Aufgaben:Aufgabe 3.7Z: Regeneratorfeldlänge: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(11 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
  
 
[[Datei:P_ID1438__Dig_Z_3_7.png|right|frame|Ergebnisse einer Systemsimulation]]
 
[[Datei:P_ID1438__Dig_Z_3_7.png|right|frame|Ergebnisse einer Systemsimulation]]
Per Simulation wurde gezeigt, dass zwischen dem sog. Systemwirkungsgrad $\eta$ sowie der charakteristischen Kabeldämpfung $a_*$ eines Koaxialkabels – beide in dB aufgetragen – etwa ein linearer Zusammenhang besteht, wenn die charakteristische Kabeldämpfung hinreichend groß ist ($a_* ≥ 40 \ \rm dB$):
+
Per Simulation wurde gezeigt, dass zwischen dem so genannten Systemwirkungsgrad  $\eta$  und der charakteristischen Kabeldämpfung  $a_*$  eines Koaxialkabels – beide in  $\rm dB$  aufgetragen – etwa ein linearer Zusammenhang besteht, wenn die charakteristische Kabeldämpfung hinreichend groß ist  $(a_* ≥ 40 \ \rm dB)$:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\eta  \hspace{0.15cm} {\rm (in \hspace{0.15cm}dB)}= A + B \cdot a_{\star}
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\eta  \hspace{0.15cm} {\rm (in \hspace{0.15cm}dB)}= A + B \cdot a_{\star}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Tabelle sind für vier beispielhafte Systemvarianten
+
In der Tabelle sind für vier beispielhafte Systemvarianten die empirisch gefundenen Koeffizienten  $A$  und  $B$  angegeben:
* impulsinterferenzbehaftetes System mit Gaußtiefpass (GTP, siehe Kapitel 3.4) bzw. optimale Nyquistentzerrung (ONE, siehe Kapitel 3.5)
+
* für  das impulsinterferenzbehaftete Binärsystem &nbsp;$(M = 2)$&nbsp; mit Gaußtiefpass &nbsp;$\rm (GTP)$, siehe Kapitel&nbsp; <br>[[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen|Fehlerwahrscheinlichkeit unter Berücksichtigung von Impulsinterferenzen]],
* jeweils Binärsystem ($M = 2$) und Oktalsystem ($M = 8$)
+
* für  das impulsinterferenzbehaftete Oktalsystem &nbsp;$(M = 8)$&nbsp; mit Gaußtiefpass &nbsp;$\rm (GTP)$, siehe Kapitel&nbsp; <br>[[Digitalsignalübertragung/Impulsinterferenzen_bei_mehrstufiger_Übertragung|Impulsinterferenzen bei mehrstufiger Übertragung]],
 +
*für  optimale impulsinterferenzfreie Systeme  &nbsp;$\rm (ONE)$, siehe Kapitel&nbsp; [[Digitalsignalübertragung/Lineare_Nyquistentzerrung|Lineare Nyquistentzerrung]]; &nbsp;$M = 2$&nbsp; und&nbsp; $M = 8$.
  
  
die empirisch gefundenen Gleichungskoeffizienten $A$ und $B$ angegeben.
+
Je größer der Systemwirkungsgrad &nbsp;$\eta$&nbsp; ist,  um so besser ist ein System für einen gegebenen Wert &nbsp;$a_*$&nbsp; (und damit eine feste Kabellänge).
  
Für einen gegebenen Wert $a_*$ (und damit eine feste Kabellänge) ist ein System um so besser, je größer der Systemwirkungsgrad ist.
 
  
 
Für die Berecnung der Regeneratorfeldlänge (Abstand zweier Zwischenverstärker) ist zu beachten, dass
 
Für die Berecnung der Regeneratorfeldlänge (Abstand zweier Zwischenverstärker) ist zu beachten, dass
* die ungünstigste Fehlerwahrscheinlichkeit nicht größer sein soll als $10^{\rm &ndash;10}$, woraus sich der minimale Sinkenstörabstand ergibt:
+
* die ungünstigste Fehlerwahrscheinlichkeit nicht größer sein soll als &nbsp;$10^{-10}$, woraus sich der minimale Sinkenstörabstand ergibt:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} \approx 16.1\,{\rm
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} \approx 16.1\,{\rm
 
dB}  \hspace{0.05cm},$$
 
dB}  \hspace{0.05cm},$$
* das logarithmierte Verhältnis von Sendeenergie (pro Bit) und AWGN&ndash;Rauschleistungsdichte ca. $100 \ \rm dB$ beträgt, zum Beispiel:
+
* das logarithmierte Verhältnis von Sendeenergie (pro Bit) und AWGN&ndash;Rauschleistungsdichte ca. &nbsp;$100 \ \rm dB$&nbsp; beträgt, zum Beispiel:
 
:$$s_0 = 3\,{\rm V},\hspace{0.2cm}R_{\rm B} = 1\,{\rm
 
:$$s_0 = 3\,{\rm V},\hspace{0.2cm}R_{\rm B} = 1\,{\rm
 
Gbit/s},\hspace{0.2cm}N_{\rm 0} = 9 \cdot 10^{-19}\,{\rm V^2/Hz}$$
 
Gbit/s},\hspace{0.2cm}N_{\rm 0} = 9 \cdot 10^{-19}\,{\rm V^2/Hz}$$
Zeile 28: Zeile 28:
 
  = 100\,{\rm
 
  = 100\,{\rm
 
dB}  \hspace{0.05cm},$$
 
dB}  \hspace{0.05cm},$$
* ein Normalkoaxialkabel mit den Abmessungen $2.6 \ \rm mm$ (innen) und $9.5 \ \rm mm$ (außen) eingesetzt werden soll, bei dem der folgende Zusammenhang gültig ist:
+
* ein Normalkoaxialkabel mit den Abmessungen &nbsp;$2.6 \ \rm mm$&nbsp; (innen) und &nbsp;$9.5 \ \rm mm$&nbsp; (außen) eingesetzt werden soll, bei dem der folgende Zusammenhang gültig ist:
 
:$$a_{\star} =  \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm
 
:$$a_{\star} =  \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm
 
MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}}
 
MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Hierbei bezeichnet $a_*$ die charakteristische Dämpfung bei der halben Bitrate &ndash; im Beispiel bei $500 \ \rm MHz$ &ndash; und $l$ die Kabellänge.
+
:Hierbei bezeichnet &nbsp;$a_*$&nbsp; die charakteristische Dämpfung bei der halben Bitrate &ndash; im Beispiel bei &nbsp;$500 \ \rm MHz$&nbsp; &ndash; und &nbsp;$l$&nbsp; die Kabellänge.
  
''Hinweis:''
+
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Lineare_Nyquistentzerrung|Lineare Nyquistentzerrung]].
+
''Hinweis:''  
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Lineare_Nyquistentzerrung|Linare Nyquistentzerrung]].
 +
  
  
Zeile 44: Zeile 46:
 
{Welche der folgenden Aussagen sind zutreffend?
 
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Das System (ONE, $M = 8$) ist für beliebiges $a_*$ am besten
+
+ Das System &nbsp;$({\rm ONE}, \ M = 8)$&nbsp; ist für jedes beliebiges &nbsp;$a_*$&nbsp; am besten.
- Das System (GTP, $M = 2$) ist für $a_* &#8805; 40 \ \rm dB$ am schlechtesten.
+
- Das System &nbsp;$({\rm GTP}, \ M = 2)$&nbsp; ist für &nbsp;$a_* &#8805; 40 \ \rm dB$&nbsp; am schlechtesten.
  
{Ab welcher Kabeldämpfung ist (GTP, $M = 8$) besser als (ONE, $M = 2$)?
+
{Ab welcher Kabeldämpfung ist &nbsp;$({\rm GTP}, \ M = 8)$&nbsp; besser als &nbsp;$({\rm ONE}, \ M = 2)$?
 
|type="{}"}
 
|type="{}"}
$a_{\rm *, \ Grenz}$ = { 116 3% } $\ \rm dB$
+
$a_{\rm *, \ Grenz}\ = \ $ { 116 3% } $\ \rm dB$
  
{Welchen Minimalwert $\eta_{\rm min}$ darf der Systemwirkungsgrad nicht unterschreiten?
+
{Welchen Minimalwert &nbsp;$\eta_{\hspace{0.05cm}\rm min}$&nbsp; darf der Systemwirkungsgrad auf keinen Fall unterschreiten?
 
|type="{}"}
 
|type="{}"}
$10 \cdot {\rm lg} \ \eta_{\rm min}$ = { -86.417--81.383 } $\ \rm dB$
+
$10 \cdot {\rm lg} \ \eta_{\hspace{0.05cm}\rm min} \ = \ $ { -86.417--81.383 } $\ \rm dB$
  
{Welche Länge darf das Koaxialkabel bei (ONE, $M = 8$) maximal besitzen?
+
{Welche Länge darf das Koaxialkabel bei &nbsp;$({\rm ONE}, \ M = 8)$&nbsp; maximal besitzen?
 
|type="{}"}
 
|type="{}"}
${\rm ONE,} \ M = 8 \text{:} \hspace{0.4cm} l_{\rm max}$ = { 2.62 3% } $\ \rm km$
+
$l_{\hspace{0.05cm}\rm max}\ = \ $ { 2.62 3% } $\ \rm km$
  
{Welche Länge darf das Koaxialkabel bei (GTP, $M = 2$) maximal besitzen?
+
{Welche Länge darf das Koaxialkabel bei &nbsp;$({\rm GTP}, \ M = 2)$&nbsp; maximal besitzen?
 
|type="{}"}
 
|type="{}"}
${\rm GTP,} \ M = 2 \text{:} \hspace{0.4cm} l_{\rm max}$ = { 1.61 3% } $\ \rm km$
+
$l_{\hspace{0.05cm}\rm max}\ = \ $ { 1.61 3% } $\ \rm km$
 
</quiz>
 
</quiz>
  
Zeile 67: Zeile 69:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Berechnet man den Systemwirkungsgrad unter der Vorraussetzung $a_* = 40 \ \rm dB$, so erhält man für die vier Systemvarianten:
 
'''(1)'''&nbsp; Berechnet man den Systemwirkungsgrad unter der Vorraussetzung $a_* = 40 \ \rm dB$, so erhält man für die vier Systemvarianten:
:$${\rm GTP},\hspace{0.1cm}M=2 \hspace{-0.3cm} \hspace{0.2cm} : \ \hspace{-0.1cm} 10 \cdot {\rm
+
:$$({\rm GTP},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm} 10 \cdot {\rm
 
lg}\hspace{0.1cm}\eta
 
lg}\hspace{0.1cm}\eta
 
= +9.4\,{\rm dB} -1.10 \cdot 40\,{\rm dB} = -34.6\,{\rm dB}\hspace{0.05cm},$$
 
= +9.4\,{\rm dB} -1.10 \cdot 40\,{\rm dB} = -34.6\,{\rm dB}\hspace{0.05cm},$$
:$${\rm GTP},\hspace{0.1cm}M=8 \hspace{-0.3cm} \hspace{0.2cm} : \ \hspace{-0.1cm} 10 \cdot {\rm
+
:$$({\rm GTP},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm}10 \cdot {\rm
 
lg}\hspace{0.1cm}\eta
 
lg}\hspace{0.1cm}\eta
 
= -1.3\,{\rm dB} -0.91 \cdot 40\,{\rm dB} = -37.7\,{\rm dB}\hspace{0.05cm},$$
 
= -1.3\,{\rm dB} -0.91 \cdot 40\,{\rm dB} = -37.7\,{\rm dB}\hspace{0.05cm},$$
:$${\rm ONE},\hspace{0.1cm}M=2 \hspace{-0.3cm} \hspace{0.2cm} : \ \hspace{-0.1cm} 10 \cdot {\rm
+
:$$({\rm ONE},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm}10 \cdot {\rm
 
lg}\hspace{0.1cm}\eta
 
lg}\hspace{0.1cm}\eta
 
= +4.5\,{\rm dB} -0.96 \cdot 40 \,{\rm dB}= -33.9\,{\rm dB}\hspace{0.05cm},$$
 
= +4.5\,{\rm dB} -0.96 \cdot 40 \,{\rm dB}= -33.9\,{\rm dB}\hspace{0.05cm},$$
:$${\rm ONE},\hspace{0.1cm}M=8 \hspace{-0.3cm} \hspace{0.2cm} : \ \hspace{-0.1cm} 10 \cdot {\rm
+
:$$({\rm ONE},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm} 10 \cdot {\rm
 
lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot 40\,{\rm dB} = -30.9\,{\rm
 
lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot 40\,{\rm dB} = -30.9\,{\rm
 
dB}\hspace{0.05cm}.$$
 
dB}\hspace{0.05cm}.$$
  
Die <u>erste Aussage</u> ist zutreffend, da das System (ONE, $M = 8$) bereits bei $40 \ \rm dB$ Kabeldämpfung am besten ist und zudem den günstigsten B&ndash;Koeffizienten aufweist. Dagegen trifft die zweite Aussage nicht zu, da zum Beispiel bei $40 \ \rm dB$ Kabeldämpfung das oktale GTP&ndash;System schlechter ist als das binäre.
+
Daraus ergibt sich:
 +
*Die <u>erste Aussage</u> ist zutreffend, da das System $({\rm ONE},\hspace{0.1cm} M = 8)$ bereits bei $40 \ \rm dB$ Kabeldämpfung am besten ist und den günstigsten $\rm B$&ndash;Koeffizienten aufweist.  
 +
*Dagegen trifft die zweite Aussage nicht zu, da zum Beispiel bei $40 \ \rm dB$ Kabeldämpfung das oktale $\rm GTP$&ndash;System schlechter ist als das binäre.
  
  
'''(2)'''&nbsp; Als Bestimmungsgleichung benutzen wir
+
 
:$$-1.3\,{\rm dB} -0.91 \cdot a_{\star} =  +4.5 \,{\rm dB}-0.96 \cdot a_{\star}$$
+
'''(2)'''&nbsp; Als Bestimmungsgleichung benutzen wir hier:
:$$\Rightarrow \hspace{0.3cm} 0.05 \cdot a_{\star} = 5.8\,{\rm dB}
+
:$$-1.3\,{\rm dB} -0.91 \cdot a_{\star} =  +4.5 \,{\rm dB}-0.96 \cdot a_{\star}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} 0.05 \cdot a_{\star} = 5.8\,{\rm dB}
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}a_{\star,\hspace{0.05cm}{\rm Grenz}} \hspace{0.15cm}\underline {= 116\,{\rm dB}}\hspace{0.05cm}.$$
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}a_{\star,\hspace{0.05cm}{\rm Grenz}} \hspace{0.15cm}\underline {= 116\,{\rm dB}}\hspace{0.05cm}.$$
  
Das heißt: Bis zur charakteristischen Kabeldämpfung $a_* = 116 \ \rm dB$ (Anmerkung: dies ist ein unrealistisch großer Wert für realisierte Systeme) ist das binäre Nyquistsystem dem System (GTP, $M = 8$) überlegen. Erst für größere Werte als $a_{\rm *, \ Grenz} = 116 \ \rm dB$ überwiegt bei Letzterem der Vorteil ($M = 8$ und damit deutlich niedrigere Symbolrate) gegenüber dem Nachteil (oktale Entscheidung und dadurch größeres Gewicht der Impulsinterferenzen).
+
Das heißt:  
 +
*Bis zur charakteristischen Kabeldämpfung $a_* = 116 \ \rm dB$ (Anmerkung: dies ist ein unrealistisch großer Wert für derzeit realisierte Systeme) ist das binäre Nyquistsystem dem System $({\rm GTP},\hspace{0.1cm} M = 8)$ überlegen.  
 +
*Erst für größere Werte als $a_{\rm *, \ Grenz} = 116 \ \rm dB$ überwiegt bei Letzterem der Vorteil $(M = 8$ und damit deutlich niedrigere Symbolrate$)$ gegenüber dem Nachteil $($oktale Entscheidung und dadurch größeres Gewicht der Impulsinterferenzen$)$.
 +
 
  
  
Zeile 94: Zeile 102:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho = 10 \cdot {\rm lg}
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho = 10 \cdot {\rm lg}
 
\hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} + 10 \cdot {\rm
 
\hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} + 10 \cdot {\rm
lg}\hspace{0.1cm}\eta $$
+
lg}\hspace{0.1cm}\eta \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta \ >
+
\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta \ >
 
\ 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} - 10 \cdot {\rm
 
\ 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} - 10 \cdot {\rm
 
lg}
 
lg}
\hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} =$$
+
\hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} =
:$$\ = \ 16.1\,{\rm dB}- 100\,{\rm dB} \hspace{0.15cm}\underline {= -83.9\,{\rm dB} = 10 \cdot {\rm
+
\ 16.1- 100\hspace{0.15cm}\underline {= -83.9\,{\rm dB} = 10 \cdot {\rm
lg}\hspace{0.1cm}\eta_{\rm min}}\hspace{0.05cm}.$$
+
lg}\hspace{0.1cm}\eta_{\hspace{0.05cm} \rm min}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Beim hier betrachteten System gilt:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot a_{\star}\hspace{0.05cm}.$$
 
  
Aus &bdquo; $10 \cdot {\rm lg} \ \eta > \hspace{0.1cm}&ndash;83.9 \ \rm dB $&rdquo; ergibt sich die Bedingung für die charakteristische Kabeldämpfung:
+
'''(4)'''&nbsp; Beim hier betrachteten System gilt: &nbsp; $10 \cdot {\rm lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot a_{\star}.$
 +
*Aus der Bedingung für den Systemwirkungsgrad &nbsp; &rArr; &nbsp; $10 \cdot {\rm lg} \, \eta > \hspace{0.1cm}&ndash;83.9 \ \rm dB $ ergibt sich somit die Bedingung für die charakteristische Kabeldämpfung:
 
:$$a_{\star} <  \frac{-83.9\,{\rm dB} + 9.3\,{\rm dB}} {-0.54} \approx
 
:$$a_{\star} <  \frac{-83.9\,{\rm dB} + 9.3\,{\rm dB}} {-0.54} \approx
 
138.1\,{\rm dB}  \hspace{0.05cm}.$$
 
138.1\,{\rm dB}  \hspace{0.05cm}.$$
  
Mit der angegebenen Gleichung
+
*Mit der angegebenen Gleichung
 
:$$a_{\star} =  \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm
 
:$$a_{\star} =  \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm
 
MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}}
 
MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
ist damit die maximale Kabellänge (Regeneratorfeldlänge) angebbar:
+
:ist damit die maximale Kabellänge (Regeneratorfeldlänge) angebbar:
:$$l_{\rm max} =  \frac{138.1\,{\rm dB} } {2.36\,{\rm dB}/({\rm km}
+
:$$l_{\rm max} =  \frac{138.1\,{\rm dB} } {2.36\,{\rm dB}/{\rm
\cdot \sqrt{{\rm MHz}} )\cdot \sqrt{500\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 2.62\,
+
km} \cdot \sqrt{\rm MHz})\cdot \sqrt{500\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 2.62\,
 
{\rm km}} \hspace{0.05cm}.$$
 
{\rm km}} \hspace{0.05cm}.$$
  

Aktuelle Version vom 6. März 2019, 10:35 Uhr

Ergebnisse einer Systemsimulation

Per Simulation wurde gezeigt, dass zwischen dem so genannten Systemwirkungsgrad  $\eta$  und der charakteristischen Kabeldämpfung  $a_*$  eines Koaxialkabels – beide in  $\rm dB$  aufgetragen – etwa ein linearer Zusammenhang besteht, wenn die charakteristische Kabeldämpfung hinreichend groß ist  $(a_* ≥ 40 \ \rm dB)$:

$$10 \cdot {\rm lg}\hspace{0.1cm}\eta \hspace{0.15cm} {\rm (in \hspace{0.15cm}dB)}= A + B \cdot a_{\star} \hspace{0.05cm}.$$

In der Tabelle sind für vier beispielhafte Systemvarianten die empirisch gefundenen Koeffizienten  $A$  und  $B$  angegeben:


Je größer der Systemwirkungsgrad  $\eta$  ist, um so besser ist ein System für einen gegebenen Wert  $a_*$  (und damit eine feste Kabellänge).


Für die Berecnung der Regeneratorfeldlänge (Abstand zweier Zwischenverstärker) ist zu beachten, dass

  • die ungünstigste Fehlerwahrscheinlichkeit nicht größer sein soll als  $10^{-10}$, woraus sich der minimale Sinkenstörabstand ergibt:
$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} \approx 16.1\,{\rm dB} \hspace{0.05cm},$$
  • das logarithmierte Verhältnis von Sendeenergie (pro Bit) und AWGN–Rauschleistungsdichte ca.  $100 \ \rm dB$  beträgt, zum Beispiel:
$$s_0 = 3\,{\rm V},\hspace{0.2cm}R_{\rm B} = 1\,{\rm Gbit/s},\hspace{0.2cm}N_{\rm 0} = 9 \cdot 10^{-19}\,{\rm V^2/Hz}$$
$$\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}}= 10 \cdot {\rm lg} \hspace{0.1cm} \frac{9\,{\rm V^2} } {9 \cdot 10^{-19}\,{\rm V^2/Hz} \cdot 10^{-9}\,{\rm 1/s}} = 100\,{\rm dB} \hspace{0.05cm},$$
  • ein Normalkoaxialkabel mit den Abmessungen  $2.6 \ \rm mm$  (innen) und  $9.5 \ \rm mm$  (außen) eingesetzt werden soll, bei dem der folgende Zusammenhang gültig ist:
$$a_{\star} = \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}} \hspace{0.05cm}.$$
Hierbei bezeichnet  $a_*$  die charakteristische Dämpfung bei der halben Bitrate – im Beispiel bei  $500 \ \rm MHz$  – und  $l$  die Kabellänge.


Hinweis:



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

Das System  $({\rm ONE}, \ M = 8)$  ist für jedes beliebiges  $a_*$  am besten.
Das System  $({\rm GTP}, \ M = 2)$  ist für  $a_* ≥ 40 \ \rm dB$  am schlechtesten.

2

Ab welcher Kabeldämpfung ist  $({\rm GTP}, \ M = 8)$  besser als  $({\rm ONE}, \ M = 2)$?

$a_{\rm *, \ Grenz}\ = \ $

$\ \rm dB$

3

Welchen Minimalwert  $\eta_{\hspace{0.05cm}\rm min}$  darf der Systemwirkungsgrad auf keinen Fall unterschreiten?

$10 \cdot {\rm lg} \ \eta_{\hspace{0.05cm}\rm min} \ = \ $

$\ \rm dB$

4

Welche Länge darf das Koaxialkabel bei  $({\rm ONE}, \ M = 8)$  maximal besitzen?

$l_{\hspace{0.05cm}\rm max}\ = \ $

$\ \rm km$

5

Welche Länge darf das Koaxialkabel bei  $({\rm GTP}, \ M = 2)$  maximal besitzen?

$l_{\hspace{0.05cm}\rm max}\ = \ $

$\ \rm km$


Musterlösung

(1)  Berechnet man den Systemwirkungsgrad unter der Vorraussetzung $a_* = 40 \ \rm dB$, so erhält man für die vier Systemvarianten:

$$({\rm GTP},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\eta = +9.4\,{\rm dB} -1.10 \cdot 40\,{\rm dB} = -34.6\,{\rm dB}\hspace{0.05cm},$$
$$({\rm GTP},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta = -1.3\,{\rm dB} -0.91 \cdot 40\,{\rm dB} = -37.7\,{\rm dB}\hspace{0.05cm},$$
$$({\rm ONE},\hspace{0.1cm}M=2) \text{:}\hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta = +4.5\,{\rm dB} -0.96 \cdot 40 \,{\rm dB}= -33.9\,{\rm dB}\hspace{0.05cm},$$
$$({\rm ONE},\hspace{0.1cm}M=8) \text{:}\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot 40\,{\rm dB} = -30.9\,{\rm dB}\hspace{0.05cm}.$$

Daraus ergibt sich:

  • Die erste Aussage ist zutreffend, da das System $({\rm ONE},\hspace{0.1cm} M = 8)$ bereits bei $40 \ \rm dB$ Kabeldämpfung am besten ist und den günstigsten $\rm B$–Koeffizienten aufweist.
  • Dagegen trifft die zweite Aussage nicht zu, da zum Beispiel bei $40 \ \rm dB$ Kabeldämpfung das oktale $\rm GTP$–System schlechter ist als das binäre.


(2)  Als Bestimmungsgleichung benutzen wir hier:

$$-1.3\,{\rm dB} -0.91 \cdot a_{\star} = +4.5 \,{\rm dB}-0.96 \cdot a_{\star}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 0.05 \cdot a_{\star} = 5.8\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}a_{\star,\hspace{0.05cm}{\rm Grenz}} \hspace{0.15cm}\underline {= 116\,{\rm dB}}\hspace{0.05cm}.$$

Das heißt:

  • Bis zur charakteristischen Kabeldämpfung $a_* = 116 \ \rm dB$ (Anmerkung: dies ist ein unrealistisch großer Wert für derzeit realisierte Systeme) ist das binäre Nyquistsystem dem System $({\rm GTP},\hspace{0.1cm} M = 8)$ überlegen.
  • Erst für größere Werte als $a_{\rm *, \ Grenz} = 116 \ \rm dB$ überwiegt bei Letzterem der Vorteil $(M = 8$ und damit deutlich niedrigere Symbolrate$)$ gegenüber dem Nachteil $($oktale Entscheidung und dadurch größeres Gewicht der Impulsinterferenzen$)$.


(3)  Das Sinken–SNR soll mindestens $16.1 \ \rm dB$ betragen, das heißt es muss gelten:

$$10 \cdot {\rm lg}\hspace{0.1cm}\rho = 10 \cdot {\rm lg} \hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} + 10 \cdot {\rm lg}\hspace{0.1cm}\eta \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg}\hspace{0.1cm}\eta \ > \ 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm min} - 10 \cdot {\rm lg} \hspace{0.1cm}\frac{s_0^2 }{N_0 \cdot R_{\rm B}} = \ 16.1- 100\hspace{0.15cm}\underline {= -83.9\,{\rm dB} = 10 \cdot {\rm lg}\hspace{0.1cm}\eta_{\hspace{0.05cm} \rm min}}\hspace{0.05cm}.$$


(4)  Beim hier betrachteten System gilt:   $10 \cdot {\rm lg}\hspace{0.1cm}\eta = -9.3\,{\rm dB} -0.54 \cdot a_{\star}.$

  • Aus der Bedingung für den Systemwirkungsgrad   ⇒   $10 \cdot {\rm lg} \, \eta > \hspace{0.1cm}–83.9 \ \rm dB $ ergibt sich somit die Bedingung für die charakteristische Kabeldämpfung:
$$a_{\star} < \frac{-83.9\,{\rm dB} + 9.3\,{\rm dB}} {-0.54} \approx 138.1\,{\rm dB} \hspace{0.05cm}.$$
  • Mit der angegebenen Gleichung
$$a_{\star} = \frac{2.36\,{\rm dB} } {{\rm km} \cdot \sqrt{{\rm MHz}}} \cdot l \cdot \sqrt{{R_{\rm B}}/{2}} \hspace{0.05cm}.$$
ist damit die maximale Kabellänge (Regeneratorfeldlänge) angebbar:
$$l_{\rm max} = \frac{138.1\,{\rm dB} } {2.36\,{\rm dB}/{\rm km} \cdot \sqrt{\rm MHz})\cdot \sqrt{500\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 2.62\, {\rm km}} \hspace{0.05cm}.$$


(5)  Nach gleichem Vorgehen, aber in kompakterer Schreibweise, ergibt sich für dieses „schlechtere” System eine kleinere Regeneratorfeldlänge:

$$l_{\rm max} = \frac{-(83.9\,{\rm dB}+A)/B } {2.36\,{\rm dB}/{\rm km} \cdot \sqrt{500}} = \frac{+(83.9+9.4)/1.10 } {2.36\cdot \sqrt{500}}\hspace{0.1cm}{\rm km}\hspace{0.15cm}\underline {\approx 1.61\, {\rm km}} \hspace{0.05cm}.$$