wie lautet die Korrelationsgerade $ | + | {Wie lautet die Korrelationsgerade $(\rm KG)$? Bei welchem Punkt $y_0$ schneidet diese die $y$-Achse? |
|type="{}"} | |type="{}"} | ||
− | $y_0\ =$ { 2.5 3% } | + | $y_0\ = \ $ { 2.5 3% } |
− | {Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion $f_x(x)$. Wie groß ist die Wahrscheinlichkeit, dass die Zufallsgröße $x$ negativ ist | + | {Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion $f_x(x)$. Wie groß ist die Wahrscheinlichkeit, dass die Zufallsgröße $x$ negativ ist? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(x < 0)\ =$ { 0.125 3% } | + | ${\rm Pr}(x < 0)\ = \ $ { 0.125 3% } |
− | {Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion $f_y(y)$. Wie groß ist die Wahrscheinlichkeit, dass die Zufallsgröße $y >3$ ist? | + | {Berechnen Sie die Randwahrscheinlichkeitsdichtefunktion $f_y(y)$. Wie groß ist die Wahrscheinlichkeit, dass die Zufallsgröße $y >3$ ist? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}(y > 3)\ =$ { 0.167 3% } | + | ${\rm Pr}(y > 3)\ = \ $ { 0.167 3% } |
Zeile 59: | Zeile 68: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Die Fläche des Parallelogramms kann aus zwei gleich großen Dreiecken zusammengesetzt werden. | |
+ | *Die Fläche des Dreiecks $(1,0)\ (1,4)\ (-1,3)$ ergibt $0.5 · 4 · 2 = 4$. | ||
+ | *Die Gesamtfläche ist doppelt so groß: $F = 8$. | ||
+ | *Da das WDF–Volumen stets $1$ ist; $H= 1/F\hspace{0.15cm}\underline{ = 0.125}$. | ||
+ | |||
+ | |||
+ | |||
+ | '''(2)''' Der minimale Wert von $x$ ergibt sich für $\underline{ u=0}$ und $\underline{ v=1}$. Daraus folgen aus obigen Gleichungen die Ergebnisse $x= -1$ und $y= +3$. | ||
+ | |||
− | |||
− | + | '''(3)''' Die im Theorieteil angegebene Gleichung gilt allgemein, also für jede beliebige WDF der beiden statistisch unabhängigen Größen $u$ und $v$, so lange diese gleiche Streuungen aufweisen $(\sigma_u = \sigma_v)$. | |
− | + | *Mit $A = 2$, $B = -2$, $D = 1$ und $E = 3$ erhält man: | |
:$$\rho_{xy } = \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$ | :$$\rho_{xy } = \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$ | ||
− | + | ||
+ | |||
+ | '''(4)''' Die Korrelationsgerade lautet allgemein: | ||
:$$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$ | :$$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$ | ||
− | + | *Aus den linearen Mittelwerten $m_u = m_v = 0.5$ und den in der Aufgabenstellung angegebenen Gleichungen erhält man $m_x = 1$ und $m_y = 2$. | |
− | + | *Die Varianzen von $u$ und $v$ betragen jeweils $\sigma_u^2 = \sigma_v^2 =1/12$. Daraus folgt: | |
:$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$ | :$$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$ | ||
:$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$ | :$$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$ | ||
− | + | *Setzt man diese Werte in die Gleichung der Korrelationsgeraden ein, so ergibt sich: | |
− | :$$y=K(x)=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - | + | :$$y=K(x)=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - x/{2} + 2.5.$$ |
+ | |||
+ | *Daraus folgt der Wert $y_0=K(x=0)\hspace{0.15cm}\underline{ = 2.5}$ | ||
+ | |||
+ | |||
− | : | + | '''(5)''' Mit den Hilfsgrößen $q= 2u$, $r= -2v$ und $s= x-1$ gilt der Zusammenhang: $s= q+r$. |
− | : | + | [[Datei:P_ID414__Sto_A_4_8_e.png|right|frame|Dreieckförmige WDF $f_x(x)$]] |
− | + | *Da $u$ und $v$ jeweils zwischen $0$ und $1$ gleichverteilt sind, ist $q$ zwischen $0$ bis $2$ und $r$ zwischen $-2$ und $0$ gleichverteilt . | |
+ | |||
+ | *Da zudem $q$ und $r$ nicht statistisch voneinander abhängen, gilt für die WDF der Summe: | ||
:$$f_s(s) = f_q(q) \star f_r(r).$$ | :$$f_s(s) = f_q(q) \star f_r(r).$$ | ||
− | + | *Die Addition $x = s+1$ führt zu einer Verschiebung der Dreieck–WDF um $1$ nach rechts. | |
− | [[Datei: | + | *Für die gesuchte Wahrscheinlichkeit (grün hinterlegt) gilt deshalb: |
+ | :$${\rm Pr}(x < 0)\hspace{0.15cm}\underline{ = 0.125}.$$ | ||
+ | <br clear=all> | ||
+ | [[Datei: P_ID415__Sto_A_4_8_f.png|right|frame|Trapezförmige WDF $f_y(y)$]] | ||
+ | '''(6)''' Analog zur Musterlösung der Teilaufgabe '''(5)''' gilt mit $t = 3v$: | ||
+ | :$$f_y(y) = f_u(u) \star f_t(t).$$ | ||
+ | |||
+ | *Die Faltung zwischen zwei verschieden breiten Rechtecken ergibt ein Trapez. | ||
+ | *Für die gesuchte Wahrscheinlichkeit erhält man | ||
+ | :$${\rm Pr}(y>3) =1/6\hspace{0.15cm}\underline{ \approx 0.167}.$$ | ||
+ | *Diese Wahrscheinlichkeit ist in der rechten Skizze grün hinterlegt. | ||
− | |||
− | |||
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Aktuelle Version vom 27. Februar 2022, 14:21 Uhr
Wir betrachten eine 2D–Zufallsgröße $(x,\hspace{0.08cm} y)$, deren Komponenten sich jeweils als Linearkombinationen zweier Zufallsgrößen $u$ und $v$ ergeben:
- $$x=2u-2v+1,$$
- $$y=u+3v.$$
Weiter ist zu beachten:
- Die zwei statistisch unabhängigen Zufallsgrößen $u$ und $v$ sind jeweils gleichverteilt zwischen $0$ und $1$.
- In der Abbildung sehen Sie die 2D–WDF. Innerhalb des blau eingezeichneten Parallelogramms gilt:
- $$f_{xy}(x,\hspace{0.08cm} y) = H = {\rm const.}$$
- Außerhalb des Parallelogramms sind keine Werte möglich: $f_{xy}(x, y) = 0$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Linearkombinationen von Zufallsgrößen.
- Bezug genommen wird auch auf die Seite Regressionsgerade.
- Wir verweisen hier auch auf das interaktive Applet Korrelationskoeffizient und Regressionsgerade.
- Gehen Sie - wenn möglich - von den angegebenen Gleichungen aus. Nutzen Sie die Informationen der obigen Skizze vorwiegend nur zur Kontrolle Ihrer Ergebnisse.
Fragebogen
Musterlösung
- Die Fläche des Dreiecks $(1,0)\ (1,4)\ (-1,3)$ ergibt $0.5 · 4 · 2 = 4$.
- Die Gesamtfläche ist doppelt so groß: $F = 8$.
- Da das WDF–Volumen stets $1$ ist; $H= 1/F\hspace{0.15cm}\underline{ = 0.125}$.
(2) Der minimale Wert von $x$ ergibt sich für $\underline{ u=0}$ und $\underline{ v=1}$. Daraus folgen aus obigen Gleichungen die Ergebnisse $x= -1$ und $y= +3$.
(3) Die im Theorieteil angegebene Gleichung gilt allgemein, also für jede beliebige WDF der beiden statistisch unabhängigen Größen $u$ und $v$, so lange diese gleiche Streuungen aufweisen $(\sigma_u = \sigma_v)$.
- Mit $A = 2$, $B = -2$, $D = 1$ und $E = 3$ erhält man:
- $$\rho_{xy } = \frac {\it A \cdot D + B \cdot E}{\sqrt{(\it A^{\rm 2}+\it B^{\rm 2})(\it D^{\rm 2}+\it E^{\rm 2})}} =\frac {2 \cdot 1 -2 \cdot 3}{\sqrt{(4 +4)(1+9)}} = \frac {-4}{\sqrt{80}} = \frac {-1}{\sqrt{5}}\hspace{0.15cm}\underline{ = -0.447}. $$
(4) Die Korrelationsgerade lautet allgemein:
- $$y=K(x)=\frac{\sigma_y}{\sigma_x}\cdot\rho_{xy}\cdot(x-m_x)+m_y.$$
- Aus den linearen Mittelwerten $m_u = m_v = 0.5$ und den in der Aufgabenstellung angegebenen Gleichungen erhält man $m_x = 1$ und $m_y = 2$.
- Die Varianzen von $u$ und $v$ betragen jeweils $\sigma_u^2 = \sigma_v^2 =1/12$. Daraus folgt:
- $$\sigma_x^2 = 4 \cdot \sigma_u^2 + 4 \cdot \sigma_v^2 = 2/3,$$
- $$\sigma_y^2 = \sigma_u^2 + 9\cdot \sigma_v^2 = 5/6.$$
- Setzt man diese Werte in die Gleichung der Korrelationsgeraden ein, so ergibt sich:
- $$y=K(x)=\frac{\sqrt{5/6}}{\sqrt{2/3}}\cdot (\frac{-1}{\sqrt{5}})\cdot(x-1)+2= - x/{2} + 2.5.$$
- Daraus folgt der Wert $y_0=K(x=0)\hspace{0.15cm}\underline{ = 2.5}$
(5) Mit den Hilfsgrößen $q= 2u$, $r= -2v$ und $s= x-1$ gilt der Zusammenhang: $s= q+r$.
- Da $u$ und $v$ jeweils zwischen $0$ und $1$ gleichverteilt sind, ist $q$ zwischen $0$ bis $2$ und $r$ zwischen $-2$ und $0$ gleichverteilt .
- Da zudem $q$ und $r$ nicht statistisch voneinander abhängen, gilt für die WDF der Summe:
- $$f_s(s) = f_q(q) \star f_r(r).$$
- Die Addition $x = s+1$ führt zu einer Verschiebung der Dreieck–WDF um $1$ nach rechts.
- Für die gesuchte Wahrscheinlichkeit (grün hinterlegt) gilt deshalb:
- $${\rm Pr}(x < 0)\hspace{0.15cm}\underline{ = 0.125}.$$
(6) Analog zur Musterlösung der Teilaufgabe (5) gilt mit $t = 3v$:
- $$f_y(y) = f_u(u) \star f_t(t).$$
- Die Faltung zwischen zwei verschieden breiten Rechtecken ergibt ein Trapez.
- Für die gesuchte Wahrscheinlichkeit erhält man
- $${\rm Pr}(y>3) =1/6\hspace{0.15cm}\underline{ \approx 0.167}.$$
- Diese Wahrscheinlichkeit ist in der rechten Skizze grün hinterlegt.