Aufgaben:Aufgabe 3.9: Bedingte Transinformation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(9 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2813__Inf_A_3_8.png|right|Zusammenhang zwischen den Zufallsgrößen <i>X</i>, <i>Y</i>, <i>Z</i> und <i>W</i>]]
+
[[Datei:P_ID2813__Inf_A_3_8.png|right|frame|Ergebnis&nbsp; $W$&nbsp; als Funktion <br>von&nbsp;  $X$,&nbsp; $Y$,&nbsp; $Z$]]
Wir gehen von den statistisch unabhängigen Zufallsgrößen $X$, $Y$ und $Z$ mit den folgenden Eigenschaften aus :  
+
Wir gehen von den statistisch unabhängigen Zufallsgrößen&nbsp; $X$,&nbsp; $Y$&nbsp; und&nbsp; $Z$&nbsp; mit den folgenden Eigenschaften aus:  
:$$X \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm}
+
:$$X \in \{1,\ 2 \} \hspace{0.05cm},\hspace{0.35cm}
Y \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm}
+
Y \in \{1,\ 2 \} \hspace{0.05cm},\hspace{0.35cm}
Z \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm} P_X(X) = P_Y(Y) = [ 1/2 , 1/2]\hspace{0.05cm},\hspace{0.35cm}P_Z(Z) = [ p, 1-p].$$
+
Z \in \{1,\ 2 \} \hspace{0.05cm},\hspace{0.35cm} P_X(X) = P_Y(Y) = \big [ 1/2, \ 1/2 \big ]\hspace{0.05cm},\hspace{0.35cm}P_Z(Z) = \big [ p, \ 1-p \big ].$$
  
Aus $X$, $Y$ und $Z$ bilden wir die neue Zufallsgröße $W = (X+Y) \cdot Z$.
+
Aus&nbsp; $X$,&nbsp; $Y$&nbsp; und&nbsp; $Z$&nbsp; bilden wir die neue Zufallsgröße&nbsp; $W = (X+Y) \cdot Z$.
*Damit ist offensichtlich, dass es zwischen den beiden Zufallsgrößen $X$ und $W$ statistische Abhängigkeiten gibt, die sich auch in der Transinformation $I(X; W) ≠ 0$ zeigen werden.
+
*Es ist offensichtlich, dass es zwischen&nbsp; $X$&nbsp; und&nbsp; $W$&nbsp; statistische Abhängigkeiten gibt &nbsp; &rArr; &nbsp; Transinformation&nbsp; $I(X; W) ≠ 0$.
*Außerdem wird auch $I(Y; W) ≠ 0$ sowie $I(Z; W) ≠ 0$ gelten, worauf in dieser Aufgabe jedoch nicht näher eingegangen wird.
+
*Außerdem wird auch&nbsp; $I(Y; W) ≠ 0$ &nbsp;sowie&nbsp; $I(Z; W) ≠ 0$&nbsp; gelten, worauf in dieser Aufgabe jedoch nicht näher eingegangen wird.
  
  
 
In dieser Aufgabe werden drei verschiedene Transinformationsdefinitionen verwendet:
 
In dieser Aufgabe werden drei verschiedene Transinformationsdefinitionen verwendet:
*die ''herkömmliche'' Transinformation zwischen $X$ und $W$:
+
*die &bdquo;herkömmliche&rdquo;&nbsp; Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $W$:
 
:$$I(X;W) =  H(X) - H(X|\hspace{0.05cm}W) \hspace{0.05cm},$$   
 
:$$I(X;W) =  H(X) - H(X|\hspace{0.05cm}W) \hspace{0.05cm},$$   
:* die ''bedingte'' Transinformation zwischen $X$ und $W$ bei ''gegebenem Festwert'' $Z = z$:
+
* die &bdquo;bedingte&rdquo;&nbsp; Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $W$&nbsp; bei&nbsp; <u>gegebenem Festwert</u>&nbsp; $Z = z$:
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z) =  H(X\hspace{0.05cm}|\hspace{0.05cm} Z = z) - H(X|\hspace{0.05cm}W ,\hspace{0.05cm} Z = z) \hspace{0.05cm},$$
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z) =  H(X\hspace{0.05cm}|\hspace{0.05cm} Z = z) - H(X|\hspace{0.05cm}W ,\hspace{0.05cm} Z = z) \hspace{0.05cm},$$
* die ''bedingte'' Transinformation zwischen $X$ und $W$ bei ''gegebener Zufallsgröße'' $Z$:
+
* die &bdquo;bedingte&rdquo;&nbsp; Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $W$&nbsp; bei&nbsp; <u>gegebener Zufallsgröße</u>&nbsp; $Z$:
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) =  H(X\hspace{0.05cm}|\hspace{0.05cm} Z ) - H(X|\hspace{0.05cm}W \hspace{0.05cm} Z ) \hspace{0.05cm}.$$
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) =  H(X\hspace{0.05cm}|\hspace{0.05cm} Z ) - H(X|\hspace{0.05cm}W \hspace{0.05cm} Z ) \hspace{0.05cm}.$$
  
Zeile 25: Zeile 25:
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = \sum_{z \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Z})} \hspace{-0.2cm}
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = \sum_{z \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Z})} \hspace{-0.2cm}
 
  P_Z(z) \cdot  I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z)\hspace{0.05cm}.$$
 
  P_Z(z) \cdot  I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z)\hspace{0.05cm}.$$
 +
 +
 +
 +
 +
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen|Verschiedene Entropien zweidimensionaler Zufallsgrößen]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen|Verschiedene Entropien zweidimensionaler Zufallsgrößen]].
*Insbesondere wird auf die Seite [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen#Bedingte_Transinformation|Bedingte Transinformation]] Bezug genommen .
+
*Insbesondere wird auf die Seite &nbsp; [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen#Bedingte_Transinformation|Bedingte Transinformation]]&nbsp; Bezug genommen .
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
  
  
Zeile 37: Zeile 42:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Transinformation zwischen $X$ und $W$, falls stets $Z = 1$ gilt?
+
{Wie groß ist die Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $W$,&nbsp; falls stets&nbsp; $Z = 1$&nbsp; gilt?
 
|type="{}"}
 
|type="{}"}
 
$ I(X; W | Z = 1) \ = \ $ { 0.5 3% } $\ \rm bit$
 
$ I(X; W | Z = 1) \ = \ $ { 0.5 3% } $\ \rm bit$
  
{Wie groß ist die Transinformation zwischen $X$ und $W$, falls stets $Z = 2$ gilt?
+
{Wie groß ist die Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $W$,&nbsp; falls stets&nbsp; $Z = 2$&nbsp; gilt?
 
|type="{}"}
 
|type="{}"}
 
$ I(X; W | Z = 2) \ = \ $ { 0.5 3% } $\ \rm bit$
 
$ I(X; W | Z = 2) \ = \ $ { 0.5 3% } $\ \rm bit$
  
{Nun gelte $p = {\rm Pr}(Z = 1)$. Wie groß ist die bedingte Transinformation zwischen $X$ und $W$, falls $z  \in Z = \{1, 2\}$ bekannt ist?  
+
{Nun gelte &nbsp;$p = {\rm Pr}(Z = 1)$. &nbsp; Wie groß ist die bedingte Transinformation zwischen&nbsp; $X$&nbsp; und&nbsp; $W$, falls&nbsp; $z  \in Z = \{1,\ 2\}$&nbsp; bekannt ist?  
 
|type="{}"}
 
|type="{}"}
 
$p = 1/2\text{:} \ \ \ I(X; W | Z) \ = \ $  { 0.5 3% } $\ \rm bit$
 
$p = 1/2\text{:} \ \ \ I(X; W | Z) \ = \ $  { 0.5 3% } $\ \rm bit$
 
$p = 3/4\text{:} \ \ \ I(X; W | Z) \ = \ $  { 0.5 3% } $\ \rm bit$
 
$p = 3/4\text{:} \ \ \ I(X; W | Z) \ = \ $  { 0.5 3% } $\ \rm bit$
  
{Wie groß ist die unkonditionierte Transinformation?  
+
{Wie groß ist die unkonditionierte Transinformation für&nbsp; $p = 1/2$?  
 
|type="{}"}
 
|type="{}"}
$p = 1/2\text{:} \ \ \ I(X; W) \ = \ $ { 0.25 3% } $\ \rm bit$
+
$I(X; W) \ = \ $ { 0.25 3% } $\ \rm bit$
  
  
Zeile 63: Zeile 68:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die erste Grafik gilt für $Z = 1$ &nbsp; &rArr; &nbsp; $W = X + Y$. Unter den Voraussetzungen $P_X(X) = [1/2, 1/2]$ sowie $P_Y(Y) = [1/2, 1/2]$ ergeben sich somit die Verbundwahrscheinlichkeiten $P_{ XW|Z=1 }(X, W)$ entsprechend der rechten Grafik (graue Hinterlegung).
+
[[Datei:P_ID2814__Inf_A_3_8a.png|right|frame|2D-Wahrscheinlichkeitsfunktionen für&nbsp; $Z = 1$]]
 +
'''(1)'''&nbsp; Die obere Grafik gilt für&nbsp; $Z = 1$ &nbsp; &rArr; &nbsp; $W = X + Y$.&nbsp;
 +
*Unter den Voraussetzungen&nbsp; $P_X(X) = \big [1/2, \ 1/2 \big]$&nbsp; sowie&nbsp; $P_Y(Y) = \big [1/2, \ 1/2 \big]$&nbsp; ergeben sich somit die Verbundwahrscheinlichkeiten&nbsp; $P_{ XW|Z=1 }(X, W)$&nbsp; entsprechend der rechten Grafik (graue Hinterlegung).
  
Damit gilt für die Transinformation unter der festen Bedingung $Z = 1$:
+
*Damit gilt für die Transinformation unter der festen Bedingung&nbsp; $Z = 1$:
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{-0.05cm} = \hspace{-1.1cm}\sum_{(x,w) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XW}\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1)} \hspace{-1.1cm}
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{-0.05cm} = \hspace{-1.1cm}\sum_{(x,w) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XW}\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1)} \hspace{-1.1cm}
  P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) }{P_X(x) \cdot P_{W\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (w) } =  2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/4} +
+
  P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) }{P_X(x) \cdot P_{W\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (w) }$$
 +
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1)  =  2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/4} +
 
2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/2}
 
2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/2}
 +
$$
 +
:$$\Rightarrow \hspace{0.3cm} I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1)
 
\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}}
 
\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
[[Datei:P_ID2814__Inf_A_3_8a.png|center|2D-Wahrscheinlichkeitsfunktionen für <i>Z</i> = 1]]
+
*Der erste Term fasst die beiden horizontal schraffierten Felder in der Grafik zusammen, der zweite Term die vertikal schraffierten Felder.  
 +
*Der zweite Term liefert wegen&nbsp; $\log_2 (1) = 0$&nbsp; keinen Beitrag.
  
Der erste Term fasst die beiden horizontal schraffierten Felder in obiger Grafik zusammen, der zweite Term die vertikal schraffierten Felder. Letztere liefern wegen $\log_2 (1) = 0$ keinen Beitrag.
 
  
  
'''(2)'''&nbsp; Für $Z = 2$ gilt zwar $W = \{4, 6, 8\}$, aber hinsichtlich der Wahrscheinlichkeitsfunktionen ändert sich gegenüber der Teilaufgabe (1) nichts. Demzufolge erhält man auch die gleiche bedingte Transinformation:
+
[[Datei:P_ID2815__Inf_A_3_8b.png|right|frame|2D-Wahrscheinlichkeitsfunktionen für&nbsp; $Z = 2$]]
 +
'''(2)'''&nbsp; Für&nbsp; $Z = 2$&nbsp; gilt zwar $W = \{4,\ 6,\ 8\}$, es ändert sich aber hinsichtlich der Wahrscheinlichkeitsfunktionen gegenüber der Teilaufgabe&nbsp; '''(1)'''&nbsp; nichts.  
 +
 
 +
*Demzufolge erhält man auch die gleiche bedingte Transinformation:
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2) = I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1)
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2) = I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1)
 
\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}}
 
\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 
[[Datei:P_ID2815__Inf_A_3_8b.png|center|2D-Wahrscheinlichkeitsfunktionen für <i>Z</i> = 2]]
 
  
  
'''(3)'''&nbsp; Die angegebene Gleichung lautet für $Z = \{1, 2\}$ mit ${\rm Pr}(Z = 1) =p$ und  ${\rm Pr}(Z = 2) =1-p$:
+
'''(3)'''&nbsp; Die Gleichung lautet für&nbsp; $Z = \{1,\ 2\}$&nbsp; mit&nbsp; ${\rm Pr}(Z = 1) =p$ &nbsp;und&nbsp; ${\rm Pr}(Z = 2) =1-p$:
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z) =  p \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) + (1-p) \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2)\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}}
 
:$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z) =  p \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) + (1-p) \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2)\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Es ist berücksichtigt, dass entsprechend den Teilaufgaben (1) und (2) die bedingten Transinformationen für gegebenes $Z = 1$ und gegebenes $Z = 2$ gleich sind. Damit ist $I(X; W|Z)$, also unter der Bedingung einer stochastischen Zufallsgröße $Z = \{1, 2\}$ mit $P_Z(Z) = [p, 1 – p]$, unabhängig von $p$. Das Ergebnis gilt insbesondere auch für $\underline{p = 1/2}$ und $\underline{p = 3/4}$.
+
*Es ist berücksichtigt, dass nach den Teilaufgaben&nbsp; '''(1)'''&nbsp; und&nbsp; '''(2)'''&nbsp; die bedingten Transinformationen für gegebenes&nbsp; $Z = 1$&nbsp; und gegebenes&nbsp; $Z = 2$&nbsp; gleich sind.  
 +
*Damit ist&nbsp; $I(X; W|Z)$, also unter der Bedingung einer stochastischen Zufallsgröße&nbsp; $Z = \{1,\ 2\}$&nbsp; mit&nbsp; $P_Z(Z) = \big [p, \ 1 – p\big ]$&nbsp; unabhängig von &nbsp;$p$.  
 +
*Das Ergebnis gilt insbesondere auch für&nbsp; $\underline{p = 1/2}$&nbsp; und&nbsp; $\underline{p = 3/4}$.
  
  
[[Datei:P_ID2816__Inf_A_3_8d.png|right|Zur Berechnung der Verbundwahrscheinlichkeit für &bdquo;XW&rdquo;]]
+
[[Datei:P_ID2816__Inf_A_3_8d.png|right|frame|Zur Berechnung der Verbundwahrscheinlichkeit für $XW$]]
'''(4)'''&nbsp; Die Verbundwahrscheinlichkeiten $P_{ XW }(⋅)$ hängen auch von den $Z$–Wahrscheinlichkeiten $p$ und $1 – p$ ab.  
+
'''(4)'''&nbsp; Die Verbundwahrscheinlichkeit&nbsp; $P_{ XW }$&nbsp; hängt von den&nbsp; $Z$–Wahrscheinlichkeiten &nbsp;$p$&nbsp; und&nbsp; $1 – p$&nbsp; ab.  
*Für $Pr(Z = 1) = Pr(Z = 2) = 1/2$ ergibt sich das rechts skizzierte Schema.  
+
*Für&nbsp; $Pr(Z = 1) = Pr(Z = 2) = 1/2$&nbsp; ergibt sich das rechts skizzierte Schema.  
 
*Zur Transinformation tragen nur wieder die beiden horizontal schraffierten Felder bei:
 
*Zur Transinformation tragen nur wieder die beiden horizontal schraffierten Felder bei:
 
:$$ I(X;W) = 2 \cdot \frac{1}{8} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/8}{1/2 \cdot 1/8}
 
:$$ I(X;W) = 2 \cdot \frac{1}{8} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/8}{1/2 \cdot 1/8}
Zeile 99: Zeile 112:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
 
+
Das Ergebnis&nbsp; $I(X; W|Z) > I(X; W)$&nbsp; trifft für dieses Beispiel, aber auch für viele andere Anwendungen zu:  
 
+
*Kenne ich&nbsp; $Z$, so weiß ich mehr über die 2D–Zufallsgröße&nbsp; $XW$&nbsp; als ohne diese Kenntnis.  
Das Ergebnis $I(X; W|Z) > I(X; W)$ trifft für dieses Beispiel, aber auch für viele andere Anwendungen zu:  
+
*Man darf dieses Ergebnis aber nicht verallgemeinern:
*Kenne ich $Z$, so weiß ich mehr über die 2D–Zufallsgröße $XW$ als ohne diese Kenntnis.  
+
:Manchmal gilt tatsächlich&nbsp; $I(X; W) > I(X; W|Z)$, so wie im&nbsp; [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgr%C3%B6%C3%9Fen#Bedingte_Transinformation|Beispiel 4]]&nbsp; im Theorieteil.
*Man darf dieses Ergebnis aber nicht verallgemeinern. Manchmal gilt tatsächlich $I(X; W) > I(X; W|Z)$, so wie im [[Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgr%C3%B6%C3%9Fen#Bedingte_Transinformation|Beispiel 3]] im Theorieteil.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 21. September 2021, 15:17 Uhr

Ergebnis  $W$  als Funktion
von  $X$,  $Y$,  $Z$

Wir gehen von den statistisch unabhängigen Zufallsgrößen  $X$,  $Y$  und  $Z$  mit den folgenden Eigenschaften aus:

$$X \in \{1,\ 2 \} \hspace{0.05cm},\hspace{0.35cm} Y \in \{1,\ 2 \} \hspace{0.05cm},\hspace{0.35cm} Z \in \{1,\ 2 \} \hspace{0.05cm},\hspace{0.35cm} P_X(X) = P_Y(Y) = \big [ 1/2, \ 1/2 \big ]\hspace{0.05cm},\hspace{0.35cm}P_Z(Z) = \big [ p, \ 1-p \big ].$$

Aus  $X$,  $Y$  und  $Z$  bilden wir die neue Zufallsgröße  $W = (X+Y) \cdot Z$.

  • Es ist offensichtlich, dass es zwischen  $X$  und  $W$  statistische Abhängigkeiten gibt   ⇒   Transinformation  $I(X; W) ≠ 0$.
  • Außerdem wird auch  $I(Y; W) ≠ 0$  sowie  $I(Z; W) ≠ 0$  gelten, worauf in dieser Aufgabe jedoch nicht näher eingegangen wird.


In dieser Aufgabe werden drei verschiedene Transinformationsdefinitionen verwendet:

  • die „herkömmliche”  Transinformation zwischen  $X$  und  $W$:
$$I(X;W) = H(X) - H(X|\hspace{0.05cm}W) \hspace{0.05cm},$$
  • die „bedingte”  Transinformation zwischen  $X$  und  $W$  bei  gegebenem Festwert  $Z = z$:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z) = H(X\hspace{0.05cm}|\hspace{0.05cm} Z = z) - H(X|\hspace{0.05cm}W ,\hspace{0.05cm} Z = z) \hspace{0.05cm},$$
  • die „bedingte”  Transinformation zwischen  $X$  und  $W$  bei  gegebener Zufallsgröße  $Z$:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = H(X\hspace{0.05cm}|\hspace{0.05cm} Z ) - H(X|\hspace{0.05cm}W \hspace{0.05cm} Z ) \hspace{0.05cm}.$$

Der Zusammenhang zwischen den beiden letzten Definitionen lautet:

$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = \sum_{z \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Z})} \hspace{-0.2cm} P_Z(z) \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z)\hspace{0.05cm}.$$




Hinweise:



Fragebogen

1

Wie groß ist die Transinformation zwischen  $X$  und  $W$,  falls stets  $Z = 1$  gilt?

$ I(X; W | Z = 1) \ = \ $

$\ \rm bit$

2

Wie groß ist die Transinformation zwischen  $X$  und  $W$,  falls stets  $Z = 2$  gilt?

$ I(X; W | Z = 2) \ = \ $

$\ \rm bit$

3

Nun gelte  $p = {\rm Pr}(Z = 1)$.   Wie groß ist die bedingte Transinformation zwischen  $X$  und  $W$, falls  $z \in Z = \{1,\ 2\}$  bekannt ist?

$p = 1/2\text{:} \ \ \ I(X; W | Z) \ = \ $

$\ \rm bit$
$p = 3/4\text{:} \ \ \ I(X; W | Z) \ = \ $

$\ \rm bit$

4

Wie groß ist die unkonditionierte Transinformation für  $p = 1/2$?

$I(X; W) \ = \ $

$\ \rm bit$


Musterlösung

2D-Wahrscheinlichkeitsfunktionen für  $Z = 1$

(1)  Die obere Grafik gilt für  $Z = 1$   ⇒   $W = X + Y$. 

  • Unter den Voraussetzungen  $P_X(X) = \big [1/2, \ 1/2 \big]$  sowie  $P_Y(Y) = \big [1/2, \ 1/2 \big]$  ergeben sich somit die Verbundwahrscheinlichkeiten  $P_{ XW|Z=1 }(X, W)$  entsprechend der rechten Grafik (graue Hinterlegung).
  • Damit gilt für die Transinformation unter der festen Bedingung  $Z = 1$:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{-0.05cm} = \hspace{-1.1cm}\sum_{(x,w) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XW}\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1)} \hspace{-1.1cm} P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) }{P_X(x) \cdot P_{W\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (w) }$$
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) = 2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/4} + 2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/2} $$
$$\Rightarrow \hspace{0.3cm} I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{0.15cm} \underline {=0.5\,{\rm (bit)}} \hspace{0.05cm}.$$
  • Der erste Term fasst die beiden horizontal schraffierten Felder in der Grafik zusammen, der zweite Term die vertikal schraffierten Felder.
  • Der zweite Term liefert wegen  $\log_2 (1) = 0$  keinen Beitrag.


2D-Wahrscheinlichkeitsfunktionen für  $Z = 2$

(2)  Für  $Z = 2$  gilt zwar $W = \{4,\ 6,\ 8\}$, es ändert sich aber hinsichtlich der Wahrscheinlichkeitsfunktionen gegenüber der Teilaufgabe  (1)  nichts.

  • Demzufolge erhält man auch die gleiche bedingte Transinformation:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2) = I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{0.15cm} \underline {=0.5\,{\rm (bit)}} \hspace{0.05cm}.$$


(3)  Die Gleichung lautet für  $Z = \{1,\ 2\}$  mit  ${\rm Pr}(Z = 1) =p$  und  ${\rm Pr}(Z = 2) =1-p$:

$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z) = p \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) + (1-p) \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2)\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}} \hspace{0.05cm}.$$
  • Es ist berücksichtigt, dass nach den Teilaufgaben  (1)  und  (2)  die bedingten Transinformationen für gegebenes  $Z = 1$  und gegebenes  $Z = 2$  gleich sind.
  • Damit ist  $I(X; W|Z)$, also unter der Bedingung einer stochastischen Zufallsgröße  $Z = \{1,\ 2\}$  mit  $P_Z(Z) = \big [p, \ 1 – p\big ]$  unabhängig von  $p$.
  • Das Ergebnis gilt insbesondere auch für  $\underline{p = 1/2}$  und  $\underline{p = 3/4}$.


Zur Berechnung der Verbundwahrscheinlichkeit für $XW$

(4)  Die Verbundwahrscheinlichkeit  $P_{ XW }$  hängt von den  $Z$–Wahrscheinlichkeiten  $p$  und  $1 – p$  ab.

  • Für  $Pr(Z = 1) = Pr(Z = 2) = 1/2$  ergibt sich das rechts skizzierte Schema.
  • Zur Transinformation tragen nur wieder die beiden horizontal schraffierten Felder bei:
$$ I(X;W) = 2 \cdot \frac{1}{8} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/8}{1/2 \cdot 1/8} \hspace{0.15cm} \underline {=0.25\,{\rm (bit)}} \hspace{0.35cm} < \hspace{0.35cm} I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z) \hspace{0.05cm}.$$

Das Ergebnis  $I(X; W|Z) > I(X; W)$  trifft für dieses Beispiel, aber auch für viele andere Anwendungen zu:

  • Kenne ich  $Z$, so weiß ich mehr über die 2D–Zufallsgröße  $XW$  als ohne diese Kenntnis.
  • Man darf dieses Ergebnis aber nicht verallgemeinern:
Manchmal gilt tatsächlich  $I(X; W) > I(X; W|Z)$, so wie im  Beispiel 4  im Theorieteil.