Aufgaben:Aufgabe 1.4Z: Zum Dopplereffekt: Unterschied zwischen den Versionen
(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 2: | Zeile 2: | ||
{{quiz-Header|Buchseite=Mobile Kommunikation/Statistische Bindungen innerhalb des Rayleigh-Prozesses}} | {{quiz-Header|Buchseite=Mobile Kommunikation/Statistische Bindungen innerhalb des Rayleigh-Prozesses}} | ||
− | [[Datei:P_ID2118__Mob_Z_1_4.png|right|frame| | + | [[Datei:P_ID2118__Mob_Z_1_4.png|right|frame|Bewegungsrichtungen $\rm (A)$, ...]] |
− | Als „Dopplereffekt” bezeichnet man die Veränderung der wahrgenommenen Frequenz von Wellen jeder Art, während sich Quelle (Sender) und Beobachter (Empfänger) relativ zueinander bewegen. | + | Als „Dopplereffekt” bezeichnet man die Veränderung der wahrgenommenen Frequenz von Wellen jeder Art, während sich Quelle (Sender) und Beobachter (Empfänger) relativ zueinander bewegen. |
− | Wir gehen stets von einem festen Sender aus, während sich der Empfänger in vier verschiedene Richtungen (A), (B), (C) und (D) bewegen kann (siehe Grafik). | + | Wir gehen hier stets von einem festen Sender aus, während sich der Empfänger in vier verschiedene Richtungen $\rm (A)$, $\rm (B)$, $\rm (C)$ und $\rm (D)$ bewegen kann (siehe Grafik). |
Untersucht werden sollen verschiedene Geschwindigkeiten: | Untersucht werden sollen verschiedene Geschwindigkeiten: | ||
− | * eine unrealistisch große Geschwindigkeit $ | + | * eine unrealistisch große Geschwindigkeit $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$, |
− | * die Maximalgeschwindigkeit $ | + | * die Maximalgeschwindigkeit $v_2 = 3 \ {\rm km/s} \ \ (10800 \ {\rm km/h})$ bei unbemanntem Testflug, |
− | * etwa die Höchstgeschwindigkeit $ | + | * etwa die Höchstgeschwindigkeit $v_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$ auf Bundesstraßen. |
Die im Theorieteil angegebenen Gleichungen für die Empfangsfrequenz lauten | Die im Theorieteil angegebenen Gleichungen für die Empfangsfrequenz lauten | ||
− | * unter Berücksichtigung der Relativitätstheorie (kurz als | + | * unter Berücksichtigung der Relativitätstheorie (kurz als „relativistisch” bezeichnet): |
:$${\rm Gleichung \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$ | :$${\rm Gleichung \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$ | ||
− | * ohne Berücksichtigung relativistischer Eigenschaften (kurz | + | * ohne Berücksichtigung relativistischer Eigenschaften (kurz: „herkömmlich”): |
− | :$${\rm Gleichung \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \ | + | :$${\rm Gleichung \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$ |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | * Die Aufgabe gehört zum Themengebiet [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses|Statistische Bindungen innerhalb des Rayleigh–Prozesses]]. | ||
+ | * $c = 3 \cdot 10^8 \ \rm m/s$ nennt man Lichtgeschwindigkeit. | ||
+ | * Zur Überprüfung Ihrer Ergebnisse können Sie das interaktive Applet [[Applets:Zur_Verdeutlichung_des_Dopplereffekts|Zur Verdeutlichung des Dopplereffekts]] benutzen. | ||
+ | |||
− | |||
− | |||
− | |||
− | |||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welche Dopplerfrequenzen ergeben sich für die Geschwindigkeiten $ | + | {Welche Dopplerfrequenzen ergeben sich für die Geschwindigkeiten $v_1$ und $v_2$ in Fahrtrichtung $\rm (A)$ mit <b>Gleichung (1)</b>? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } |
− | $ | + | $v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } $\cdot \ 10^{-5}$ |
− | {Welche Dopplerfrequenzen erhält man bei sonst gleichen Bedingungen für die entgegengesetzte Fahrtrichtung (B) | + | {Welche Dopplerfrequenzen erhält man bei sonst gleichen Bedingungen für die entgegengesetzte Fahrtrichtung $\rm (B)$ mit <b>Gleichung (1)</b>. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -0.515--0.485 } |
− | $ | + | $v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -1.03--0.97 } $\cdot \ 10^{-5}$ |
− | {Welche | + | {Welche Dopplerfrequenzen erhält man bei ansonsten gleichen Bedingungen mit <b>Gleichung (2)</b>? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Richtung \ (A)}, \ | + | ${\rm Richtung \ (A)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { 0.6 3% } |
− | $\ | + | $\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { 1 3% } $\cdot \ 10^{\rm –5}$ |
− | ${\rm Richtung \ (B)}, \ | + | ${\rm Richtung \ (B)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -0.618--0.582 } |
− | $\ | + | $\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -1.03--0.97 } $\cdot \ 10^{\rm –5}$ |
− | {Welche Dopplerfrequenzen ergeben sich für die | + | {Es gelte $f_{\rm S} = 2 \ \rm GHz$. Welche Dopplerfrequenzen ergeben sich für die Fahrtrichtung $\rm (C)$ und $\rm (D)$ mit <b>Gleichung (2)</b>? |
|type="{}"} | |type="{}"} | ||
− | ${\rm Richtung \ (C)}, \ | + | ${\rm Richtung \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { 0. } $\ \rm Hz$ |
− | ${\rm Richtung \ (D)}, \ | + | ${\rm Richtung \ (D)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { -145.23--136.77 } $\ \rm Hz$ |
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Bei der Fahrtrichtung (A) nähert sich der Empfänger dem Sender unter dem Winkel $\alpha = 0$. Damit ergibt sich nach der relativistischen Gleichung (1): | + | '''(1)''' Bei der Fahrtrichtung $\rm (A)$ nähert sich der Empfänger dem Sender unter dem Winkel $\alpha = 0$. Damit ergibt sich nach der relativistischen Gleichung (1): |
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } | :$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } | ||
− | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ] | + | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$ | |
− | + | *Mit $v_1/c = 0.6$ erhält man: | |
− | :$$ | + | :$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} |
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 | \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Entsprechend gilt mit $ | + | *Entsprechend gilt mit $v_2/c = 10^{\rm -5}$: |
− | :$$ | + | :$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}} |
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 | \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(2)''' Nun entfernt sich der Empfänger vom Sender ( | + | |
− | :$$ | + | '''(2)''' Nun entfernt sich der Empfänger vom Sender $(\alpha = 180^\circ$). |
+ | *Die Empfangsfrequenz $f_{\rm E}$ ist kleiner als die Sendefrequenz $f_{\rm S}$ und die Dopplerfrequenz $f_{\rm D}$ negativ. Mit ${\rm cos}(\alpha) = -1$ erhält man nun: | ||
+ | :$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 = | ||
\left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ | \left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ | ||
\hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad | \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad | ||
Zeile 76: | Zeile 87: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Umgerechnet auf $f_{\rm E}/f_{\rm S}$ ergibt sich: | + | *Umgerechnet auf $f_{\rm E}/f_{\rm S}$ ergibt sich: |
− | :$$ | + | :$${f_{\rm E}}/{f_{\rm S}} = |
\left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ | \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ | ||
\hspace{0.15cm} { 0.99999} \end{array} \right.\quad | \hspace{0.15cm} { 0.99999} \end{array} \right.\quad | ||
Zeile 83: | Zeile 94: | ||
\\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} | \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
+ | |||
'''(3)''' Hier gelten folgende Gleichungen: | '''(3)''' Hier gelten folgende Gleichungen: | ||
− | :$$f_{\rm E} = f_{\rm S} \cdot \ | + | :$$f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] |
− | \Rightarrow \hspace{0.3cm} | + | \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$ |
Daraus ergeben sich folgende Zahlenwerte: | Daraus ergeben sich folgende Zahlenwerte: | ||
− | * Richtung (A), $ | + | * Richtung $\rm (A)$, $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$ |
− | * Richtung (A), $ | + | * Richtung $\rm (A)$, $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$ |
− | * Richtung (B), $ | + | * Richtung $\rm (B)$, $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$ |
− | * Richtung (B), $ | + | * Richtung $\rm (B)$, $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$ |
+ | |||
+ | Man erkennt: | ||
+ | *Für realistische Geschwindigkeiten – dazu rechnen wir auch $v \ \approx \ 10000 \ {\rm km/h}$ – liefert die herkömmliche '''Gleichung (2)''' bis hin zur Genauigkeit eines Taschenrechners das gleiche Ergebnis wie die relativistische '''Gleichung (1)'''. | ||
+ | *Mit der Näherung liefern die Winkel $\alpha = 0^\circ$ und $\alpha = 180^\circ$ den gleichen Betrag der Dopplerfrequenz. | ||
+ | *Die Näherungen unterscheiden sich nur im Vorzeichen. | ||
+ | *Bei der relativistischen Gleichung ist diese Symmetrie nicht mehr gegeben. Siehe Teilaufgaben '''(1)''' und '''(2)'''. | ||
− | |||
− | '''(4)''' Gleichung (2) führt hier zum Ergebnis: | + | '''(4)''' '''Gleichung (2)''' führt hier zum Ergebnis: |
− | :$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot | + | :$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * Die Fahrtrichtung (C) verläuft senkrecht ( | + | * Die Fahrtrichtung $\rm (C)$ verläuft senkrecht $(\alpha = 90^\circ)$ zur Verbindungslinie Sender–Empfänger. In diesem Fall tritt keine Dopplerverschiebung auf: |
− | * Die Bewegungsrichtung (D) ist durch $\alpha = \ | + | :$$f_{\rm D} \ \underline {= \ 0}.$$ |
+ | * Die Bewegungsrichtung $\rm (D)$ ist durch $\alpha = \ -135^\circ$ charakterisiert. Daraus resultiert: | ||
:$$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.$$ | :$$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category:Aufgaben zu Mobile Kommunikation|^1.3 | + | [[Category:Aufgaben zu Mobile Kommunikation|^1.3 Rayleigh–Fading mit Gedächtnis^]] |
Aktuelle Version vom 12. Februar 2021, 14:36 Uhr
Als „Dopplereffekt” bezeichnet man die Veränderung der wahrgenommenen Frequenz von Wellen jeder Art, während sich Quelle (Sender) und Beobachter (Empfänger) relativ zueinander bewegen.
Wir gehen hier stets von einem festen Sender aus, während sich der Empfänger in vier verschiedene Richtungen $\rm (A)$, $\rm (B)$, $\rm (C)$ und $\rm (D)$ bewegen kann (siehe Grafik).
Untersucht werden sollen verschiedene Geschwindigkeiten:
- eine unrealistisch große Geschwindigkeit $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$,
- die Maximalgeschwindigkeit $v_2 = 3 \ {\rm km/s} \ \ (10800 \ {\rm km/h})$ bei unbemanntem Testflug,
- etwa die Höchstgeschwindigkeit $v_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$ auf Bundesstraßen.
Die im Theorieteil angegebenen Gleichungen für die Empfangsfrequenz lauten
- unter Berücksichtigung der Relativitätstheorie (kurz als „relativistisch” bezeichnet):
- $${\rm Gleichung \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$
- ohne Berücksichtigung relativistischer Eigenschaften (kurz: „herkömmlich”):
- $${\rm Gleichung \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Themengebiet Statistische Bindungen innerhalb des Rayleigh–Prozesses.
- $c = 3 \cdot 10^8 \ \rm m/s$ nennt man Lichtgeschwindigkeit.
- Zur Überprüfung Ihrer Ergebnisse können Sie das interaktive Applet Zur Verdeutlichung des Dopplereffekts benutzen.
Fragebogen
Musterlösung
- $$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
- Mit $v_1/c = 0.6$ erhält man:
- $${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 \hspace{0.05cm}.$$
- Entsprechend gilt mit $v_2/c = 10^{\rm -5}$:
- $${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 \hspace{0.05cm}.$$
(2) Nun entfernt sich der Empfänger vom Sender $(\alpha = 180^\circ$).
- Die Empfangsfrequenz $f_{\rm E}$ ist kleiner als die Sendefrequenz $f_{\rm S}$ und die Dopplerfrequenz $f_{\rm D}$ negativ. Mit ${\rm cos}(\alpha) = -1$ erhält man nun:
- $${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 = \left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$
- Umgerechnet auf $f_{\rm E}/f_{\rm S}$ ergibt sich:
- $${f_{\rm E}}/{f_{\rm S}} = \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ \hspace{0.15cm} { 0.99999} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$
(3) Hier gelten folgende Gleichungen:
- $$f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$
Daraus ergeben sich folgende Zahlenwerte:
- Richtung $\rm (A)$, $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
- Richtung $\rm (A)$, $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$
- Richtung $\rm (B)$, $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
- Richtung $\rm (B)$, $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$
Man erkennt:
- Für realistische Geschwindigkeiten – dazu rechnen wir auch $v \ \approx \ 10000 \ {\rm km/h}$ – liefert die herkömmliche Gleichung (2) bis hin zur Genauigkeit eines Taschenrechners das gleiche Ergebnis wie die relativistische Gleichung (1).
- Mit der Näherung liefern die Winkel $\alpha = 0^\circ$ und $\alpha = 180^\circ$ den gleichen Betrag der Dopplerfrequenz.
- Die Näherungen unterscheiden sich nur im Vorzeichen.
- Bei der relativistischen Gleichung ist diese Symmetrie nicht mehr gegeben. Siehe Teilaufgaben (1) und (2).
(4) Gleichung (2) führt hier zum Ergebnis:
- $$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$
- Die Fahrtrichtung $\rm (C)$ verläuft senkrecht $(\alpha = 90^\circ)$ zur Verbindungslinie Sender–Empfänger. In diesem Fall tritt keine Dopplerverschiebung auf:
- $$f_{\rm D} \ \underline {= \ 0}.$$
- Die Bewegungsrichtung $\rm (D)$ ist durch $\alpha = \ -135^\circ$ charakterisiert. Daraus resultiert:
- $$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.$$