Aufgaben:Aufgabe 1.2Z: Nochmals Lognormal–Fading: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(24 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2123__Mob_Z_1_2.png|right|frame]]
+
[[Datei:P_ID2123__Mob_Z_1_2.png|right|frame|Modell für Lognormal-Fading]]
Wir gehen von ähnlichen Bedingungen wie in der [[Aufgaben:1.2_Lognormal_%E2%80%93_Kanalmodell|Aufgabe A1.2]] aus, fassen aber nun den rein entfernungsabhängigen Pfadverlust $V_0$ und den Mittelwert $m_{\rm S}$ des Lognormal&ndash;Fadings zusammen (der Index S steht für <i>Shadowing</i>):
+
Wir gehen von ähnlichen Bedingungen wie in der&nbsp; [[Aufgaben:1.2_Lognormal_%E2%80%93_Kanalmodell|Aufgabe 1.2]]&nbsp; aus, fassen aber nun den rein entfernungsabhängigen Pfadverlust&nbsp; $V_0$&nbsp; und den Mittelwert&nbsp; $m_{\rm S}$&nbsp; des Lognormal&ndash;Fadings zusammen&nbsp; (der Index &bdquo;S&rdquo; steht für <i>Shadowing</i>):
 
:$$V_{\rm 1} =  V_{\rm 0} + m_{\rm S} \hspace{0.05cm}.$$
 
:$$V_{\rm 1} =  V_{\rm 0} + m_{\rm S} \hspace{0.05cm}.$$
  
Zeile 10: Zeile 10:
 
:$$V_{\rm P} =  V_{\rm 1} + V_{\rm 2}(t)$$
 
:$$V_{\rm P} =  V_{\rm 1} + V_{\rm 2}(t)$$
  
gegeben, wobei $V_2(t)$ eine<span style="color: rgb(204, 0, 0);"> <b>Lognormal&ndash;Verteilung mit Mittelwert 0</b> </span>beschreibt:
+
gegeben, wobei&nbsp; $V_2(t)$&nbsp; eine ''Lognormal&ndash;Verteilung''&nbsp; mit Mittelwert Null beschreibt:
:$$f_{V{\rm 2}}(V_{\rm 2}) =  \frac {1}{ \sqrt{2 \pi }\cdot \sigma_{\rm S}}  \cdot {\rm exp } \left [ - \frac{ V_{\rm 2} ^2}{2 \cdot \sigma_{\rm S}^2} \right ] \hspace{0.05cm}.$$
+
:$$f_{V_{\rm S}}(V_{\rm S}) =  \frac {1}{ \sqrt{2 \pi }\cdot \sigma_{\rm S}}  \cdot {\rm e }^{ - { (V_{\rm S}\hspace{0.05cm}- \hspace{0.05cm}m_{\rm S})^2}/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{\rm S}^2) }\hspace{0.05cm}.$$
 +
 
 +
Das in der Grafik gezeigte Pfadverlustmodell ist für das hier beschriebene Szenario geeignet:
 +
*Multipliziert man das Sendesignal&nbsp; $s(t)$&nbsp; zunächst mit einem konstanten Faktor&nbsp; $k_1$&nbsp; und weiter mit einer stochastischen Größe&nbsp; $z_2(t)$&nbsp; mit der Wahrscheinlichkeitsdichte $\rm (WDF)$&nbsp; $f_{\rm z2}(z_2)$, so ergibt sich am Ausgang das Signal&nbsp; $r(t)$, dessen Leistung&nbsp; $P_{\rm E}(t)$&nbsp; aufgrund des stochastischen Anteils natürlich ebenfalls zeitabhängig ist.
 +
*Die WDF der lognormalverteilten Zufallsgröße&nbsp; $z_2$&nbsp; lautet für&nbsp; $z_2 &#8805; 0$:
 +
:$$f_{z_{\rm 2}}(z_{\rm 2}) =  \frac {{\rm e^{- {\rm ln}^2 (z_{\rm 2})
 +
/({2 \hspace{0.05cm}\cdot \hspace{0.05cm} C^2 \hspace{0.05cm} \cdot \hspace{0.05cm} \sigma_{\rm S}^2})
 +
} } }{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot z_2}  \hspace{0.8cm}{\rm mit}  \hspace{0.8cm} C = \frac{{\rm ln} \hspace{0.1cm}(10)}{20\,\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 +
*Für&nbsp; $z_2 &#8804; 0$&nbsp; ist diese WDF identisch Null.
 +
 
 +
 
 +
 
 +
 
  
Das in der Grafik gezeigte Pfadverlustmodell ist für das hier beschriebene Szenario geeignet. Multipliziert man das Sendesignal $s(t)$ zunächst mit einem konstanten Faktor $k_1$ und weiter mit einer stochastischen Größe $z_2(t)$ mit der Wahrscheinlichkeitsdichte $f_{\rm z2}(z_2)$, so ergibt sich am Ausgang das Signal $r(t)$, dessen Leistung $P_{\rm E}(t)$ aufgrund des stochastischen Anteils natürlich ebenfalls zeitabhängig ist. Die WDF der lognormalverteilten Zufallsgröße $z_2$ lautet für $z_2 &#8805; 0$:
 
:$$f_{z{\rm 2}}(z_{\rm 2}) =  \frac {{\rm exp } \left [ - {\rm ln}^2 (z_{\rm 2}) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot z_2}    \hspace{0.3cm}{\rm mit}  \hspace{0.3cm} C = \frac{{\rm ln} \hspace{0.1cm}(10)}{20\,\,{\rm dB}}\hspace{0.05cm}.$$
 
  
Für $z_2 &#8804; 0$ ist diese WDF identisch 0.
 
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe gehört zum Kapitel [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distanzabhängige Dämpfung und Abschattung]].
+
* Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distanzabhängige Dämpfung und Abschattung]].
 
* Verwenden Sie folgende Kenngrößen:
 
* Verwenden Sie folgende Kenngrößen:
 
:$$V_{\rm 1} = 60\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}  \sigma_{\rm S} = 6\,{\rm dB}\hspace{0.05cm}.$$
 
:$$V_{\rm 1} = 60\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm}  \sigma_{\rm S} = 6\,{\rm dB}\hspace{0.05cm}.$$
* Die Wahrscheinlichkeit, dass eine mittelwertfreie Gaußsche Zufallsgröße $z$ einen größeren Wert besitzt als ihre Streuung $\sigma$, ist bekanntlich
+
 +
* Die Wahrscheinlichkeit, dass eine mittelwertfreie Gaußsche Zufallsgröße&nbsp; $z$&nbsp; größer ist als ihre Streuung&nbsp; $\sigma$, lautet:
 
:$${\rm Pr}(z > \sigma) = {\rm Pr}(z < -\sigma) = {\rm Q}(1) \approx 0.158\hspace{0.05cm}.$$
 
:$${\rm Pr}(z > \sigma) = {\rm Pr}(z < -\sigma) = {\rm Q}(1) \approx 0.158\hspace{0.05cm}.$$
* Weiterhin gilt:
+
* Außerdem gilt: &nbsp; ${\rm Pr}(z > 2\sigma) = {\rm Pr}(z < -2\sigma) = {\rm Q}(2) \approx 0.023\hspace{0.05cm}.$
:$${\rm Pr}(z > 2\sigma) = {\rm Pr}(z < -2\sigma) = {\rm Q}(2) \approx 0.023\hspace{0.05cm}.$$
+
* Nochmals zur Verdeutlichung: &nbsp; $z_2$&nbsp; ist die lineare Fading&ndash;Größe, während die Beschreibungsgröße&nbsp; $V_2$&nbsp; auf dem Zehner&ndash;Logarithmus basiert.  
* Nochmals zur Verdeutlichung: $z_2$ ist die lineare Fading&ndash;Größe, während die Beschreibungsgröße $V_2$ auf dem Zehner&ndash;Logarithmus basiert. Es gelten folgende Umrechnungen:
+
*Es gelten folgende Umrechnungen:
 
:$$z_2 =  10^{-V_{\rm 2}/20\,{\rm dB}}\hspace{0.05cm}, \hspace{0.2cm}
 
:$$z_2 =  10^{-V_{\rm 2}/20\,{\rm dB}}\hspace{0.05cm}, \hspace{0.2cm}
 
V_{\rm 2} = -20\,{\rm dB} \cdot  {\rm lg}\hspace{0.15cm}z_2\hspace{0.05cm}.$$
 
V_{\rm 2} = -20\,{\rm dB} \cdot  {\rm lg}\hspace{0.15cm}z_2\hspace{0.05cm}.$$
 +
  
  
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sollte die Konstante $k_1$ sein?
+
{Wie groß sollte die Konstante&nbsp; $k_1$&nbsp; sein?
 
|type="{}"}
 
|type="{}"}
$k_1$ = { 0.001 3% }  
+
$k_1\ = \ $ { 0.001 3% }  
  
{Welcher Wertebereich gilt für die Zufallsgröße $z_2$?
+
{Welcher Wertebereich gilt für die Zufallsgröße&nbsp; $z_2$?
 
|type="[]"}
 
|type="[]"}
- Es sind alle Werte zwischen $&ndash;&#8734;$ und $+&#8734;$ möglich.
+
- Es sind alle Werte zwischen&nbsp; $-&#8734;$ und $+&#8734;$&nbsp; möglich.
+ Die Zufallsgröße $z_2$ ist nicht negativ.
+
+ Die Zufallsgröße&nbsp; $z_2$&nbsp; ist nicht negativ.
- Der kleinstmögliche Wert ist $z_2 = 0.5$.
+
- Der kleinstmögliche Wert ist&nbsp; $z_2 = 0.5$.
- Der größtmögliche Wert ist $z_2 = 2$.
+
- Der größtmögliche Wert ist&nbsp; $z_2 = 2$.
  
{Berechnen Sie die WDF $f_{\rm z2}(z_2)$ für einige Abszissenwerte.
+
{Berechnen Sie die WDF&nbsp; $f_{\rm z2}(z_2)$&nbsp; für einige Abszissenwerte.
 
|type="{}"}
 
|type="{}"}
$f_{\rm z2}(z_2 = 0)$ = { 0 3% }
+
$f_{\rm z2}(z_2 = 0)\ = \ $ { 0. }
$f_{\rm z2}(z_2 = 1)$ = { 0.578 3% }  
+
$f_{\rm z2}(z_2 = 1)\ = \ $ { 0.578 3% }  
$f_{\rm z2}(z_2 = 2)$ = { 0.174 3% }  
+
$f_{\rm z2}(z_2 = 2)\ = \ $ { 0.174 3% }  
  
 
{Berechnen Sie die folgenden Wahrscheinlichkeiten.
 
{Berechnen Sie die folgenden Wahrscheinlichkeiten.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(z_2 > 1)$ = { 0.5 3% }
+
${\rm Pr}(z_2 > 1.0)\ = \ $ { 0.5 3% }
${\rm Pr}(z_2 > 0.5)$ = { 0.842 3% }
+
${\rm Pr}(z_2 > 0.5)\ = \ $ { 0.842 3% }
${\rm Pr}(z_2 > 4)$ = { 0.023 3% }
+
${\rm Pr}(z_2 > 4.0)\ = \ $ { 0.023 3% }
  
  
{Welche Aussagen gelten für die mittlere Empfangsleistung ${\rm E}[P_{\rm E}(t)]$? <u>Hinweis:</u> $P_{\rm E}'$ ist die Leistung nach der Multiplikation mit $k_1$ siehe Grafik.
+
{Welche Aussagen gelten für die mittlere Empfangsleistung&nbsp; ${\rm E}\big[P_{\rm E}(t)\big]$? <br><u>Hinweis:</u> &nbsp;$P_{\rm E}\hspace{0.01cm}'$&nbsp; ist die Leistung nach der Multiplikation mit&nbsp; $k_1$&nbsp; (siehe Grafik).
|type="[]"}
+
|type="()"}
- Es gilt ${\rm E}[P_{\rm E}(t)] = P_{\rm E}'$.
+
- Es gilt: &nbsp; ${\rm E}[P_{\rm E}(t)] = P_{\rm E}\hspace{0.01cm}'$.
- Es gilt ${\rm E}[P_{\rm E}(t)] < P_{\rm E}'$.
+
- Es gilt: &nbsp; ${\rm E}[P_{\rm E}(t)] < P_{\rm E}\hspace{0.01cm}'$.
+ Es gilt ${\rm E}[P_{\rm E}(t)] > P_{\rm E}'$.
+
+ Es gilt: &nbsp; ${\rm E}[P_{\rm E}(t)] > P_{\rm E}\hspace{0.01cm}'$.
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Konstante $k_1$ erzeugt den zeitunabhängigen Pfadverlust $V_1 = 60 \ \rm dB$. Daraus:
+
'''(1)'''&nbsp; Die Konstante&nbsp; $k_1$&nbsp; erzeugt den zeitunabhängigen Pfadverlust&nbsp; $V_1 = 60 \ \rm dB$.&nbsp; Daraus folgt:
:$$k_{\rm 1} =  10^{-V_{\rm 1}/(20\hspace{0.05cm} {\rm dB})} \hspace{0.15cm} \underline{=10^{-3}}\hspace{0.05cm}.$$
+
:$$k_{\rm 1} =  10^{-V_{\rm 1}/(20\hspace{0.05cm} {\rm dB})} \hspace{0.15cm} \underline{= 0.001}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Richtig ist nur der <u>zweite Lösungsvorschlag</u>:
 +
*Für die Gaußsche Zufallsvariable&nbsp; $V_2$&nbsp; sind (theoretisch) alle Werte zwischen&nbsp; $-&#8734;$&nbsp; und&nbsp; $+&#8734;$&nbsp; möglich.
 +
*Durch die Transformation&nbsp; $z_2 = 10^{{\it -V_2}\rm /20}$&nbsp; ergeben sich für die lineare Zufallsgröße&nbsp; $z_2$&nbsp; nur positive Werte und zwar zwischen&nbsp; 0&nbsp; $($falls&nbsp; $V_2$&nbsp; positiv ist und bis ins Unendliche reicht$)$&nbsp; und $+&#8734;$&nbsp; $($für sehr große negative Werte von $V_2)$.
  
  
'''(2)'''&nbsp; Richtig ist nur der <u>zweite Lösungsvorschlag</u>. Für die Gaußsche Zufallsvariable $V_2$ sind (theoretisch) alle Werte zwischen $&ndash;&#8734;$ und $+&#8734;$ möglich. Durch die Transformation $z_2 = 10^{\rm &ndash;V_2/20} ergeben sich für die lineare Zufallsgröße $z_2$ nur positive Werte und zwar zwischen 0 (falls $V_2$ positiv ist) und bis ins Unendliche reicht) und $+&#8734;$ (sehr große negative Werte von $V_2$).
 
  
 +
'''(3)'''&nbsp; Die Zufallsgröße&nbsp; $z_2$&nbsp; kann nur positiv sein.&nbsp; Deshalb ist der WDF&ndash;Wert&nbsp; $f_{\rm z2}(z_2 = 0)\hspace{0.15cm} \underline{ = 0}$.
  
'''(3)'''&nbsp; Die Zufallsgröße $z_2$ kann nur positiv sein. Deshalb ist der WDF&ndash;Wert $f_{\rm z2}(z_2 = 0)$ gleich <u>Null</u>. Der WDF&ndash;Wert für den Abszissenwert $z_2 = 1$ erhält man durch Einsetzen in die gegebene Gleichung:
+
*Der WDF&ndash;Wert für den Abszissenwert&nbsp; $z_2 = 1$&nbsp; erhält man durch Einsetzen in die gegebene Gleichung:
:$$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=$$
+
:$$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm e^{- {\rm ln}^2 (z_{\rm 2}=1)
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} \cdot \frac {1}{  C  } =
+
/({2 \hspace{0.05cm}\cdot \hspace{0.05cm} C^2 \hspace{0.05cm} \cdot \hspace{0.05cm} \sigma_{\rm S}^2})
 +
} } }{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}  =
 
  \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} }  \cdot \frac {20\,\,{\rm dB}}{  {\rm ln} \hspace{0.1cm}(10)  }   
 
  \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} }  \cdot \frac {20\,\,{\rm dB}}{  {\rm ln} \hspace{0.1cm}(10)  }   
 
  \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$
 
  \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$
  
Der erste Anteil ist gleich dem WDF&ndash;Wert $f_{\it V2}(V_2 = 0) und C berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie $z_2 = g(V_2)$ für $V_2 = 0 \ \rm dB$ bzw. $z_2 = 1$. Schließlich erhält man für $z_2 = 2$:
+
*Der erste Anteil ist gleich dem WDF&ndash;Wert&nbsp; $f_{{\it V}2}(V_2 = 0)$.
 +
*$C$&nbsp; berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie&nbsp; $z_2 = g(V_2)$&nbsp; für&nbsp; $V_2 = 0 \ \rm dB$&nbsp; bzw.&nbsp; $z_2 = 1$.  
 +
*Schließlich erhält man für&nbsp; $z_2 = 2$:
 
:$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot  
 
:$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot  
  {\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]=$$
+
  {\rm e }^{  - {{\rm ln}^2 (2)}/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}C^2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{\rm S}^2)} = {0.578}/{ 2} \cdot  
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm\frac {0.578}{ 2} \cdot  
+
  {\rm e } ^{ - {0.48}/{0.952} } \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$
  {\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$
 
  
  
'''(4)'''&nbsp; Berücksichtigt man den Zusammenhang zwischen $z_2$ und $V_2$, so erhält man:
+
'''(4)'''&nbsp; Berücksichtigt man den Zusammenhang zwischen&nbsp; $z_2$&nbsp; und&nbsp; $V_2$, so erhält man:
 
:$${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5}
 
:$${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
:$${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})=$$
+
:$${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842}
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842}
 
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
 
:$${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) =  {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S})
 
:$${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) =  {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S})
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als $2 \cdot \sigma$, ist aber gleich $Q(2)$:
+
*Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als&nbsp; $2 \cdot \sigma$, ist aber gleich&nbsp; ${\rm Q}(2)$:
 
:$${\rm Pr}(z_{\rm 2} > 4)  =  {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023}
 
:$${\rm Pr}(z_{\rm 2} > 4)  =  {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert $m_{\rm S}$ auf die logarithmierte Empfangsleistung (in $\rm dBm$) bezieht. Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von $P_{\rm S} = 1 \rm W$, $V_1 = 60 \ \rm dB$ &nbsp;&#8658;&nbsp; $P_{\rm E}' = 1 \ \rm \mu W$ und folgender $V_2&ndash;WDF$ aus:
+
'''(5)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
 +
*Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert&nbsp; $m_{\rm S}$&nbsp; auf die logarithmierte Empfangsleistung&nbsp; $($in&nbsp; $\rm dBm)$&nbsp; bezieht.  
 +
*Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von&nbsp; $P_{\rm S} = 1 \ \rm W$,&nbsp; $V_1 = 60 \ \rm dB$ &nbsp; &#8658; &nbsp; $P_{\rm E}' = 1 \ {\rm &micro; W}$&nbsp; und folgender&nbsp; $V_2$&ndash;WDF aus:
 
:$$f_{V{\rm 2}}(V_{\rm 2}) =  0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB})
 
:$$f_{V{\rm 2}}(V_{\rm 2}) =  0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB})
 
  + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.$$
 
  + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.$$
  
In der Hälfte der Zeit ist dann $P_{\rm E} = 1 \ \rm \mu W$, während in den beiden anderen Vierteln jeweils gilt:
+
*In der Hälfte der Zeit ist dann&nbsp; $P_{\rm E} = 1 \ \rm &micro; W$, während in den beiden anderen Vierteln jeweils gilt:
:$$V_{\rm 2}= +10\,\,{\rm dB}: \hspace{0.3cm}  P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm \mu W}\hspace{0.05cm},$$
+
:$$V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm}  P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm &micro; W}\hspace{0.05cm},$$
:$$V_{\rm 2}= -10\,\,{\rm dB}: \hspace{0.3cm}  P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm \mu W}\hspace{0.05cm}.$$
+
:$$V_{\rm 2}= -10\,\,{\rm dB}\text{:} \hspace{0.3cm}  P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm &micro; W}\hspace{0.05cm}.$$
  
Der Mittelwert ergibt somit:
+
*Der Mittelwert ergibt somit zu:
:$${\rm E}[P_{\rm E}(t)] =  0.5 \cdot 1\,{\rm \mu W}+ 0.25 \cdot 0.1\,{\rm \mu W}+0.25 \cdot 10\,{\rm \mu W}= 3.025\,{\rm \mu W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm \mu W}
+
:$${\rm E}\big[P_{\rm E}(t)\big] =  0.5 \cdot 1\,{\rm &micro; W}+ 0.25 \cdot 0.1\,{\rm &micro; W}+0.25 \cdot 10\,{\rm &micro; W}= 3.025\,{\rm &micro; W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm &micro; W}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Diese einfache Rechnung mit diskreten Wahrscheinlichkeiten anstelle einer kontinuierlichen WDF deutet darauf hin, dass der <u>dritte Lösungsvorschlag</u> richtig sein wird.
+
*Diese einfache Rechnung mit diskreten Wahrscheinlichkeiten anstelle einer kontinuierlichen WDF deutet darauf hin, dass der <u>Lösungsvorschlag 3</u> richtig ist.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Zeile 121: Zeile 142:
  
  
[[Category:Aufgaben zu Mobile Kommunikation|^1.1 Distanzabhängige Dämpfung und Abschattung^]]
+
[[Category:Aufgaben zu Mobile Kommunikation|^1.1 Distanzabhängige Dämpfung^]]

Aktuelle Version vom 10. Mai 2020, 13:22 Uhr

Modell für Lognormal-Fading

Wir gehen von ähnlichen Bedingungen wie in der  Aufgabe 1.2  aus, fassen aber nun den rein entfernungsabhängigen Pfadverlust  $V_0$  und den Mittelwert  $m_{\rm S}$  des Lognormal–Fadings zusammen  (der Index „S” steht für Shadowing):

$$V_{\rm 1} = V_{\rm 0} + m_{\rm S} \hspace{0.05cm}.$$

Der gesamte Pfadverlust ist dann durch die Gleichung

$$V_{\rm P} = V_{\rm 1} + V_{\rm 2}(t)$$

gegeben, wobei  $V_2(t)$  eine Lognormal–Verteilung  mit Mittelwert Null beschreibt:

$$f_{V_{\rm S}}(V_{\rm S}) = \frac {1}{ \sqrt{2 \pi }\cdot \sigma_{\rm S}} \cdot {\rm e }^{ - { (V_{\rm S}\hspace{0.05cm}- \hspace{0.05cm}m_{\rm S})^2}/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{\rm S}^2) }\hspace{0.05cm}.$$

Das in der Grafik gezeigte Pfadverlustmodell ist für das hier beschriebene Szenario geeignet:

  • Multipliziert man das Sendesignal  $s(t)$  zunächst mit einem konstanten Faktor  $k_1$  und weiter mit einer stochastischen Größe  $z_2(t)$  mit der Wahrscheinlichkeitsdichte $\rm (WDF)$  $f_{\rm z2}(z_2)$, so ergibt sich am Ausgang das Signal  $r(t)$, dessen Leistung  $P_{\rm E}(t)$  aufgrund des stochastischen Anteils natürlich ebenfalls zeitabhängig ist.
  • Die WDF der lognormalverteilten Zufallsgröße  $z_2$  lautet für  $z_2 ≥ 0$:
$$f_{z_{\rm 2}}(z_{\rm 2}) = \frac {{\rm e^{- {\rm ln}^2 (z_{\rm 2}) /({2 \hspace{0.05cm}\cdot \hspace{0.05cm} C^2 \hspace{0.05cm} \cdot \hspace{0.05cm} \sigma_{\rm S}^2}) } } }{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot z_2} \hspace{0.8cm}{\rm mit} \hspace{0.8cm} C = \frac{{\rm ln} \hspace{0.1cm}(10)}{20\,\,{\rm dB}}\hspace{0.05cm}.$$
  • Für  $z_2 ≤ 0$  ist diese WDF identisch Null.




Hinweise:

$$V_{\rm 1} = 60\,{\rm dB}\hspace{0.05cm},\hspace{0.2cm} \sigma_{\rm S} = 6\,{\rm dB}\hspace{0.05cm}.$$
  • Die Wahrscheinlichkeit, dass eine mittelwertfreie Gaußsche Zufallsgröße  $z$  größer ist als ihre Streuung  $\sigma$, lautet:
$${\rm Pr}(z > \sigma) = {\rm Pr}(z < -\sigma) = {\rm Q}(1) \approx 0.158\hspace{0.05cm}.$$
  • Außerdem gilt:   ${\rm Pr}(z > 2\sigma) = {\rm Pr}(z < -2\sigma) = {\rm Q}(2) \approx 0.023\hspace{0.05cm}.$
  • Nochmals zur Verdeutlichung:   $z_2$  ist die lineare Fading–Größe, während die Beschreibungsgröße  $V_2$  auf dem Zehner–Logarithmus basiert.
  • Es gelten folgende Umrechnungen:
$$z_2 = 10^{-V_{\rm 2}/20\,{\rm dB}}\hspace{0.05cm}, \hspace{0.2cm} V_{\rm 2} = -20\,{\rm dB} \cdot {\rm lg}\hspace{0.15cm}z_2\hspace{0.05cm}.$$


Fragebogen

1

Wie groß sollte die Konstante  $k_1$  sein?

$k_1\ = \ $

2

Welcher Wertebereich gilt für die Zufallsgröße  $z_2$?

Es sind alle Werte zwischen  $-∞$ und $+∞$  möglich.
Die Zufallsgröße  $z_2$  ist nicht negativ.
Der kleinstmögliche Wert ist  $z_2 = 0.5$.
Der größtmögliche Wert ist  $z_2 = 2$.

3

Berechnen Sie die WDF  $f_{\rm z2}(z_2)$  für einige Abszissenwerte.

$f_{\rm z2}(z_2 = 0)\ = \ $

$f_{\rm z2}(z_2 = 1)\ = \ $

$f_{\rm z2}(z_2 = 2)\ = \ $

4

Berechnen Sie die folgenden Wahrscheinlichkeiten.

${\rm Pr}(z_2 > 1.0)\ = \ $

${\rm Pr}(z_2 > 0.5)\ = \ $

${\rm Pr}(z_2 > 4.0)\ = \ $

5

Welche Aussagen gelten für die mittlere Empfangsleistung  ${\rm E}\big[P_{\rm E}(t)\big]$?
Hinweis:  $P_{\rm E}\hspace{0.01cm}'$  ist die Leistung nach der Multiplikation mit  $k_1$  (siehe Grafik).

Es gilt:   ${\rm E}[P_{\rm E}(t)] = P_{\rm E}\hspace{0.01cm}'$.
Es gilt:   ${\rm E}[P_{\rm E}(t)] < P_{\rm E}\hspace{0.01cm}'$.
Es gilt:   ${\rm E}[P_{\rm E}(t)] > P_{\rm E}\hspace{0.01cm}'$.


Musterlösung

(1)  Die Konstante  $k_1$  erzeugt den zeitunabhängigen Pfadverlust  $V_1 = 60 \ \rm dB$.  Daraus folgt:

$$k_{\rm 1} = 10^{-V_{\rm 1}/(20\hspace{0.05cm} {\rm dB})} \hspace{0.15cm} \underline{= 0.001}\hspace{0.05cm}.$$


(2)  Richtig ist nur der zweite Lösungsvorschlag:

  • Für die Gaußsche Zufallsvariable  $V_2$  sind (theoretisch) alle Werte zwischen  $-∞$  und  $+∞$  möglich.
  • Durch die Transformation  $z_2 = 10^{{\it -V_2}\rm /20}$  ergeben sich für die lineare Zufallsgröße  $z_2$  nur positive Werte und zwar zwischen  0  $($falls  $V_2$  positiv ist und bis ins Unendliche reicht$)$  und $+∞$  $($für sehr große negative Werte von $V_2)$.


(3)  Die Zufallsgröße  $z_2$  kann nur positiv sein.  Deshalb ist der WDF–Wert  $f_{\rm z2}(z_2 = 0)\hspace{0.15cm} \underline{ = 0}$.

  • Der WDF–Wert für den Abszissenwert  $z_2 = 1$  erhält man durch Einsetzen in die gegebene Gleichung:
$$f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm e^{- {\rm ln}^2 (z_{\rm 2}=1) /({2 \hspace{0.05cm}\cdot \hspace{0.05cm} C^2 \hspace{0.05cm} \cdot \hspace{0.05cm} \sigma_{\rm S}^2}) } } }{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)} = \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}{ {\rm ln} \hspace{0.1cm}(10) } \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$
  • Der erste Anteil ist gleich dem WDF–Wert  $f_{{\it V}2}(V_2 = 0)$.
  • $C$  berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie  $z_2 = g(V_2)$  für  $V_2 = 0 \ \rm dB$  bzw.  $z_2 = 1$.
  • Schließlich erhält man für  $z_2 = 2$:
$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot {\rm e }^{ - {{\rm ln}^2 (2)}/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}C^2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{\rm S}^2)} = {0.578}/{ 2} \cdot {\rm e } ^{ - {0.48}/{0.952} } \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$


(4)  Berücksichtigt man den Zusammenhang zwischen  $z_2$  und  $V_2$, so erhält man:

$${\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5} \hspace{0.05cm},$$
$${\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842} \hspace{0.05cm},$$
$${\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S}) \hspace{0.05cm}.$$
  • Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als  $2 \cdot \sigma$, ist aber gleich  ${\rm Q}(2)$:
$${\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} \hspace{0.05cm}.$$


(5)  Richtig ist der Lösungsvorschlag 3:

  • Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert  $m_{\rm S}$  auf die logarithmierte Empfangsleistung  $($in  $\rm dBm)$  bezieht.
  • Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von  $P_{\rm S} = 1 \ \rm W$,  $V_1 = 60 \ \rm dB$   ⇒   $P_{\rm E}' = 1 \ {\rm µ W}$  und folgender  $V_2$–WDF aus:
$$f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.$$
  • In der Hälfte der Zeit ist dann  $P_{\rm E} = 1 \ \rm µ W$, während in den beiden anderen Vierteln jeweils gilt:
$$V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm µ W}\hspace{0.05cm},$$
$$V_{\rm 2}= -10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm µ W}\hspace{0.05cm}.$$
  • Der Mittelwert ergibt somit zu:
$${\rm E}\big[P_{\rm E}(t)\big] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W} \hspace{0.05cm}.$$
  • Diese einfache Rechnung mit diskreten Wahrscheinlichkeiten anstelle einer kontinuierlichen WDF deutet darauf hin, dass der Lösungsvorschlag 3 richtig ist.