Aufgaben:Aufgabe 3.11: Pre-emphase und De-emphase: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Rauscheinfluss bei PM und FM
+
{{quiz-Header|Buchseite=Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation
 
}}
 
}}
  
[[Datei:P_ID1116__Mod_A_3_10.png|right|]]
+
[[Datei:P_ID1116__Mod_A_3_10.png|right|frame|Realisierung einer Preemphase]]
Bei der Sprach– und Tonsignalübertragung wird das Signalfrequenzband vor dem FM–Modulator über ein RC–Hochpassglied gemäß der Skizze vorverzerrt. Man bezeichnet diese Maßnahme als Preemphase.
+
Bei der Sprach– und Tonsignalübertragung wird das Signalfrequenzband vor dem FM–Modulator über ein RC–Hochpassglied gemäß der Skizze vorverzerrt. Man bezeichnet diese Maßnahme als „Preemphase”  $\rm (PE)$.
  
Der Amplitudengang des Preemphase–Netzwerks lautet mit den beiden Grenzfrequenzen $f_{G1} = (2π · R_1 · C)^{–1}$ und $f_{G2} = f_{G1}/α_0$ sowie dem Faktor $α_0 = R_2/(R_1 + R_2)$:
+
Der Amplitudengang des Preemphase–Netzwerks lautet  
$$ |H_{\rm PE} (f)| = \alpha_0 \cdot \sqrt{\frac{1 + (f/f_{\rm G1})^2}{1 + (f/f_{\rm G2})^2}} \hspace{0.05cm}.$$
+
*mit den beiden Grenzfrequenzen  $f_{\rm G1} = (2π · R_1 · C)^{–1}$  und  $f_{\rm G2} = f_{\rm G1}/α_0$, sowie  
Für den praktischen Betrieb kann man davon ausgehen, dass die maximale Nachrichtenfrequenz $f_N$ sehr viel kleiner als $f_{G2}$ ist. Berücksichtigt man weiter, dass der Gleichsignalübertragungsfaktor $α_0$ durch eine Verstärkung in $α$ verändert werden kann, so ist im Weiteren von folgendem Preemphase–Frequenzgang auszugehen ($f_G = f_{G1} = 3 kHz$):
+
*dem Gleichsignalübertragungsfaktor  $α_0 = R_2/(R_1 + R_2)$:
$$|H_{\rm PE} (f)| \approx \alpha \cdot \sqrt{{1 + \left({f}/{f_{\rm G}}\right)^2}} \hspace{0.05cm}.$$
+
:$$ |H_{\rm PE} (f)| = \alpha_0 \cdot \sqrt{\frac{1 + (f/f_{\rm G1})^2}{1 + (f/f_{\rm G2})^2}} \hspace{0.05cm}.$$
Mit diesem Netzwerk lautet der Frequenzhub $Δf_A$ in Abhängigkeit der Nachrichtenfrequenz $f_N$:
 
$$ \Delta f_{\rm A} (f_{\rm N}) = \Delta f_{\rm A, \hspace{0.08cm}min} \cdot \sqrt{{1 + \left({f_{\rm N}}/{f_{\rm G}}\right)^2}} \hspace{0.05cm}.$$
 
Hierbei ist $Δf-A$, min der Frequenzhub für sehr kleine Frequenzen ($f_N → 0$). Dieser Parameter ist so zu wählen, dass der maximale Frequenzhub $Δf_A$, max nicht größer wird als 45 kHz.
 
  
 +
Für die Praxis kann man davon ausgehen, dass die maximale Nachrichtenfrequenz  $f_{\rm N}$  sehr viel kleiner als  $f_{\rm G2}$  ist.
  
Gehen Sie in der gesamten Aufgabe von einem Nachrichtensignal aus, das Frequenzen bis einschließlich $B_{NF} = 9 kHz$ beinhaltet.
+
Berücksichtigt man weiter, dass der Gleichsignalübertragungsfaktor  $α_0$  durch eine Verstärkung um  $α$  verändert werden kann, so ist im Weiteren von folgendem Preemphase–Frequenzgang auszugehen  $(f_{\rm G} = f_{\rm G1} = 3 \ \rm  kHz)$:
 +
:$$|H_{\rm PE} (f)| \approx \alpha \cdot \sqrt{{1 + \left({f}/{f_{\rm G}}\right)^2}} \hspace{0.05cm}.$$
 +
Mit diesem Netzwerk lautet der Frequenzhub  $Δf_{\rm A}$  in Abhängigkeit der Nachrichtenfrequenz $f_{\rm N}$:
 +
:$$ \Delta f_{\rm A} (f_{\rm N}) = \Delta f_{\rm A, \hspace{0.08cm}min} \cdot \sqrt{{1 + \left({f_{\rm N}}/{f_{\rm G}}\right)^2}} \hspace{0.05cm}.$$
 +
*Hierbei ist  $Δf_\text{A, min}$  der Frequenzhub für sehr kleine Frequenzen  $(f_{\rm N} → 0)$.
 +
*Dieser Parameter ist so zu wählen, dass der maximale Frequenzhub  $Δf_\text{A, max}$  nicht größer wird als  $45 \ \rm kHz$.
  
  
Um das Nutzsignal nicht zu verfälschen, muss diese Vorverzerrung durch ein Deemphase–Netzwerk beim Empfänger wieder ausgeglichen werden. Ziel und Zweck von Preemphase/Deemphase ist es allein, die Abhängigkeit des Signal–zu–Rausch–Leistungsverhältnisses von der Signalfrequenz zu vermindern.
+
Um das Nutzsignal nicht zu verfälschen, muss diese Vorverzerrung durch ein   „Deemphase”–Netzwerk beim Empfänger wieder ausgeglichen werden.  Ziel und Zweck von Preemphase/Deemphase ist es allein, die Abhängigkeit des Signal–zu–Rausch–Leistungsverhältnisses von der Signalfrequenz zu vermindern.
  
 
In dieser Aufgabe werden folgende Größen verwendet:
 
In dieser Aufgabe werden folgende Größen verwendet:
:* Sinken–SNR bei ZSB–AM:
+
* Sinken–SNR bei Zweiseitenband-Amplitudenmodulation   $\rm (ZSB–AM)$:
$$\rho_{{\rm AM} } = \frac{P_{\rm S}}{N_0 \cdot f_{\rm N} } = \xi\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{{\rm AM} } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.05cm},$$
+
:$$\rho_{{\rm AM} } = \frac{P_{\rm S}}{N_0 \cdot f_{\rm N} } = \xi\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{{\rm AM} } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.05cm},$$
:* Sinken–SNR und Störabstandsgewinn bei FM ohne Preemphase/Deemphase:
+
* Sinken–SNR und Störabstandsgewinn bei Frequenzmodulation   $\rm (FM)$  ohne Preemphase/Deemphase:
$$ \rho_{ FM} = {3}/{2 } \cdot \eta^2 \cdot \rho_{{\rm AM} } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G_{ FM} = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{FM} - 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{ AM}= 10 \cdot {\rm lg} \hspace{0.15cm}{3}/{2 } \cdot \eta^2 \hspace{0.05cm},$$
+
:$$ \rho_{\rm FM} = {3}/{2 } \cdot \eta^2 \cdot \rho_{\rm AM } \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
:*Sinken–SNR und Störabstandsgewinn bei FM durch Preemphase/Deemphase:
+
G_{\rm FM} = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm FM} -
$$ \rho_{ DE} = \frac{(f_{\rm N}/f_{\rm G})^3}{3 \cdot (f_{\rm N}/f_{\rm G} - \arctan (f_{\rm N}/f_{\rm G}) } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G_{ DE} = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{ DE} - 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{ FM}\hspace{0.05cm}.$$
+
10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm AM}= 10 \cdot {\rm
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [http://www.lntwww.de/Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation Kapitel 3.3].
+
lg} \hspace{0.15cm}{3}/{2 } \cdot \eta^2
 +
\hspace{0.05cm},$$
 +
*Sinken–SNR und Störabstandsgewinn bei Frequenzmodulation   $\rm  (FM)$  durch Preemphase/Deemphase:
 +
:$$ \rho_{\rm DE} = \frac{(f_{\rm N}/f_{\rm G})^3}{3 \cdot (f_{\rm N}/f_{\rm G} - \arctan (f_{\rm N}/f_{\rm G}) }
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
G_{\rm DE} = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm DE} -
 +
10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm FM}\hspace{0.05cm}$$
  
  
 +
 +
 +
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation|Rauscheinfluss bei Winkelmodulation]].
 +
*Bezug genommen wirdinsbesondere auf den Abschnitt  [[Modulationsverfahren/Rauscheinfluss_bei_Winkelmodulation#Preemphase_und_Deemphase|Preemphase und Deemphase]].
 +
*Gehen Sie in der gesamten Aufgabe von einem Nachrichtensignal aus, das Frequenzen bis einschließlich  $B_{\rm NF}= 9 \ \rm kHz$  beinhaltet.
 +
  
  
Zeile 36: Zeile 53:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie eine mögliche Realisierung des Deemphase–Netzwerks $H_{DE}(f)$ an. Welche der nachfolgenden Aussagen sind richtig?
+
{Geben Sie eine mögliche Realisierung des Deemphase–Netzwerks &nbsp;$H_{\rm DE}(f)$&nbsp; an.&nbsp; Welche der folgenden Aussagen sind richtig?
 
|type="[]"}
 
|type="[]"}
+ $H_{DE}(f)$ ist ein Tiefpass erster Ordnung.
+
+ $H_{\rm DE}(f)$&nbsp; ist ein Tiefpass erster Ordnung.
- $H_{DE}(f)$ ist ein Hochpass erster Ordnung.
+
- $H_{\rm DE}(f)$&nbsp; ist ein Hochpass erster Ordnung.
- $H_{DE}(f)$ ist ein Bandpass.
+
- $H_{\rm DE}(f)$&nbsp; ist ein Bandpass.
+ Zusätzlich muss der Faktor $α$ korrigiert werden.
+
+ Zusätzlich muss der Faktor &nbsp;$α$&nbsp; korrigiert werden.
  
  
{Wie groß ist der Störabstandsgewinn der herkömmlichen FM gegenüber AM, wenn die Nachrichtenfrequenz $f_N = 9 kHz$, $3 kHz$ bzw. $1 kHz$ beträgt?
+
{Wie groß ist der Störabstandsgewinn &nbsp;$G_{\rm FM}$&nbsp; der herkömmlichen FM gegenüber AM bei den genannten Nachrichtenfrequenzen &nbsp;$ f_{\rm N}$?
 
|type="{}"}
 
|type="{}"}
$ f_N = 9 kHz:   G_{FM}$ = { 15.74 3% } $dB$  
+
$ f_{\rm N} = \text{9 kHz:}  \hspace{0.2cm} G_{\rm FM} \ = \ $ { 15.74 3% } $\ \rm dB$  
$ f_N = 3 kHz:   G_{FM}$ = { 25.28 3% } $dB$  
+
$ f_{\rm N} = \text{3 kHz:}  \hspace{0.2cm} G_{\rm FM} \ = \ $ { 25.28 3% } $\ \rm dB$
$ f_N = 1 kHz:   G_{FM}$ = { 34.82 3% } $dB$  
+
$ f_{\rm N} = \text{1 kHz:}  \hspace{0.2cm} G_{\rm FM} \ = \ $ { 34.82 3% } $\ \rm dB$
  
{Wie groß ist $Δf_{A, min}$ mit $Δf_{A, max} = 45 kHz$ und $B_{NF} = 9 kHz$ zu wählen?
+
{Wie groß ist &nbsp;$Δf_\text{A, min}$ &nbsp; mit &nbsp; $Δf_\text{A, max} = 45 \ \rm  kHz$ &nbsp; und &nbsp; $B_{\rm NF} = f_\text{N, max}= 9 \ \rm kHz$ &nbsp; zu wählen?
 
|type="{}"}
 
|type="{}"}
$Δf_{A, min}$ = { 14.23 3% } $KHz$  
+
$Δf_\text{A, min}  \ = \ $ { 14.23 3% } $\ \rm kHz$  
  
 
{Welcher zusätzliche Gewinn ist durch Preemphase/Deemphase zu erzielen?
 
{Welcher zusätzliche Gewinn ist durch Preemphase/Deemphase zu erzielen?
 
|type="{}"}
 
|type="{}"}
$f_N = 9 kHz:   G_{DE}$ = { 7.1 3% } $dB$  
+
$ f_{\rm N} = \text{9 kHz:}  \hspace{0.2cm} G_{\rm DE} \ = \ $ { 7.1 3% } $\ \rm dB$  
$f_N = 3 kHz:   G_{DE}$ = { 1.9 3% } $dB$  
+
$ f_{\rm N} = \text{3 kHz:}  \hspace{0.2cm} G_{\rm DE} \ = \ $ { 1.9 3% } $\ \rm dB$  
$f_N = 1 kHz:   G_{DE}$ = { 0.28 3% } $dB$  
+
$ f_{\rm N} = \text{1 kHz:}  \hspace{0.2cm} G_{\rm DE} \ = \ $ { 0.28 3% } $\ \rm dB$  
  
  
Zeile 69: Zeile 86:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Der Betragsfrequenzgang des Deemphase–Netzwerks ist wie folgt festgelegt:
+
'''(1)'''&nbsp;  Richtig sind <u>der erste und der letzte Lösungsvorschlag</u>:
$$ |H_{\rm DE} (f)| = \frac{1}{|H_{\rm PE} (f)|}= \frac{1}{\alpha}\cdot \frac{1}{\sqrt{1 + (f/f_{\rm G})^2}} \hspace{0.05cm}.$$
+
*Der Betragsfrequenzgang des Deemphase–Netzwerks ist wie folgt festgelegt:
Der Frequenzgang eines einfachen RC–Tiefpasses – auch bekannt als Tiefpass erster Ordnung – lautet:
+
:$$ |H_{\rm DE} (f)| = \frac{1}{|H_{\rm PE} (f)|}= \frac{1}{\alpha}\cdot \frac{1}{\sqrt{1 + (f/f_{\rm G})^2}} \hspace{0.05cm}.$$
$$ H_{\rm DE} (f) = \frac{1}{{1 + {\rm j}\cdot f/f_{\rm G}}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} |H_{\rm DE} (f)| = \frac{1}{\sqrt{1 + (f/f_{\rm G})^2}}\hspace{0.05cm}.$$
+
*Der Frequenzgang eines einfachen RC–Tiefpasses – auch bekannt als Tiefpass erster Ordnung – lautet:
Richtig sind also der erste und der letzte Lösungsvorschlag.
+
:$$ H_{\rm RC-TP} (f) = \frac{1}{{1 + {\rm j}\cdot f/f_{\rm G}}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} |H_{\rm RC-TP} (f)| = \frac{1}{\sqrt{1 + (f/f_{\rm G})^2}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp;  Die Frequenzmodulation  ist auf die maximale Frequenz&nbsp; $B_{\rm NF} = f_\text{N, max}= 9 \ \rm kHz$&nbsp; ausgelegt.&nbsp; Dann soll der (maximale) Frequenzhub&nbsp; $Δf_{\rm A} = 45\ \rm  kHz$&nbsp; betragen.
 +
*Daraus folgt für den Modulationsindex:
 +
:$$ \eta = \frac{\Delta f_{\rm A}}{f_{\rm N} } = 5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
G_{\rm FM} (f_{\rm N} = 9\,{\rm kHz}) = 10 \cdot {\rm lg}
 +
\hspace{0.15cm}(1.5 \cdot 5^2) \hspace{0.15cm}\underline {\approx 15.74\,{\rm dB}}
 +
\hspace{0.05cm}.$$
 +
 
 +
*Mit der Nachrichtenfrequenz&nbsp; $ f_{\rm N} = 3 \ \rm kHz$&nbsp;  ergibt sich ein um den Faktor&nbsp; $3$&nbsp; größerer Modulationsindex und damit ein um den Faktor&nbsp; $10 · \lg \ 9 = 9.54 \ \rm  dB$&nbsp; größerer Störabstand:
 +
:$$G_{\rm FM} (f_{\rm N} = 3\,{\rm kHz}) = 10 \cdot {\rm lg}
 +
\hspace{0.15cm}(1.5 \cdot 15^2) \hspace{0.15cm}\underline {\approx 25.28\,{\rm dB}}
 +
\hspace{0.05cm}.$$
 +
 
 +
*Ein weiterer Zugewinn ergibt sich durch den Übergang von&nbsp; $3\ \rm  kHz$&nbsp; auf&nbsp; $1\ \rm  kHz$:
 +
:$$G_{\rm FM} (f_{\rm N} = 1\,{\rm kHz}) =  25.28\,{\rm dB} + 9.54\,{\rm
 +
dB}\hspace{0.15cm}\underline {= 34.82\,{\rm dB}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
  
 +
'''(3)'''&nbsp;  Der maximale Frequenzhub ergibt sich für $f_{\rm N} = B_{\rm NF}$.
 +
*Daraus folgt mit $f_{\rm G}  = 3 \ \rm    kHz$ und $B_{\rm NF} = 9 \ \rm  kHz$:
 +
:$$\Delta f_{\rm A} (B_{\rm NF}) = \Delta f_{\rm A, \hspace{0.08cm}min} \cdot \sqrt{{1 + \left(\frac{B_{\rm NF}}{f_{\rm G}}\right)^2}} = \sqrt {10} \cdot \Delta f_{\rm A, \hspace{0.08cm}min}= \Delta f_{\rm A, \hspace{0.08cm}max} = 45\,{\rm kHz}$$
 +
:$$\Rightarrow \hspace{0.3cm} \Delta f_{\rm A, \hspace{0.08cm}min} = \frac{45\,{\rm kHz}}{\sqrt {10}}\hspace{0.15cm}\underline {\approx 14.23\,{\rm kHz}}\hspace{0.05cm}.$$
  
'''2.'''  Die FM ist auf die maximale Signalfrequenz $9 kHz$ ausgelegt, mit der der Frequenzhub $Δf_A = 45 kHz$ betragen soll. Daraus folgt für den Modulationsindex:
 
$$ \eta = \frac{\Delta f_{\rm A}}{f_{\rm N} } = 5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G_{ FM} (f_{\rm N} = 9\,{\rm kHz}) = 10 \cdot {\rm lg} \hspace{0.15cm}(1.5 \cdot 5^2) \hspace{0.15cm}\underline {\approx 15.74\,{\rm dB}} \hspace{0.05cm}.$$
 
Mit der Nachrichtenfrequenz $f_N = 3 kHz$ ergibt sich ein um den Faktor 3 größerer Modulationsindex und damit ein um den Faktor $10 · lg 9 = 9.54 dB$ größerer Störabstand:
 
$$G_{ FM} (f_{\rm N} = 3\,{\rm kHz}) = 10 \cdot {\rm lg} \hspace{0.15cm}(1.5 \cdot 15^2) \hspace{0.15cm}\underline {\approx 25.28\,{\rm dB}} \hspace{0.05cm}.$$
 
Ein weiterer Zugewinn ergibt sich durch den Übergang von $3 kHz$ auf $1 kHz$:
 
$$G_{ FM} (f_{\rm N} = 1\,{\rm kHz}) = 25.28\,{\rm dB} + 9.54\,{\rm dB}\hspace{0.15cm}\underline {= 34.82\,{\rm dB}} \hspace{0.05cm}.$$
 
  
 +
'''(4)'''&nbsp;  Mit der angegebenen Formel erhält man folgende &bdquo;Gewinne durch Premphase/Deemphase&rdquo;:
 +
:$$G_{\rm DE} (f_{\rm N} = 9\,{\rm kHz}) = 10 \cdot {\rm
 +
lg}\hspace{0.15cm} \frac{(f_{\rm N}/f_{\rm G})^3}{3 \cdot (f_{\rm
 +
N}/f_{\rm G} - \arctan (f_{\rm N}/f_{\rm G}) }= 10 \cdot {\rm lg}\hspace{0.15cm} \frac{3^3}{3 \cdot (3 -
 +
1.249) }\hspace{0.15cm}\underline {\approx 7.1\,{\rm dB}}\hspace{0.05cm},$$
 +
:$$ G_{\rm DE} (f_{\rm N} = 3\,{\rm kHz}) = 10 \cdot {\rm lg}\hspace{0.15cm} \frac{1^3}{3 \cdot (1 - \pi/4) }\hspace{0.15cm}\underline {\approx 1.9\,{\rm dB}}\hspace{0.05cm},$$
 +
:$$G_{\rm DE} (f_{\rm N} = 1\,{\rm kHz}) = 10 \cdot {\rm lg}\hspace{0.15cm} \frac{(1/3)^3}{3 \cdot (1/3 - 0.322) }\hspace{0.15cm}\underline {\approx 0.28\,{\rm dB}}\hspace{0.05cm}.$$
  
'''3.''' Der maximale Frequenzhub ergibt sich für $f_N = B_{NF}$. Daraus folgt mit $f_G = 3 kHz$ und $B_{NF} = 9 kHz$:
 
$$\Delta f_{\rm A} (B_{\rm NF}) = \Delta f_{\rm A, \hspace{0.08cm}min} \cdot \sqrt{{1 + \left(\frac{B_{\rm NF}}{f_{\rm G}}\right)^2}} = \sqrt {10} \cdot \Delta f_{\rm A, \hspace{0.08cm}min}= \Delta f_{\rm A, \hspace{0.08cm}max} = 45\,{\rm kHz}$$
 
$$\Rightarrow \hspace{0.3cm} \Delta f_{\rm A, \hspace{0.08cm}min} = \frac{45\,{\rm kHz}}{\sqrt {10}}\hspace{0.15cm}\underline {\approx 14.23\,{\rm kHz}}\hspace{0.05cm}.$$
 
'''4.'''  Mit der angegebenen Formel erhält man folgende Gewinne:
 
$$G_{ DE} (f_{\rm N} = 9\,{\rm kHz})  =  10 \cdot {\rm lg}\hspace{0.15cm} \frac{(f_{\rm N}/f_{\rm G})^3}{3 \cdot (f_{\rm N}/f_{\rm G} - \arctan (f_{\rm N}/f_{\rm G}) }=$$
 
$$ =  10 \cdot {\rm lg}\hspace{0.15cm} \frac{3^3}{3 \cdot (3 - 1.249) }\hspace{0.15cm}\underline {\approx 7.1\,{\rm dB}}\hspace{0.05cm},$$
 
$$ G_{ DE} (f_{\rm N} = 3\,{\rm kHz}) = 10 \cdot {\rm lg}\hspace{0.15cm} \frac{1^3}{3 \cdot (1 - \pi/4) }\hspace{0.15cm}\underline {\approx 1.9\,{\rm dB}}\hspace{0.05cm},$$
 
$$G_{ DE} (f_{\rm N} = 1\,{\rm kHz}) = 10 \cdot {\rm lg}\hspace{0.15cm} \frac{(1/3)^3}{3 \cdot (1/3 - 0.322) }\hspace{0.15cm}\underline {\approx 0.28\,{\rm dB}}\hspace{0.05cm}.$$
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 30. März 2022, 14:41 Uhr

Realisierung einer Preemphase

Bei der Sprach– und Tonsignalübertragung wird das Signalfrequenzband vor dem FM–Modulator über ein RC–Hochpassglied gemäß der Skizze vorverzerrt. Man bezeichnet diese Maßnahme als „Preemphase”  $\rm (PE)$.

Der Amplitudengang des Preemphase–Netzwerks lautet

  • mit den beiden Grenzfrequenzen  $f_{\rm G1} = (2π · R_1 · C)^{–1}$  und  $f_{\rm G2} = f_{\rm G1}/α_0$, sowie
  • dem Gleichsignalübertragungsfaktor  $α_0 = R_2/(R_1 + R_2)$:
$$ |H_{\rm PE} (f)| = \alpha_0 \cdot \sqrt{\frac{1 + (f/f_{\rm G1})^2}{1 + (f/f_{\rm G2})^2}} \hspace{0.05cm}.$$

Für die Praxis kann man davon ausgehen, dass die maximale Nachrichtenfrequenz  $f_{\rm N}$  sehr viel kleiner als  $f_{\rm G2}$  ist.

Berücksichtigt man weiter, dass der Gleichsignalübertragungsfaktor  $α_0$  durch eine Verstärkung um  $α$  verändert werden kann, so ist im Weiteren von folgendem Preemphase–Frequenzgang auszugehen  $(f_{\rm G} = f_{\rm G1} = 3 \ \rm kHz)$:

$$|H_{\rm PE} (f)| \approx \alpha \cdot \sqrt{{1 + \left({f}/{f_{\rm G}}\right)^2}} \hspace{0.05cm}.$$

Mit diesem Netzwerk lautet der Frequenzhub  $Δf_{\rm A}$  in Abhängigkeit der Nachrichtenfrequenz $f_{\rm N}$:

$$ \Delta f_{\rm A} (f_{\rm N}) = \Delta f_{\rm A, \hspace{0.08cm}min} \cdot \sqrt{{1 + \left({f_{\rm N}}/{f_{\rm G}}\right)^2}} \hspace{0.05cm}.$$
  • Hierbei ist  $Δf_\text{A, min}$  der Frequenzhub für sehr kleine Frequenzen  $(f_{\rm N} → 0)$.
  • Dieser Parameter ist so zu wählen, dass der maximale Frequenzhub  $Δf_\text{A, max}$  nicht größer wird als  $45 \ \rm kHz$.


Um das Nutzsignal nicht zu verfälschen, muss diese Vorverzerrung durch ein  „Deemphase”–Netzwerk beim Empfänger wieder ausgeglichen werden.  Ziel und Zweck von Preemphase/Deemphase ist es allein, die Abhängigkeit des Signal–zu–Rausch–Leistungsverhältnisses von der Signalfrequenz zu vermindern.

In dieser Aufgabe werden folgende Größen verwendet:

  • Sinken–SNR bei Zweiseitenband-Amplitudenmodulation  $\rm (ZSB–AM)$:
$$\rho_{{\rm AM} } = \frac{P_{\rm S}}{N_0 \cdot f_{\rm N} } = \xi\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{{\rm AM} } = 10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.05cm},$$
  • Sinken–SNR und Störabstandsgewinn bei Frequenzmodulation  $\rm (FM)$  ohne Preemphase/Deemphase:
$$ \rho_{\rm FM} = {3}/{2 } \cdot \eta^2 \cdot \rho_{\rm AM } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G_{\rm FM} = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm FM} - 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm AM}= 10 \cdot {\rm lg} \hspace{0.15cm}{3}/{2 } \cdot \eta^2 \hspace{0.05cm},$$
  • Sinken–SNR und Störabstandsgewinn bei Frequenzmodulation  $\rm (FM)$  durch Preemphase/Deemphase:
$$ \rho_{\rm DE} = \frac{(f_{\rm N}/f_{\rm G})^3}{3 \cdot (f_{\rm N}/f_{\rm G} - \arctan (f_{\rm N}/f_{\rm G}) } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G_{\rm DE} = 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm DE} - 10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\rm FM}\hspace{0.05cm}$$



Hinweise:



Fragebogen

1

Geben Sie eine mögliche Realisierung des Deemphase–Netzwerks  $H_{\rm DE}(f)$  an.  Welche der folgenden Aussagen sind richtig?

$H_{\rm DE}(f)$  ist ein Tiefpass erster Ordnung.
$H_{\rm DE}(f)$  ist ein Hochpass erster Ordnung.
$H_{\rm DE}(f)$  ist ein Bandpass.
Zusätzlich muss der Faktor  $α$  korrigiert werden.

2

Wie groß ist der Störabstandsgewinn  $G_{\rm FM}$  der herkömmlichen FM gegenüber AM bei den genannten Nachrichtenfrequenzen  $ f_{\rm N}$?

$ f_{\rm N} = \text{9 kHz:} \hspace{0.2cm} G_{\rm FM} \ = \ $

$\ \rm dB$
$ f_{\rm N} = \text{3 kHz:} \hspace{0.2cm} G_{\rm FM} \ = \ $

$\ \rm dB$
$ f_{\rm N} = \text{1 kHz:} \hspace{0.2cm} G_{\rm FM} \ = \ $

$\ \rm dB$

3

Wie groß ist  $Δf_\text{A, min}$   mit   $Δf_\text{A, max} = 45 \ \rm kHz$   und   $B_{\rm NF} = f_\text{N, max}= 9 \ \rm kHz$   zu wählen?

$Δf_\text{A, min} \ = \ $

$\ \rm kHz$

4

Welcher zusätzliche Gewinn ist durch Preemphase/Deemphase zu erzielen?

$ f_{\rm N} = \text{9 kHz:} \hspace{0.2cm} G_{\rm DE} \ = \ $

$\ \rm dB$
$ f_{\rm N} = \text{3 kHz:} \hspace{0.2cm} G_{\rm DE} \ = \ $

$\ \rm dB$
$ f_{\rm N} = \text{1 kHz:} \hspace{0.2cm} G_{\rm DE} \ = \ $

$\ \rm dB$


Musterlösung

(1)  Richtig sind der erste und der letzte Lösungsvorschlag:

  • Der Betragsfrequenzgang des Deemphase–Netzwerks ist wie folgt festgelegt:
$$ |H_{\rm DE} (f)| = \frac{1}{|H_{\rm PE} (f)|}= \frac{1}{\alpha}\cdot \frac{1}{\sqrt{1 + (f/f_{\rm G})^2}} \hspace{0.05cm}.$$
  • Der Frequenzgang eines einfachen RC–Tiefpasses – auch bekannt als Tiefpass erster Ordnung – lautet:
$$ H_{\rm RC-TP} (f) = \frac{1}{{1 + {\rm j}\cdot f/f_{\rm G}}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} |H_{\rm RC-TP} (f)| = \frac{1}{\sqrt{1 + (f/f_{\rm G})^2}}\hspace{0.05cm}.$$


(2)  Die Frequenzmodulation ist auf die maximale Frequenz  $B_{\rm NF} = f_\text{N, max}= 9 \ \rm kHz$  ausgelegt.  Dann soll der (maximale) Frequenzhub  $Δf_{\rm A} = 45\ \rm kHz$  betragen.

  • Daraus folgt für den Modulationsindex:
$$ \eta = \frac{\Delta f_{\rm A}}{f_{\rm N} } = 5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G_{\rm FM} (f_{\rm N} = 9\,{\rm kHz}) = 10 \cdot {\rm lg} \hspace{0.15cm}(1.5 \cdot 5^2) \hspace{0.15cm}\underline {\approx 15.74\,{\rm dB}} \hspace{0.05cm}.$$
  • Mit der Nachrichtenfrequenz  $ f_{\rm N} = 3 \ \rm kHz$  ergibt sich ein um den Faktor  $3$  größerer Modulationsindex und damit ein um den Faktor  $10 · \lg \ 9 = 9.54 \ \rm dB$  größerer Störabstand:
$$G_{\rm FM} (f_{\rm N} = 3\,{\rm kHz}) = 10 \cdot {\rm lg} \hspace{0.15cm}(1.5 \cdot 15^2) \hspace{0.15cm}\underline {\approx 25.28\,{\rm dB}} \hspace{0.05cm}.$$
  • Ein weiterer Zugewinn ergibt sich durch den Übergang von  $3\ \rm kHz$  auf  $1\ \rm kHz$:
$$G_{\rm FM} (f_{\rm N} = 1\,{\rm kHz}) = 25.28\,{\rm dB} + 9.54\,{\rm dB}\hspace{0.15cm}\underline {= 34.82\,{\rm dB}} \hspace{0.05cm}.$$


(3)  Der maximale Frequenzhub ergibt sich für $f_{\rm N} = B_{\rm NF}$.

  • Daraus folgt mit $f_{\rm G} = 3 \ \rm kHz$ und $B_{\rm NF} = 9 \ \rm kHz$:
$$\Delta f_{\rm A} (B_{\rm NF}) = \Delta f_{\rm A, \hspace{0.08cm}min} \cdot \sqrt{{1 + \left(\frac{B_{\rm NF}}{f_{\rm G}}\right)^2}} = \sqrt {10} \cdot \Delta f_{\rm A, \hspace{0.08cm}min}= \Delta f_{\rm A, \hspace{0.08cm}max} = 45\,{\rm kHz}$$
$$\Rightarrow \hspace{0.3cm} \Delta f_{\rm A, \hspace{0.08cm}min} = \frac{45\,{\rm kHz}}{\sqrt {10}}\hspace{0.15cm}\underline {\approx 14.23\,{\rm kHz}}\hspace{0.05cm}.$$


(4)  Mit der angegebenen Formel erhält man folgende „Gewinne durch Premphase/Deemphase”:

$$G_{\rm DE} (f_{\rm N} = 9\,{\rm kHz}) = 10 \cdot {\rm lg}\hspace{0.15cm} \frac{(f_{\rm N}/f_{\rm G})^3}{3 \cdot (f_{\rm N}/f_{\rm G} - \arctan (f_{\rm N}/f_{\rm G}) }= 10 \cdot {\rm lg}\hspace{0.15cm} \frac{3^3}{3 \cdot (3 - 1.249) }\hspace{0.15cm}\underline {\approx 7.1\,{\rm dB}}\hspace{0.05cm},$$
$$ G_{\rm DE} (f_{\rm N} = 3\,{\rm kHz}) = 10 \cdot {\rm lg}\hspace{0.15cm} \frac{1^3}{3 \cdot (1 - \pi/4) }\hspace{0.15cm}\underline {\approx 1.9\,{\rm dB}}\hspace{0.05cm},$$
$$G_{\rm DE} (f_{\rm N} = 1\,{\rm kHz}) = 10 \cdot {\rm lg}\hspace{0.15cm} \frac{(1/3)^3}{3 \cdot (1/3 - 0.322) }\hspace{0.15cm}\underline {\approx 0.28\,{\rm dB}}\hspace{0.05cm}.$$