Applets:Frequenzgang und Impulsantwort: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29“ durch „Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29“)
 
(44 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
+
{{LntAppletLinkDeEn|frequImpResp|frequImpResp_en}}
==Aufruf des Applets in neuem Fenster==
+
 
{{LntAppletLink|frequenzgang|Applet in neuem Tab öffnen}}  
+
 
  
 
==Programmbeschreibung==
 
==Programmbeschreibung==
<br>
+
<br>  
Dargestellt werden impulsförmige symmetrische Zeitsignale &nbsp; &rArr; &nbsp; &bdquo;Impulse&rdquo; $x(t)$ und die dazugehörigen Spektralfunktionen $X(f)$, nämlich
 
*Gaußimpuls (englisch: ''Gaussian pulse''),
 
*Rechteckimpuls  (englisch: ''Rectangular pulse''),
 
*Dreieckimpuls  (englisch: ''Triangular pulse''),
 
*Trapezimpuls  (englisch: ''Trapezoidal pulse''),
 
*Cosinus&ndash;Rolloff&ndash;Impuls  (englisch: ''Cosine-rolloff pulse'').
 
  
 +
Dargestellt werden reelle und symmetrische Tiefpässe&nbsp; $H(f)$&nbsp; und die dazugehörigen Impulsantworten&nbsp; $h(t)$, nämlich
 +
*Gauß&ndash;Tiefpass&nbsp;  (englisch:&nbsp; ''Gaussian low&ndash;pass''),
 +
*Rechteck&ndash;Tiefpass &nbsp; (englisch:&nbsp; ''Rectangular low&ndash;pass''),
 +
*Dreieck&ndash;Tiefpass&nbsp;  (englisch:&nbsp; ''Triangular low&ndash;pass''),
 +
*Trapez&ndash;Tiefpass&nbsp;  (englisch:&nbsp; ''Trapezoidal low&ndash;pass''),
 +
*Cosinus&ndash;Rolloff&ndash;Tiefpass&nbsp;  (englisch:&nbsp; ''Cosine-rolloff low&ndash;pass''),
 +
*Cosinus-Quadrat-Tiefpass&nbsp;  (englisch:&nbsp; ''Cosine-rolloff -squared  Low&ndash;pass'').
  
Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. Die englische Beschreibung finden Sie unter [[englische Version Frequenzgang]].
 
  
 
+
Es ist zu beachten:
Weiter ist zu beachten:
+
* Die Funktionen&nbsp; $H(f)$&nbsp; bzw.&nbsp; $h(t)$&nbsp; werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
* Die Funktionen $x(t)$ bzw. $X(f)$ werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
 
 
* Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
 
* Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
* Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $x(t)$ (Signalwerte) bzw. $X(f)$ (Spektralwerte) sind jeweils normiert.  
+
* Die Abszissen&nbsp; $t$&nbsp; (Zeit) und&nbsp; $f$&nbsp; (Frequenz) sowie die Ordinaten&nbsp; $H(f)$&nbsp;  und&nbsp; $h(t)$&nbsp; sind jeweils normiert.  
  
 
{{GraueBox|TEXT= 
 
$\text{Beispiel:}$&nbsp; Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si&ndash;förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.
 
 
Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die erste Nullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.}}
 
  
  
 
==Theoretischer Hintergrund==
 
==Theoretischer Hintergrund==
 
<br>
 
<br>
===Zusammenhang $x(t)\Leftrightarrow X(f)$===
+
===Frequenzgang&nbsp; $H(f)$&nbsp; und Impulsantwort&nbsp; $h(t)$===
*Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|erste Fourierintegral]] gegeben:
+
*Der&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; (oder auch die&nbsp; ''Übertragungsfunktion'')&nbsp; $H(f)$&nbsp; eines linearen zeitinvarianten Übertragungssystems gibt das Verhältnis zwischen   dem Ausgangsspektrum&nbsp; $Y(f)$&nbsp; und dem dem Eingangsspektrum&nbsp; $X(f)$&nbsp; an:
:$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm}
+
:$$H(f) = \frac{Y(f)}{X(f)}.$$
 +
*Ist das Übertragungsverhalten bei tiefen Frequenzen besser als bei höheren, so spricht man von einem&nbsp; '''Tiefpass'''&nbsp; (englisch:&nbsp; ''Low-pass'').
 +
*Die Eigenschaften von&nbsp; $H(f)$&nbsp; werden im Zeitbereich durch die&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort|Impulsantwort]]&nbsp; $h(t)$&nbsp; ausgedrückt.&nbsp; Entsprechend dem&nbsp;  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweiten Fourierintegral]]&nbsp; gilt:
 +
:$$h(t)={\rm IFT} [H(f)] = \int_{-\infty}^{+\infty}H(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm}
 +
{\rm IFT}\hspace{-0.1cm}: \rm  Inverse \ Fouriertransformation.$$
 +
*Die Gegenrichtung wird durch das&nbsp;  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|erste Fourierintegral]]&nbsp; beschrieben:
 +
:$$H(f)={\rm FT} [h(t)] = \int_{-\infty}^{+\infty}h(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm}
 
\rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$  
 
\rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$  
 +
*In allen Beispielen verwenden wir reelle und gerade Funktionen.&nbsp; Somit gilt:
 +
:$$h(t)=\int_{-\infty}^{+\infty}H(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ H(f)=\int_{-\infty}^{+\infty}h(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
 +
*Bei einem Vierpol&nbsp; $[$das bedeutet:&nbsp; $X(f)$&nbsp; und&nbsp; $Y(f)$&nbsp; haben gleiche Einheiten$]$ &nbsp; ist&nbsp; $Y(f)$&nbsp; dimensionslos.&nbsp; 
 +
*Die Einheit der Impulsantwort ist&nbsp;  $\rm 1/s$.&nbsp; Es gilt zwar $\rm 1/s = 1 \ Hz$, aber die Einheit &bdquo;Hertz&rdquo; ist in diesem Zusammenhang unüblich.
 +
*Der Zusammenhang zwischen diesem Applet und dem ähnlich aufgebauten Applet &nbsp;[[Applets:Impulse_und_Spektren|Impulse und Spektren]]&nbsp; basiert auf dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Vertauschungssatz|Vertauschungssatz]].
 +
*Alle Zeiten sind auf eine Normierungszeit&nbsp; $T$&nbsp; normiert und alle Frequenzen auf&nbsp; $1/T&nbsp; \ \Rightarrow$&nbsp; die Zahlenwerte von &nbsp; $h(t)$&nbsp; müssen noch durch&nbsp; $T$&nbsp; dividiert werden.
  
*Um aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ berechnen zu können, benötigt man das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweite Fourierintegral]]:
 
:$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm}
 
{\rm IFT}\hspace{-0.1cm}: \rm  Inverse \ Fouriertransformation.$$
 
  
*In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
+
{{GraueBox|TEXT=
:$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
+
$\text{Beispiel:}$&nbsp; Stellt man einen Rechteck&ndash;Tiefpass mit Höhe&nbsp; $K_1 = 1$&nbsp; und äquivalenter Bandbreite&nbsp; $\Delta f_1 = 1$&nbsp; ein,  
*$x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in $\rm V$, $X(f)$ in $\rm V/Hz$.
+
*so ist der Frequenzgang&nbsp;  $H_1(f)$&nbsp; im Bereich&nbsp; $-1 < f < 1$&nbsp; gleich&nbsp; $1$&nbsp; und außerhalb dieses Bereichs gleich Null.&nbsp;
*Der Zusammenhang zwischen diesem Modul &bdquo;Impulse & Spektren&rdquo; und dem ähnlich aufgebauten Applet [[Frequenzgang & Impulsantwort]] basiert auf dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Vertauschungssatz|Vertauschungssatz]].
+
*Die Impulsantwort&nbsp; $h_1(t)$&nbsp; verläuft&nbsp; $\rm si$&ndash;förmig mit&nbsp; $h_1(t= 0) = 1$&nbsp; und der ersten Nullstelle bei&nbsp; $t=1$.
*Alle Zeiten sind auf eine Normierungszeit $T$ normiert und alle Frequenzen auf $1/T \Rightarrow$ die Spektralwerte $X(f)$ müssen noch mit der Normierungszeit $T$ multipliziert werden.
 
  
  
{{GraueBox|TEXT= 
+
Mit dieser Einstellung soll nun ein Rechteck&ndash;Tiefpass mit&nbsp; $K = 1.5$&nbsp; und&nbsp; $\Delta = 2 \ \rm kHz$&nbsp; nachgebildet werden, wobei die Normierungszeit&nbsp; $T= 1 \ \rm ms$&nbsp; betrage.&nbsp; 
$\text{Beispiel:}$&nbsp; Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si&ndash;förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.
+
*Dann liegt die erste Nullstelle bei&nbsp; $t=0.5\ \rm ms$&nbsp; und das Impulsantwortmaximum ist dann&nbsp; $h(t= 0) = 3 \cdot 10^3 \ \rm 1/s$.}}
  
Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die ersteNullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.}}
 
  
 +
===Gauß&ndash;Tiefpass  &nbsp; $\Rightarrow$ &nbsp; Gaussian Low&ndash;pass ===
  
===Gaußimpuls  &nbsp; $\Rightarrow$ &nbsp; Gaussian Pulse ===
+
*Der Gauß&ndash;Tiefpass  lautet mit der Höhe&nbsp;  $K$&nbsp; und der (äquivalenten) Bandbreite&nbsp; $\Delta f$:
 +
:$$H(f)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f/\Delta f)^2}.$$
 +
*Die äquivalente Bandbreite&nbsp; $\Delta f$&nbsp; ergibt sich aus dem flächengleichen Rechteck.
 +
*Der Wert bei&nbsp; $f = \Delta f/2$&nbsp; ist um den Faktor&nbsp; $0.456$&nbsp; kleiner als der Wert bei&nbsp; $f=0$.
 +
*Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
 +
:$$h(t)=K\cdot \Delta f \cdot {\rm e}^{-\pi(t\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f)^2} .$$
 +
*Je kleiner&nbsp; $\Delta f$&nbsp; ist, um so breiter und niedriger ist die Impulsantwort &nbsp; &rArr; &nbsp;  [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]].
 +
*Sowohl&nbsp; $H(f)$&nbsp; als auch&nbsp; $h(t)$&nbsp; sind zu keinem&nbsp; $f$&ndash; bzw.&nbsp; $t$&ndash;Wert exakt gleich Null.
 +
*Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden.&nbsp;
 +
*Zum Beispiel ist&nbsp; $h(t)$&nbsp; bereits bei&nbsp; $t=1.5 \cdot \Delta t$&nbsp; auf weniger als&nbsp; $0.1\% $&nbsp; des Maximums abgefallen.
 +
<br>
 +
===Idealer (rechteckförmiger) Tiefpass  &nbsp; $\Rightarrow$ &nbsp; Rectangular  Low&ndash;pass  ===
 +
*Der Rechteck&ndash;Tiefpass  lautet mit der Höhe&nbsp; $K$&nbsp; und der (äquivalenten) Bandbreite&nbsp; $\Delta f$:
  
*Die Zeitfunktion des Gaußimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
+
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\ K /2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\   {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\  {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\  {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| > \Delta f/2.\\ \end{array}$$
:$$x(t)=K\cdot {\rm e}^{-\pi\cdot(t/\Delta t)^2}.$$
 
*Die äquivalente Zeitdauer $\Delta t$ ergibt sich aus dem flächengleichen Rechteck.
 
*Der Wert bei $t = \Delta t/2$ ist um den Faktor $0.456$ kleiner als der Wert bei $t=0$.
 
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 
:$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\cdot \Delta t)^2} .$$
 
*Je kleiner die äquivalente Zeitdauer $\Delta t$ ist, um so breiter und niedriger ist das Spektrum &nbsp; &rArr; &nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]].
 
*Sowohl $x(t)$ als auch $X(f)$ sind zu keinem $f$- bzw. $t$-Wert exakt gleich Null.
 
*Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta t$ auf weniger als $0.1\% $ des Maximums abgefallen.
 
  
===Idealer (rechteckförmiger) Tiefpass  &nbsp; $\Rightarrow$ &nbsp; Rectangular  Low&ndash;pass  ===
+
*Der&nbsp; $\pm \Delta f/2$&ndash;Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
*Die Zeitfunktion des Rechteckimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
+
*Für die Impulsantwort&nbsp;  $h(t)$&nbsp; erhält man entsprechend den Gesetzmäßigkeiten der Fourierrücktransformation (2. Fourierintegral):
 +
:$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
 +
*Der&nbsp; $h(t)$&ndash;Wert bei&nbsp; $t=0$&nbsp; ist gleich der Rechteckfläche des Frequenzgangs.
 +
*Die Impulsantwort besitzt Nullstellen in äquidistanten Abständen&nbsp; $1/\Delta f$.
 +
*Das Integral über die Impulsantwort&nbsp; $h(t)$&nbsp; ist gleich dem Frequenzgang&nbsp; $H(f)$&nbsp; bei der Frequenz&nbsp; $f=0$, ist also gleich&nbsp; $K$.
 +
<br>
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K /2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.}  \\ \end{array}$$
+
===Dreieck&ndash;Tiefpass &nbsp; $\Rightarrow$ &nbsp; Triangular Low&ndash;pass===
  
*Der $\pm \Delta t/2$&ndash;Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
+
*Der Dreieck&ndash;Tiefpass    lautet mit der Höhe&nbsp; $K$&nbsp; und der (äquivalenten) Bandbreite&nbsp; $\Delta f$:
*Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):
 
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
 
*Der Spektralwert bei $f=0$ ist gleich der Rechteckfläche der Zeitfunktion.
 
*Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen $1/\Delta t$.
 
*Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$.
 
  
===Dreieckimpuls $\Rightarrow$ Dreieckimpuls===
+
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|f|}{\Delta f}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,}  \\  {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.}  \\ \end{array}$$
*Die Zeitfunktion des Dreieckimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
 
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|t|}{\Delta t}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
+
*Die absolute physikalische Bandbreite&nbsp; $B$ &nbsp; &rArr; &nbsp;  [nur positive Frequenzen] &nbsp; ist ebenfalls gleich&nbsp; $\Delta f$, ist also so groß wie beim  Rechteck&ndash;Tiefpass.
 +
*Für die Impulsantwort&nbsp;  $h(t)$&nbsp; erhält man gemäß der Fouriertransformation:
 +
:$$h(t)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
 +
*$H(f)$&nbsp; kann man als Faltung zweier Rechteckfunktionen&nbsp; $($jeweils mit Breite&nbsp; $\Delta f)$&nbsp; darstellen.
 +
*Daraus folgt:&nbsp; $h(t)$&nbsp; beinhaltet anstelle der&nbsp; ${\rm si}$-Funktion die&nbsp; ${\rm si}^2$-Funktion.
 +
*$h(t)$&nbsp; weist somit ebenfalls Nullstellen im äquidistanten Abständen&nbsp; $1/\Delta f$&nbsp; auf.
 +
*Der asymptotische Abfall von&nbsp; $h(t)$&nbsp; erfolgt hier mit&nbsp; $1/t^2$, während zum Vergleich beim Rechteck&ndash;Tiefpass&nbsp; $h(t)$&nbsp; mit&nbsp; $1/t$&nbsp; abfällt.
 +
<br>
  
*Die absolute Zeitdauer ist $2 \cdot \Delta t$; diese ist doppelt so groß als die des Rechtecks.
+
===Trapez&ndash;Tiefpass  &nbsp; $\Rightarrow$ &nbsp; Trapezoidal  Low&ndash;pass  ===
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
Der Trapez&ndash;Tiefpass    lautet mit der Höhe&nbsp; $K$&nbsp; und den beiden Eckfrequenzen&nbsp; $f_1$&nbsp; und&nbsp; $f_2$:
:$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
+
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \frac{f_2-|f|}{f_2-f_1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}} \\   {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}   {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,}  \\  {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\  {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.}  \\ \end{array}$$
*Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite $\Delta t$
 
*Daraus folgt: $X(f)$ beinhaltet anstelle der ${\rm si}$-Funktion die ${\rm si}^2$-Funktion.
 
*$X(f)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
 
*Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt.
 
  
 +
*Für die äquivalente  Bandbreite&nbsp; (flächengleiches Rechteck)&nbsp; gilt:&nbsp; $\Delta f = f_1+f_2$.
 +
*Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
 +
:$$r=\frac{f_2-f_1}{f_2+f_1}.$$
 +
*Der Sonderfall&nbsp; $r=0$&nbsp; entspricht dem Rechteck&ndash;Tiefpass und der Sonderfall&nbsp; $r=1$&nbsp; dem Dreieck&ndash;Tiefpass.
 +
*Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
 +
:$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t)\cdot {\rm si}(\pi \cdot r \cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
 +
*Der asymptotische Abfall von&nbsp; $h(t)$&nbsp; liegt zwischen&nbsp; $1/t$&nbsp; $($für Rechteck&ndash;Tiefpass oder&nbsp;  $r=0)$&nbsp; und&nbsp; $1/t^2$&nbsp; $($für Dreieck&ndash;Tiefpass oder&nbsp; $r=1)$.
 +
<br>
  
===Trapezimpuls   &nbsp; $\Rightarrow$ &nbsp;  Trapezoidal   Pulse   ===
+
===Cosinus-Rolloff-Tiefpass   &nbsp; $\Rightarrow$ &nbsp;  Cosine-rolloff   Low&ndash;pass   ===
Die Zeitfunktion des Trapezimpulses mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
+
Der Cosinus&ndash;Rolloff&ndash;Tiefpass  lautet mit der Höhe&nbsp; $K$&nbsp; und den beiden Eckfrequenzen&nbsp; $f_1$&nbsp; und&nbsp; $f_2$:
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
 
  
*Für die äquivalente Impulsdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
+
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \cos^2\Big(\frac{|f|-f_1}{f_2-f_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c}   {\rm{f\ddot{u}r}}  \\   {\rm{f\ddot{u}r}}  \\   {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,}  \\  {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,}  \\  {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.}  \\ \end{array}$$
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 
*Der Sonderfall $r=0$ entspricht dem Rechteckimpuls der Sonderfall $r=1$ dem Dreieckimpuls.
 
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
 
*Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$).
 
  
===Cosinus-Rolloff-Impuls  &nbsp; $\Rightarrow$ &nbsp; Cosine-rolloff  Pulse  ===
+
*Für die äquivalente  Bandbreite&nbsp; (flächengleiches Rechteck)&nbsp; gilt:&nbsp; $\Delta f = f_1+f_2$.
Die Zeitfunktion des Cosinus-Rolloff-Impulses mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
+
*Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
 +
:$$r=\frac{f_2-f_1}{f_2+f_1}.$$
 +
*Der Sonderfall&nbsp; $r=0$&nbsp; entspricht dem Rechteck&ndash;Tiefpass und der Sonderfall&nbsp; $r=1$&nbsp; dem Cosinus-Quadrat-Tiefpass.
 +
*Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
 +
:$$h(t)=K\cdot \Delta f \cdot \frac{\cos(\pi \cdot r\cdot \Delta f \cdot t)}{1-(2\cdot r\cdot \Delta f \cdot t)^2} \cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
 +
*Je größer der Rolloff-Faktor&nbsp; $r$&nbsp; ist, desto schneller nimmt&nbsp; $h(t)$&nbsp; asymptotisch mit&nbsp; $t$&nbsp; ab.
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot \frac{\pi}{2}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
 
  
*Für die äquivalente  Impulsdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
+
===Cosinus-Quadrat-Tiefpass  &nbsp; $\Rightarrow$ &nbsp;  Cosine-rolloff -squared  Low&ndash;pass      ===
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
+
*Dies ist ein Sonderfall des Cosinus&ndash;Rolloff&ndash;Tiefpasses und ergibt sich aus diesem für&nbsp; $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}f_1=0,\ f_2= \Delta f$:
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 
*Der Sonderfall $r=0$ entspricht dem Rechteckimpuls der Sonderfall $r=1$ dem Cosinus-Quadrat-Impuls .
 
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 
:$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot si(\pi \cdot \Delta t \cdot f).$$
 
*Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab.
 
  
===Cosinus-Quadrat-Impuls ===
+
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|f|\hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big)  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,}  \\  {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.}  \\ \end{array}$$
*Dies ist ein Sonderfall des Cosinus-Rolloff-Impulses und ergibt sich für $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, t_2= \Delta t$:
 
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\cdot \pi}{2\cdot \Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\   {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,\\   {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
+
*Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
 +
:$$h(t)=K\cdot \Delta f \cdot {\pi}/{4}\cdot \big  [{\rm si}(\pi(\Delta f\cdot t +0.5))+{\rm si}(\pi(\Delta f\cdot t -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
 +
*Wegen der letzten&nbsp; ${\rm si}$-Funktion ist&nbsp; $h(t)=0$&nbsp; für alle Vielfachen von&nbsp; $T=1/\Delta f$ &nbsp; &rArr; &nbsp;  Die äquidistanten Nulldurchgänge des Cosinus&ndash;Rolloff&ndash;Tiefpasses bleiben erhalten.
 +
*Aufgrund des Klammerausdrucks weist&nbsp; $h(t)$ &nbsp;nun weitere Nulldurchgänge bei&nbsp; $t=\pm1.5 T$,&nbsp; $\pm2.5 T$,&nbsp; $\pm3.5 T$, ...&nbsp; auf.
 +
*Für&nbsp; $t=\pm T/2$&nbsp; hat die Impulsanwort den Wert&nbsp; $K\cdot \Delta f/2$.
 +
*Der asymptotische Abfall von&nbsp; $h(t)$&nbsp; verläuft in diesem Sonderfall mit&nbsp; $1/t^3$.
  
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
==Versuchsdurchführung==
:$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big  [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
+
<br>
*Wegen der letzten ${\rm si}$-Funktion ist $X(f)=0$ für alle Vielfachen von $F=1/\Delta t$. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
 
*Aufgrund des Klammerausdrucks weist $X(f)$ nun weitere Nulldurchgänge bei $f=\pm1.5 F$, $\pm2.5 F$, $\pm3.5 F$, ... auf.
 
*Für die Frequenz $f=\pm F/2$ erhält man die Spektralwerte $K\cdot \Delta t/2$.
 
*Der asymptotische Abfall von $X(f)$ verläuft in diesem Sonderfall mit $1/f^3$.
 
  
==Vorschlag für die Versuchsdurchführung==
+
*Wählen Sie zunächst die Nummer&nbsp; $(1,\ 2$, ... $)$&nbsp; der zu bearbeitenden Aufgabe.&nbsp; Die Nummer&nbsp; $0$&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Einstellung wie beim Programmstart.
 +
*Eine Aufgabenbeschreibung wird angezeigt.&nbsp; Die Parameterwerte sind angepasst.&nbsp; Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
 +
*&bdquo;Rot&rdquo; bezieht sich auf den ersten Parametersatz &nbsp; &rArr; &nbsp; $H_1(f)  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_1(t)$&nbsp; und &bdquo;Blau&rdquo; bezieht sich auf den zweiten Parametersatz &nbsp; &rArr; &nbsp; $H_2(f)  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_2(t)$.
 +
*Werte betragsmäßig kleiner&nbsp; $0.0005$&nbsp; werden im Programm zu Null gesetzt.<br>
 
<br>
 
<br>
&bdquo;Rot&rdquo; bezieht sich stets auf den ersten Parametersatz &nbsp; &rArr; &nbsp; $x_1(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$ und &bdquo;Blau&rdquo; den zweiten &nbsp; &rArr; &nbsp; $x_2(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.
 
  
 
  {{BlaueBox|TEXT=   
 
  {{BlaueBox|TEXT=   
'''(1)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Rechteckimpuls''' $(A_2 = 1, \Delta t_2 = 1)$  &nbsp; &rArr; &nbsp; Voreinstellung.
+
'''(1)''' &nbsp; Vergleichen Sie den&nbsp; '''roten Gauß&ndash;Tiefpass'''&nbsp; $(K_1 = 1, \ \Delta f_1 = 1)$&nbsp; mit dem&nbsp; '''blauen Rechteck&ndash;Tiefpass'''&nbsp; $(K_2 = 1,\ \Delta f_2 = 1)$.&nbsp; Fragen:<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
<br>Welche Unterschiede erkennt man im Zeit- und im Frequenzbereich?}}
+
'''(a)'''&nbsp; Welche Ausgangssignale&nbsp; $y(t)$&nbsp; ergeben sich, wenn am Eingang das Signal&nbsp; $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$&nbsp; mit&nbsp; $f_0 = 0.5$&nbsp; anliegt?<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 +
'''(b)'''&nbsp; Welche Unterschiede ergeben sich  bei beiden Tiefpässen mit&nbsp; $f_0 = 0.5 \pm f_\varepsilon$&nbsp; und&nbsp; $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?}}
  
 +
:'''(a)'''&nbsp; Es gilt&nbsp; $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$&nbsp; mit&nbsp; $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1  = 0.912, \ A_2 = 1.000$.&nbsp; Die Phase&nbsp; $\varphi_0$&nbsp; bleibt erhalten.
  
*Der Gaußimpuls reicht sowohl im Zeit&ndash; als auch im Frequenzbereich theoretisch bis ins Unendliche. Praktisch sind aber $x_1(t)$ für $|t| > 1.5$ und $X_1(t)$ für $|f| > 1.5$ nahezu Null.
+
:'''(b)'''&nbsp; Bei&nbsp; '''Rot'''&nbsp; gilt weiterhin&nbsp; $ A_1 = 0.912$.&nbsp; Bei&nbsp; '''Blau'''&nbsp; ist&nbsp; $A_2 = 0$&nbsp; für&nbsp; $f_0 = 0.5000\text{...}001$&nbsp; und&nbsp; $A_2 = 2$&nbsp; für&nbsp; $f_0 = 0.4999\text{...}999$.  
*Der Rechteckimpuls ist zeitlich steng begrenzt: $x_2(|t| \ge 0.5) \equiv 0$, während  $X_2(f)$ in einem sehr viel größeren Bereich als $X_1(f)$ betragsmäßige Anteile besitzt.  
+
   
*Es gilt $X_1(f = 0) = X_2(f = 0)$, weil das Integral über den Gaußimpuls $x_1(t)$ wie das Integral über den Rechteckimpuls $x_2(t)$.
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(2)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Rechteckimpuls''' $(A_2 = 1,\Delta t_2)$ und variieren Sie $\Delta t_2$ zwischen $0.5$ und $2$. Interpretieren Sie die dargestellten Graphen.}}
+
'''(2)''' &nbsp; Lassen Sie die Einstellungen unverändert.&nbsp; Welcher Tiefpass&nbsp; $H(f)$&nbsp; kann das erste oder das zweite Nyquistkriterium erfüllen?<br>&nbsp; &nbsp; &nbsp; &nbsp;  
 +
Hierbei bezeichnet&nbsp; $H(f)$&nbsp;  den Gesamtfrequenzgang von Sender, Kanal und Empfangsfilter.}}
  
 +
*Erstes Nyquistkriterium:&nbsp; Die Impulsantwort&nbsp; $h(t)$&nbsp; muss äquidistante Nulldurchgänge zu den (normierten) Zeiten&nbsp;  $t = 1,\  2$, ...&nbsp; aufweisen.
 +
*Die Impulsantwort&nbsp; $h(t) = {\rm si}(\pi \cdot  \Delta f \cdot t)$&nbsp; des  Rechteck&ndash;Tiefpasses erfüllt dieses Kriterium mit&nbsp;  $\Delta f = 1$.
 +
*Dagegen wird beim Gauß&ndash;Tiefpass das erste Nyquistkriterium nie erfüllt und es kommt immer zu Impulsinterferenzen.
 +
*Das zweite Nyquistkriterium erfüllt weder der Rechteck&ndash;Tiefpass noch der Gauß&ndash;Tiefpass.
 +
 +
 +
 +
{{BlaueBox|TEXT= 
 +
'''(3)''' &nbsp; Vergleichen Sie den&nbsp; '''roten Rechteck&ndash;Tiefpass'''&nbsp; $(K_1 = 0.5, \ \Delta f_1 = 2)$&nbsp;  mit dem&nbsp; '''blauen Rechteck&ndash;Tiefpass'''&nbsp; $(K_2 = 1, \ \Delta f_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp;
 +
Variieren Sie anschließend&nbsp; $\Delta f_1$&nbsp; zwischen&nbsp; $2$&nbsp; und&nbsp; $0.5$. }}
 +
 +
*Mit&nbsp; $\Delta f_1 = 2$&nbsp; liegen die Nullstellen von&nbsp; $h_1(t)$&nbsp; bei Vielfachen von&nbsp; $0.5$ &nbsp; &rArr; &nbsp; $h_1(t)$&nbsp; klingt doppelt so schnell ab wie&nbsp; $h_2(t)$.
 +
*Mit der vorliegenden Einstellung gilt&nbsp; $h_1(t = 0) = h_2(t = 0)$, da die Rechteckflächen von&nbsp; $H_1(f)$&nbsp; und&nbsp; $H_2(f)$&nbsp; gleich sind.
 +
*Verringert man man&nbsp; $\Delta f_1$, so wird  die Impulsantwort&nbsp; $h_1(t)$&nbsp; immer breiter und niedriger.
 +
*Mit&nbsp; $\Delta f_1 = 0.5$&nbsp; ist&nbsp; $h_1(t)$&nbsp; doppelt so breit wie&nbsp; $h_2(t)$, gleichzeitig aber um den Faktor&nbsp; $4$&nbsp; niedriger.
 +
 +
 +
 +
{{BlaueBox|TEXT= 
 +
'''(4)''' &nbsp; Vergleichen Sie den&nbsp; '''roten Trapez&ndash;Tiefpass'''&nbsp; $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$&nbsp;  mit dem&nbsp; '''blauen Rechteck&ndash;Tiefpass'''&nbsp; $(K_2 = 1, \ \Delta f_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; Variieren Sie anschließend&nbsp; $r_1$&nbsp; zwischen&nbsp; $0$&nbsp; und&nbsp; $1$. }}
 +
 +
*Mit&nbsp; $r_1 = 0.5$&nbsp; sind die Unterschwinger von&nbsp; $h_1(t)$&nbsp; beim &bdquo;Trapez&rdquo; wegen des flacheren Flankenabfalls geringer als beim &bdquo;Rechteck&rdquo;.
 +
*Mit kleinerem&nbsp; $r_1$&nbsp;  nehmen die Unterschwinger zu.&nbsp; Mit&nbsp; $r_1= 0$&nbsp; ist der Trapez&ndash; gleich dem Rechteck&ndash;Tiefpass &nbsp; &rArr; &nbsp; $h(t)= {\rm si}(\pi \cdot t/T)$.
 +
*Mit größerem&nbsp; $r_1$&nbsp; werden die Unterschwinger kleiner. Mit&nbsp; $r_1= 1$&nbsp; ist der Trapez&ndash; gleich dem Dreieck&ndash;Tiefpass &nbsp; &rArr; &nbsp; $h(t)= {\rm si}^2(\pi \cdot t/T)$.
  
*Man erkennt das [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]]. Je größer die äquivalente Impulsdauer $\Delta t_2$ ist, um so höher und schmäler ist die Spektralfunktion $X_2(f)$.
 
*Da bei jeder Einstellung von $\Delta t_2$ die Zeitsignalwerte bei $t=0$ von $x_1(t)$ und $x_2(t)$ sind auch die Integrale über $X_1(f)$ und $X_2(f)$ identisch.
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(3)''' &nbsp; Vergleichen Sie den '''roten Rechteckimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Rechteckimpuls''' $(A_2 = 1,\Delta t_2 = 0.5)$ und variieren Sie anschließend $\Delta t_2$ zwischen $0.05$ und $2$. Interpretieren Sie die dargestellten Graphen und extrapolieren Sie das Ergebnis.}}
+
'''(5)''' &nbsp; Vergleichen Sie den&nbsp; '''Trapez&ndash;Tiefpass'''&nbsp; $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$&nbsp; mit dem&nbsp; '''Cosinus-Rolloff-Tiefpass'''&nbsp; $(K_2 = 1,\ \Delta f_2 = 1, \ r_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp;  Variieren Sie&nbsp; $r_2$&nbsp; zwischen&nbsp; $0$&nbsp; und&nbsp; $1$.&nbsp; Interpretieren Sie die Impulsantwort für&nbsp; $r_2 = 0.75$.&nbsp; Welcher Tiefpass erfüllt das erste Nyquistkriterium?}}
  
 +
*Bei&nbsp; $r_1 = r_2= 0.5$&nbsp; verläuft der Flankenabfall von&nbsp; $H_2(f)$&nbsp;  um die Frequenz&nbsp; $f = 0.5$&nbsp; steiler als der Flankenabfall von&nbsp; $H_1(f)$.
 +
*Bei gleichem Rolloff&nbsp; $r= 0.5$&nbsp; hat die  Impulsantwort&nbsp;  $h_2(t)$&nbsp; für&nbsp; $t > 1$&nbsp; betragsmäßig größere Anteile als&nbsp; $h_1(t)$.
 +
*Mit&nbsp; $r_1 = 0.5$&nbsp; und&nbsp; $r_2 = 0.75$&nbsp; gilt&nbsp;  $H_1(f) \approx H_2(f)$&nbsp; und damit auch&nbsp; $h_1(t) \approx h_2(t)$.
 +
*$H_1(f)$&nbsp; und&nbsp; $H_2(f)$&nbsp; erfüllen beide das erste Nyquistkriterium:&nbsp; Beide Funktionen sind punktsymmetrisch um den &bdquo;Nyquistpunkt&rdquo;. 
 +
*Wegen&nbsp; $\Delta f = 1$&nbsp; besitzen sowohl&nbsp; $h_1(t)$&nbsp; als auch&nbsp; $h_2(t)$&nbsp; Nulldurchgänge bei&nbsp; $\pm 1$,&nbsp; $\pm 2$, ... &nbsp; &rArr; &nbsp; jeweils maximale vertikale Augenöffnung.
  
*Mit $\Delta t_2 = 0.5$ ist $X_2(f = 0) = X_1(f = 0) = 1$. Das blaue Spektrum ist aber nun doppelt so breit, das heißt, dass sie erste Nullstelle von $X_2(f)$ erst bei $f =2$ auftritt, während $X_1(f)$ die $x$&ndash;Achse schon bei $f =1$ schneidet.
 
*Verkleinert man $\Delta t_2$ immer mehr, so wird $X_2(f)$ immer niedriger und breiter. Bei $\Delta t_2 = 0.05$ ist $X_2(f = 0)= 0.1$ und es ergibt sich ein sehr flacher Verlauf. Beispielsweise ist $X_2(f = \pm 3)= 0.096$.
 
*Würde man $\Delta t_2 = \varepsilon$ wählen (was bei dem Programm nicht möglich ist), so wäre im Grenzübergang $\varepsilon \to 0$ das Spektrum $X_2(f)=2 \cdot \varepsilon$ (für $A=2$) bzw. $X_2(f)=\varepsilon$  (für $A=1$) nahezu konstant, aber sehr klein.
 
*Erhöht man dafür die Amplitude auf $A=1/\varepsilon$, so ergibt sich die konstante Spektralfunktion $X_2(f) = 1$ der [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals#Diracfunktion_im_Frequenzbereich|Diracfunktion]] $\delta(t)$ (im Zeitbereich).
 
*Das bedeutet, dass $\delta(t)$ durch ein Rechteck der Breite $\Delta t = \varepsilon \to 0$ und der Höhe $A = 1/\varepsilon \to \infty$ approximiert werden kann. Die Impulsfläche ist dann Eins, was dem Gewicht der Diracfunktion entspricht: &nbsp; $x(t) = 1 \cdot \delta (t)$.
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(4)''' &nbsp; Vergleichen Sie den '''roten Rechteckimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Dreieckimpuls''' $(A_2 = 1,\Delta t_2 = 1)$ und interpretieren Sie deren Spektalfunktionen.}}
+
'''(6)''' &nbsp; Vergleichen Sie den&nbsp; '''Cosinus&ndash;Quadrat&ndash;Tiefpass'''&nbsp; $(K_1 = 1, \ \Delta f_1 = 1)$&nbsp; mit dem&nbsp; '''Cosinus-Rolloff-Tiefpass'''&nbsp; $(K_2 = 1, \ \Delta f_2 = 1,\ r_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp;  Variieren Sie&nbsp;  $r_2$&nbsp; zwischen&nbsp; $0$&nbsp; und&nbsp; $1$.&nbsp; Interpretieren Sie die Ergebnisse.&nbsp; Welcher Tiefpass erfüllt das zweite Nyquistkriterium]]?}}
  
 +
*$H_1(f)$&nbsp; ist ein Sonderfall des Cosinus&ndash;Rolloff&ndash;Tiefpasses mit  Rolloff&nbsp; $r_2 =1$.&nbsp; Das erste Nyquistkriterium wird auch mit&nbsp; $r_2 \ne 1$&nbsp; erfüllt.
 +
*Nach dem zweiten Nyquistkriterium muss&nbsp; $h(t)$&nbsp; auch Nulldurchgänge bei&nbsp; $t=\pm 1.5$,&nbsp; $\pm 2.5$,&nbsp; $\pm 3.5$, ... besitzen&nbsp; $($nicht jedoch bei&nbsp; $t = \pm 0.5)$.
 +
*Für den Cosinus&ndash;Quadrat&ndash;TP gilt also&nbsp; $h_1(t=\pm 0.5) = 0.5$,&nbsp; $h_1(t=\pm 1) = h_1(t=\pm 1.5) = h_1(t=\pm 2)= h_1(t=\pm 2.5) = \text{...} =0$. 
 +
*Nur der Cosinus&ndash;Quadrat&ndash;TP erfüllt das erste und zweite Nyquistkriterium gleichzeitig:&nbsp; Maximale vertikale und horizontale Augenöffnung.
 +
  
*Das (normierte) Spektrum des Rechteckimpulses $x_1(t)$ mit den (normierte) Parametern  $A_1 = 1$ und  $\Delta t_1 = 1$  lautet $X_1(f)= {\rm si}(\pi\cdot f)$.
+
==Zur Handhabung des Programms==
* Faltet man den Rechteckimpuls $x_1(t)$ mit sich selbst, so kommt man zum  Dreieckimpuls $x_2(t) = x_1(t) \star x_1(t)$. Nach dem [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungssatz]] gilt dann $X_2(f) = X_1(f) \cdot X_1(f) = X_1(f)^2 $.
+
[[Datei:Frequenz.png|right|frame|Bildschirmabzug (englische Version, heller Hintergrund)]]
*Durch das Quadrieren der $\rm si$&ndash;förmigen Spektralfunktion $X_1(f)$ bleiben die Nullstellen in $X_2(f)$ erhalten. Es gilt aber nun $X_2(f) \ge 0$.
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Theme (veränderbare grafische Oberflächengestaltung)
 +
:* Dark: &nbsp; schwarzer Hintergrund&nbsp; (wird von den Autoren empfohlen)
 +
:*  Bright: &nbsp; weißer Hintergrund&nbsp; (empfohlen für Beamer und Ausdrucke)
 +
:*  Deuteranopia: &nbsp; für Nutzer mit ausgeprägter Grün&ndash;Sehschwäche
 +
:* Protanopia: &nbsp; für Nutzer mit ausgeprägter Rot&ndash;Sehschwäche
  
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Vorauswahl für den Frequenzgang&nbsp; $H_1(f)$&nbsp; (rote Kurve)
  
{{BlaueBox|TEXT= 
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameterfestlegung für&nbsp; $H_1(f)$&nbsp;
'''(5)''' &nbsp; Vergleichen Sie den '''roten Trapezimpuls''' $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$ mit dem '''blauen Dreieckimpuls''' $(A_2 = 1,\Delta t_2 = 1)$ und  und variieren Sie $r_1$ zwischen $0$ und $1$. Interpretieren Sie die Spektalfunktion $X_1(f)$.}}
+
 
 +
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Numerikausgabe für&nbsp; $H_1(f_*)$&nbsp; und&nbsp; $h_1(t_*)$
 +
 
 +
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Vorauswahl für den Frequenzgang&nbsp; $H_2(f)$&nbsp; (blaue Kurve)
 +
 
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Parameterfestlegung für&nbsp; $H_2(f)$&nbsp;
 +
 
 +
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerikausgabe für&nbsp; $H_2(f_*)$&nbsp; und&nbsp; $h_2(t_*)$
  
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Einstellung der Frequenz&nbsp; $f_*$&nbsp; für die Numerikausgabe
  
*Der  Trapezimpuls mit dem Rolloff-Faktor $r= 0$ ist identsisch mit dem Rechteckimpuls und das &bdquo;normierte Spektrum&rdquo; lautet: $X_1(f)= {\rm si}(\pi\cdot f)$.
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp;&nbsp; Einstellung der Zeit&nbsp; $t_*$&nbsp; für die Numerikausgabe
*Der  Trapezimpuls mit dem Rolloff-Faktor $r= 1$ ist identsisch mit dem Dreieckimpuls und das &bdquo;normierte Spektrum&rdquo; lautet: $X_1(f)= {\rm si}^2(\pi\cdot f)$.
 
*In beiden Fällen besitzt $X_1(f)$ äquidistante Nulldurchgänge bei $\pm 1$, $\pm 2$, ... Sonst gibt es keine  Nulldurchgänge.
 
Mit $0 < r_1 < 1$ gibt es dagegen zusätzliche Nulldurchgänge, deren Lagen von $r_1$ abhängen.
 
  
 +
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich der graphischen Darstellung im Frequenzbereich
  
{{BlaueBox|TEXT= 
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Bereich der graphischen Darstellung im Zeitbereich
'''(6)''' &nbsp; Vergleichen Sie den '''roten Trapezimpuls''' $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$  mit dem '''blauen Cosinus-Rolloff-Impuls''' $(A_2 = 1,\Delta t_2 = 1.0, r_1 = 0.5)$ und  und variieren Sie $r_2$ zwischen $0$ und $1$. Interpretieren Sie die Spektalfunktion $X_2(f)$ für $r_2 = 0.7$.}}
 
  
 +
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Auswahl der Aufgabe entsprechend der Aufgabennummer
  
*Der  Vergleich von Trapezimpuls $x_1(t)$ und Cosinus-Rolloff-Impuls $x_2(t)$ bei gleichem Rolloff-Faktor $r= 0.5$ zeigt, dass $X_2(f)$ für $f > 1$ größere betragsmäßige Anteile besitzt als ist $X_1(f)$.
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Aufgabenbeschreibung und Fragestellung
*Bei gleichem Rolloff-Faktor $r_1 = r_2= 0.5$ verläuft der Flankenabfall des Cosinus-Rolloff-Impulses $x_2(t)$ um die Frequenz $f = 0.5$ steiler als der Flankenabfall des Trapezimpulses $x_2(t)$. Mit $r_1 = 0.5$ und $r_2 = 0.7$ gilt  $x_1(t) \approx x_2(t)$ und damit auch $X_1(f) \approx X_2(f)$.
 
  
 +
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Musterlösung anzeigen und verbergen
  
{{BlaueBox|TEXT= 
 
'''(7)''' &nbsp; Vergleichen Sie den '''roten Trapezimpuls''' $(A_1 = 1, \Delta t_1 = 1, r_1 = 1)$  mit dem '''blauen Cosinus-Rolloff-Impuls''' $(A_2 = 1,\Delta t_2 = 1.0, r_1 = 1)$. Interpretieren Sie die Funktionen  $x_1(t)$ und $X_1(f)$.}}
 
  
 +
'''Details zu den obigen Punkten&nbsp; (J&nbsp;) und&nbsp; (K)'''
 +
 +
<u>Zoom&ndash;Funktionen:</u><br>&nbsp; &nbsp; &nbsp; &nbsp;&bdquo;$+$&rdquo; (Vergrößern),&nbsp; &nbsp; &nbsp; &bdquo;$-$&rdquo; (Verkleinern),&nbsp; &nbsp; &nbsp; &bdquo;$\rm o$&rdquo; (Zurücksetzen)
  
*Es handelt sich bei $x_1(t) = \cos^2(|t|\cdot \pi/2) \ \ \text{für} \ |t|  \le 1$ um den [[Applets:Impulse_und_Spektren#Cosinus-Quadrat-Impuls|Cosinus-Quadrat-Impuls]].
+
<u>Verschiebe&ndash;Funktionen:</u> &nbsp; &nbsp; &bdquo;$\leftarrow$&rdquo; &nbsp; &nbsp; &bdquo;$\uparrow$&rdquo; &nbsp; &nbsp; &bdquo;$\downarrow$&rdquo; &nbsp; &nbsp; &bdquo;$\rightarrow$&rdquo;<br>&nbsp; &nbsp; &nbsp; &nbsp; &bdquo;$\leftarrow$&rdquo; &nbsp;bedeutet: &nbsp; &nbsp; Bildausschnitt nach links, Ordinate nach rechts
*Wegen $\Delta t = 1$ besitzt $X_1(f)$ Nulldurchgänge bei $\pm 1$, $\pm 2$, ...
 
*Weitere Nulldurchgänge gibt es bei $f=\pm 1.5$, $\pm 2.5$, $\pm 3.5$, ... , nicht jedoch bei $\pm 0.5$.
 
*Für die Frequenz $f=\pm 0.5$ erhält man die Spektralwerte $0.5$.
 
*Der asymptotische Abfall von $X_1(f)$ verläuft in diesem Sonderfall mit $1/f^3$.
 
  
 +
<b>Andere Möglichkeiten:</b>
  
==Zur Handhabung des Programms==
+
*Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
<br>
+
*Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.
 +
<br clear = all>
  
'''fehlt noch'''
 
  
 
==Über die Autoren==
 
==Über die Autoren==
 
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
 
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
 
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]]).  
 
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]]).  
*2017 wurde &bdquo;Impulse & Spektren&rdquo;  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]])  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
+
*2017 wurde &bdquo;Impulse & Spektren&rdquo;  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]])  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
 +
*Letztmalige Überarbeitung 2020 durch&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit.
  
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
{{LntAppletLink|frequenzgang|Applet in neuem Tab öffnen}}
+
 
 +
{{LntAppletLinkDeEn|frequImpResp|frequImpResp_en}}

Aktuelle Version vom 26. Oktober 2023, 11:15 Uhr

Applet in neuem Tab öffnen   Open English Version


Programmbeschreibung


Dargestellt werden reelle und symmetrische Tiefpässe  $H(f)$  und die dazugehörigen Impulsantworten  $h(t)$, nämlich

  • Gauß–Tiefpass  (englisch:  Gaussian low–pass),
  • Rechteck–Tiefpass   (englisch:  Rectangular low–pass),
  • Dreieck–Tiefpass  (englisch:  Triangular low–pass),
  • Trapez–Tiefpass  (englisch:  Trapezoidal low–pass),
  • Cosinus–Rolloff–Tiefpass  (englisch:  Cosine-rolloff low–pass),
  • Cosinus-Quadrat-Tiefpass  (englisch:  Cosine-rolloff -squared Low–pass).


Es ist zu beachten:

  • Die Funktionen  $H(f)$  bzw.  $h(t)$  werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
  • Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
  • Die Abszissen  $t$  (Zeit) und  $f$  (Frequenz) sowie die Ordinaten  $H(f)$  und  $h(t)$  sind jeweils normiert.


Theoretischer Hintergrund


Frequenzgang  $H(f)$  und Impulsantwort  $h(t)$

  • Der  Frequenzgang  (oder auch die  Übertragungsfunktion)  $H(f)$  eines linearen zeitinvarianten Übertragungssystems gibt das Verhältnis zwischen dem Ausgangsspektrum  $Y(f)$  und dem dem Eingangsspektrum  $X(f)$  an:
$$H(f) = \frac{Y(f)}{X(f)}.$$
  • Ist das Übertragungsverhalten bei tiefen Frequenzen besser als bei höheren, so spricht man von einem  Tiefpass  (englisch:  Low-pass).
  • Die Eigenschaften von  $H(f)$  werden im Zeitbereich durch die  Impulsantwort  $h(t)$  ausgedrückt.  Entsprechend dem  zweiten Fourierintegral  gilt:
$$h(t)={\rm IFT} [H(f)] = \int_{-\infty}^{+\infty}H(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$
$$H(f)={\rm FT} [h(t)] = \int_{-\infty}^{+\infty}h(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$
  • In allen Beispielen verwenden wir reelle und gerade Funktionen.  Somit gilt:
$$h(t)=\int_{-\infty}^{+\infty}H(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ H(f)=\int_{-\infty}^{+\infty}h(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
  • Bei einem Vierpol  $[$das bedeutet:  $X(f)$  und  $Y(f)$  haben gleiche Einheiten$]$   ist  $Y(f)$  dimensionslos. 
  • Die Einheit der Impulsantwort ist  $\rm 1/s$.  Es gilt zwar $\rm 1/s = 1 \ Hz$, aber die Einheit „Hertz” ist in diesem Zusammenhang unüblich.
  • Der Zusammenhang zwischen diesem Applet und dem ähnlich aufgebauten Applet  Impulse und Spektren  basiert auf dem  Vertauschungssatz.
  • Alle Zeiten sind auf eine Normierungszeit  $T$  normiert und alle Frequenzen auf  $1/T  \ \Rightarrow$  die Zahlenwerte von   $h(t)$  müssen noch durch  $T$  dividiert werden.


$\text{Beispiel:}$  Stellt man einen Rechteck–Tiefpass mit Höhe  $K_1 = 1$  und äquivalenter Bandbreite  $\Delta f_1 = 1$  ein,

  • so ist der Frequenzgang  $H_1(f)$  im Bereich  $-1 < f < 1$  gleich  $1$  und außerhalb dieses Bereichs gleich Null. 
  • Die Impulsantwort  $h_1(t)$  verläuft  $\rm si$–förmig mit  $h_1(t= 0) = 1$  und der ersten Nullstelle bei  $t=1$.


Mit dieser Einstellung soll nun ein Rechteck–Tiefpass mit  $K = 1.5$  und  $\Delta f = 2 \ \rm kHz$  nachgebildet werden, wobei die Normierungszeit  $T= 1 \ \rm ms$  betrage. 

  • Dann liegt die erste Nullstelle bei  $t=0.5\ \rm ms$  und das Impulsantwortmaximum ist dann  $h(t= 0) = 3 \cdot 10^3 \ \rm 1/s$.


Gauß–Tiefpass   $\Rightarrow$   Gaussian Low–pass

  • Der Gauß–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f/\Delta f)^2}.$$
  • Die äquivalente Bandbreite  $\Delta f$  ergibt sich aus dem flächengleichen Rechteck.
  • Der Wert bei  $f = \Delta f/2$  ist um den Faktor  $0.456$  kleiner als der Wert bei  $f=0$.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm e}^{-\pi(t\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f)^2} .$$
  • Je kleiner  $\Delta f$  ist, um so breiter und niedriger ist die Impulsantwort   ⇒   Reziprozitätsgesetz von Bandbreite und Impulsdauer.
  • Sowohl  $H(f)$  als auch  $h(t)$  sind zu keinem  $f$– bzw.  $t$–Wert exakt gleich Null.
  • Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. 
  • Zum Beispiel ist  $h(t)$  bereits bei  $t=1.5 \cdot \Delta t$  auf weniger als  $0.1\% $  des Maximums abgefallen.


Idealer (rechteckförmiger) Tiefpass   $\Rightarrow$   Rectangular Low–pass

  • Der Rechteck–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$
  • Der  $\pm \Delta f/2$–Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
  • Für die Impulsantwort  $h(t)$  erhält man entsprechend den Gesetzmäßigkeiten der Fourierrücktransformation (2. Fourierintegral):
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • Der  $h(t)$–Wert bei  $t=0$  ist gleich der Rechteckfläche des Frequenzgangs.
  • Die Impulsantwort besitzt Nullstellen in äquidistanten Abständen  $1/\Delta f$.
  • Das Integral über die Impulsantwort  $h(t)$  ist gleich dem Frequenzgang  $H(f)$  bei der Frequenz  $f=0$, ist also gleich  $K$.


Dreieck–Tiefpass   $\Rightarrow$   Triangular Low–pass

  • Der Dreieck–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|f|}{\Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Die absolute physikalische Bandbreite  $B$   ⇒   [nur positive Frequenzen]   ist ebenfalls gleich  $\Delta f$, ist also so groß wie beim Rechteck–Tiefpass.
  • Für die Impulsantwort  $h(t)$  erhält man gemäß der Fouriertransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • $H(f)$  kann man als Faltung zweier Rechteckfunktionen  $($jeweils mit Breite  $\Delta f)$  darstellen.
  • Daraus folgt:  $h(t)$  beinhaltet anstelle der  ${\rm si}$-Funktion die  ${\rm si}^2$-Funktion.
  • $h(t)$  weist somit ebenfalls Nullstellen im äquidistanten Abständen  $1/\Delta f$  auf.
  • Der asymptotische Abfall von  $h(t)$  erfolgt hier mit  $1/t^2$, während zum Vergleich beim Rechteck–Tiefpass  $h(t)$  mit  $1/t$  abfällt.


Trapez–Tiefpass   $\Rightarrow$   Trapezoidal Low–pass

Der Trapez–Tiefpass lautet mit der Höhe  $K$  und den beiden Eckfrequenzen  $f_1$  und  $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{f_2-|f|}{f_2-f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite  (flächengleiches Rechteck)  gilt:  $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall  $r=0$  entspricht dem Rechteck–Tiefpass und der Sonderfall  $r=1$  dem Dreieck–Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t)\cdot {\rm si}(\pi \cdot r \cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • Der asymptotische Abfall von  $h(t)$  liegt zwischen  $1/t$  $($für Rechteck–Tiefpass oder  $r=0)$  und  $1/t^2$  $($für Dreieck–Tiefpass oder  $r=1)$.


Cosinus-Rolloff-Tiefpass   $\Rightarrow$   Cosine-rolloff Low–pass

Der Cosinus–Rolloff–Tiefpass lautet mit der Höhe  $K$  und den beiden Eckfrequenzen  $f_1$  und  $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|f|-f_1}{f_2-f_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite  (flächengleiches Rechteck)  gilt:  $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall  $r=0$  entspricht dem Rechteck–Tiefpass und der Sonderfall  $r=1$  dem Cosinus-Quadrat-Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot \frac{\cos(\pi \cdot r\cdot \Delta f \cdot t)}{1-(2\cdot r\cdot \Delta f \cdot t)^2} \cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Je größer der Rolloff-Faktor  $r$  ist, desto schneller nimmt  $h(t)$  asymptotisch mit  $t$  ab.


Cosinus-Quadrat-Tiefpass   $\Rightarrow$   Cosine-rolloff -squared Low–pass

  • Dies ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses und ergibt sich aus diesem für  $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}f_1=0,\ f_2= \Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|f|\hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\pi}/{4}\cdot \big [{\rm si}(\pi(\Delta f\cdot t +0.5))+{\rm si}(\pi(\Delta f\cdot t -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Wegen der letzten  ${\rm si}$-Funktion ist  $h(t)=0$  für alle Vielfachen von  $T=1/\Delta f$   ⇒   Die äquidistanten Nulldurchgänge des Cosinus–Rolloff–Tiefpasses bleiben erhalten.
  • Aufgrund des Klammerausdrucks weist  $h(t)$  nun weitere Nulldurchgänge bei  $t=\pm1.5 T$,  $\pm2.5 T$,  $\pm3.5 T$, ...  auf.
  • Für  $t=\pm T/2$  hat die Impulsanwort den Wert  $K\cdot \Delta f/2$.
  • Der asymptotische Abfall von  $h(t)$  verläuft in diesem Sonderfall mit  $1/t^3$.

Versuchsdurchführung


  • Wählen Sie zunächst die Nummer  $(1,\ 2$, ... $)$  der zu bearbeitenden Aufgabe.  Die Nummer  $0$  entspricht einem „Reset”:  Einstellung wie beim Programmstart.
  • Eine Aufgabenbeschreibung wird angezeigt.  Die Parameterwerte sind angepasst.  Lösung nach Drücken von „Musterlösung”.
  • „Rot” bezieht sich auf den ersten Parametersatz   ⇒   $H_1(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_1(t)$  und „Blau” bezieht sich auf den zweiten Parametersatz   ⇒   $H_2(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_2(t)$.
  • Werte betragsmäßig kleiner  $0.0005$  werden im Programm zu Null gesetzt.


(1)   Vergleichen Sie den  roten Gauß–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1)$  mit dem  blauen Rechteck–Tiefpass  $(K_2 = 1,\ \Delta f_2 = 1)$.  Fragen:
          (a)  Welche Ausgangssignale  $y(t)$  ergeben sich, wenn am Eingang das Signal  $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$  mit  $f_0 = 0.5$  anliegt?
          (b)  Welche Unterschiede ergeben sich bei beiden Tiefpässen mit  $f_0 = 0.5 \pm f_\varepsilon$  und  $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?

(a)  Es gilt  $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$  mit  $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1 = 0.912, \ A_2 = 1.000$.  Die Phase  $\varphi_0$  bleibt erhalten.
(b)  Bei  Rot  gilt weiterhin  $ A_1 = 0.912$.  Bei  Blau  ist  $A_2 = 0$  für  $f_0 = 0.5000\text{...}001$  und  $A_2 = 2$  für  $f_0 = 0.4999\text{...}999$.


(2)   Lassen Sie die Einstellungen unverändert.  Welcher Tiefpass  $H(f)$  kann das erste oder das zweite Nyquistkriterium erfüllen?
        Hierbei bezeichnet  $H(f)$  den Gesamtfrequenzgang von Sender, Kanal und Empfangsfilter.

  • Erstes Nyquistkriterium:  Die Impulsantwort  $h(t)$  muss äquidistante Nulldurchgänge zu den (normierten) Zeiten  $t = 1,\ 2$, ...  aufweisen.
  • Die Impulsantwort  $h(t) = {\rm si}(\pi \cdot \Delta f \cdot t)$  des Rechteck–Tiefpasses erfüllt dieses Kriterium mit  $\Delta f = 1$.
  • Dagegen wird beim Gauß–Tiefpass das erste Nyquistkriterium nie erfüllt und es kommt immer zu Impulsinterferenzen.
  • Das zweite Nyquistkriterium erfüllt weder der Rechteck–Tiefpass noch der Gauß–Tiefpass.


(3)   Vergleichen Sie den  roten Rechteck–Tiefpass  $(K_1 = 0.5, \ \Delta f_1 = 2)$  mit dem  blauen Rechteck–Tiefpass  $(K_2 = 1, \ \Delta f_2 = 1)$.
        Variieren Sie anschließend  $\Delta f_1$  zwischen  $2$  und  $0.5$.

  • Mit  $\Delta f_1 = 2$  liegen die Nullstellen von  $h_1(t)$  bei Vielfachen von  $0.5$   ⇒   $h_1(t)$  klingt doppelt so schnell ab wie  $h_2(t)$.
  • Mit der vorliegenden Einstellung gilt  $h_1(t = 0) = h_2(t = 0)$, da die Rechteckflächen von  $H_1(f)$  und  $H_2(f)$  gleich sind.
  • Verringert man man  $\Delta f_1$, so wird die Impulsantwort  $h_1(t)$  immer breiter und niedriger.
  • Mit  $\Delta f_1 = 0.5$  ist  $h_1(t)$  doppelt so breit wie  $h_2(t)$, gleichzeitig aber um den Faktor  $4$  niedriger.


(4)   Vergleichen Sie den  roten Trapez–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$  mit dem  blauen Rechteck–Tiefpass  $(K_2 = 1, \ \Delta f_2 = 1)$.
        Variieren Sie anschließend  $r_1$  zwischen  $0$  und  $1$.

  • Mit  $r_1 = 0.5$  sind die Unterschwinger von  $h_1(t)$  beim „Trapez” wegen des flacheren Flankenabfalls geringer als beim „Rechteck”.
  • Mit kleinerem  $r_1$  nehmen die Unterschwinger zu.  Mit  $r_1= 0$  ist der Trapez– gleich dem Rechteck–Tiefpass   ⇒   $h(t)= {\rm si}(\pi \cdot t/T)$.
  • Mit größerem  $r_1$  werden die Unterschwinger kleiner. Mit  $r_1= 1$  ist der Trapez– gleich dem Dreieck–Tiefpass   ⇒   $h(t)= {\rm si}^2(\pi \cdot t/T)$.


(5)   Vergleichen Sie den  Trapez–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$  mit dem  Cosinus-Rolloff-Tiefpass  $(K_2 = 1,\ \Delta f_2 = 1, \ r_2 = 0.5)$.
        Variieren Sie  $r_2$  zwischen  $0$  und  $1$.  Interpretieren Sie die Impulsantwort für  $r_2 = 0.75$.  Welcher Tiefpass erfüllt das erste Nyquistkriterium?

  • Bei  $r_1 = r_2= 0.5$  verläuft der Flankenabfall von  $H_2(f)$  um die Frequenz  $f = 0.5$  steiler als der Flankenabfall von  $H_1(f)$.
  • Bei gleichem Rolloff  $r= 0.5$  hat die Impulsantwort  $h_2(t)$  für  $t > 1$  betragsmäßig größere Anteile als  $h_1(t)$.
  • Mit  $r_1 = 0.5$  und  $r_2 = 0.75$  gilt  $H_1(f) \approx H_2(f)$  und damit auch  $h_1(t) \approx h_2(t)$.
  • $H_1(f)$  und  $H_2(f)$  erfüllen beide das erste Nyquistkriterium:  Beide Funktionen sind punktsymmetrisch um den „Nyquistpunkt”.
  • Wegen  $\Delta f = 1$  besitzen sowohl  $h_1(t)$  als auch  $h_2(t)$  Nulldurchgänge bei  $\pm 1$,  $\pm 2$, ...   ⇒   jeweils maximale vertikale Augenöffnung.


(6)   Vergleichen Sie den  Cosinus–Quadrat–Tiefpass  $(K_1 = 1, \ \Delta f_1 = 1)$  mit dem  Cosinus-Rolloff-Tiefpass  $(K_2 = 1, \ \Delta f_2 = 1,\ r_2 = 0.5)$.
        Variieren Sie  $r_2$  zwischen  $0$  und  $1$.  Interpretieren Sie die Ergebnisse.  Welcher Tiefpass erfüllt das zweite Nyquistkriterium]]?

  • $H_1(f)$  ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses mit Rolloff  $r_2 =1$.  Das erste Nyquistkriterium wird auch mit  $r_2 \ne 1$  erfüllt.
  • Nach dem zweiten Nyquistkriterium muss  $h(t)$  auch Nulldurchgänge bei  $t=\pm 1.5$,  $\pm 2.5$,  $\pm 3.5$, ... besitzen  $($nicht jedoch bei  $t = \pm 0.5)$.
  • Für den Cosinus–Quadrat–TP gilt also  $h_1(t=\pm 0.5) = 0.5$,  $h_1(t=\pm 1) = h_1(t=\pm 1.5) = h_1(t=\pm 2)= h_1(t=\pm 2.5) = \text{...} =0$.
  • Nur der Cosinus–Quadrat–TP erfüllt das erste und zweite Nyquistkriterium gleichzeitig:  Maximale vertikale und horizontale Augenöffnung.


Zur Handhabung des Programms

Bildschirmabzug (englische Version, heller Hintergrund)

    (A)     Theme (veränderbare grafische Oberflächengestaltung)

  • Dark:   schwarzer Hintergrund  (wird von den Autoren empfohlen)
  • Bright:   weißer Hintergrund  (empfohlen für Beamer und Ausdrucke)
  • Deuteranopia:   für Nutzer mit ausgeprägter Grün–Sehschwäche
  • Protanopia:   für Nutzer mit ausgeprägter Rot–Sehschwäche

    (B)     Vorauswahl für den Frequenzgang  $H_1(f)$  (rote Kurve)

    (C)     Parameterfestlegung für  $H_1(f)$ 

    (D)     Numerikausgabe für  $H_1(f_*)$  und  $h_1(t_*)$

    (E)     Vorauswahl für den Frequenzgang  $H_2(f)$  (blaue Kurve)

    (F)     Parameterfestlegung für  $H_2(f)$ 

    (G)     Numerikausgabe für  $H_2(f_*)$  und  $h_2(t_*)$

    (H)     Einstellung der Frequenz  $f_*$  für die Numerikausgabe

    (I)      Einstellung der Zeit  $t_*$  für die Numerikausgabe

    (J)     Bereich der graphischen Darstellung im Frequenzbereich

    (K)     Bereich der graphischen Darstellung im Zeitbereich

    (L)     Auswahl der Aufgabe entsprechend der Aufgabennummer

    (M)     Aufgabenbeschreibung und Fragestellung

    (N)     Musterlösung anzeigen und verbergen


Details zu den obigen Punkten  (J ) und  (K)

Zoom–Funktionen:
       „$+$” (Vergrößern),      „$-$” (Verkleinern),      „$\rm o$” (Zurücksetzen)

Verschiebe–Funktionen:     „$\leftarrow$”     „$\uparrow$”     „$\downarrow$”     „$\rightarrow$”
        „$\leftarrow$”  bedeutet:     Bildausschnitt nach links, Ordinate nach rechts

Andere Möglichkeiten:

  • Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
  • Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.



Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
  • 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.
  • Letztmalige Überarbeitung 2020 durch  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen   Open English Version