Aufgaben:Aufgabe 3.7Z: Zur Bandspreizung bei UMTS: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Die Charakteristika von UMTS }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Fra…“)
 
 
(11 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID2260__Bei_Z_4_5.png|right|frame|Quellensignal und Spreizsignal]]
 +
Bei UMTS/CDMA wird die so genannte PN–Modulation angewandt:
 +
*Das rechteckförmige Digitalsignal&nbsp; $q(t)$&nbsp; wird dabei mit dem Spreizsignal&nbsp; $c(t)$&nbsp; multipliziert und ergibt das Sendesignal&nbsp; $s(t)$.
 +
*Dieses ist um den Spreizfaktor&nbsp; $J$&nbsp; höherfrequenter als&nbsp; $q(t)$; man spricht von&nbsp; ''Bandspreizung''.
 +
 
 +
 
 +
Beim Empfänger wird das gleiche Spreizsignal&nbsp; $c(t)$&nbsp; zugesetzt (und zwar phasensynchron!).&nbsp; Dadurch wird die Bandspreizung rückgängig gemacht  &nbsp; &rArr; &nbsp;  ''Bandstauchung''.
 +
 
 +
Die Grafik zeigt beispielhafte Signalverläufe von&nbsp; $q(t)$&nbsp; und&nbsp; $c(t)$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
 
 +
*Die Aufgabe gehört zum Kapitel&nbsp;  [[Mobile_Kommunikation/Die_Charakteristika_von_UMTS|Die Charakteristika von UMTS]].
 +
*Bezug genommen wird auch auf das  Kapitel&nbsp; [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS]]&nbsp; im Buch „Beispiele von Nachrichtensystemen”.
 +
*Zur Berechnung der Chipdauer&nbsp; $T_{\rm C}$&nbsp; wird auf die Seite&nbsp; [[Beispiele_von_Nachrichtensystemen/UMTS–Netzarchitektur#Physikalische_Kan.C3.A4le|Physikalische Kanäle]]&nbsp; verwiesen.
 +
*Dort findet man unter anderem die für diese Aufgabe wichtige Information, dass auf dem so genannten&nbsp; ''Dedicated Physical Channel''&nbsp; (DPCH) in zehn Millisekunden genau&nbsp; $15 \cdot 2560 \ \rm Chips$&nbsp; übertragen werden.
 +
*In Teilaufgabe&nbsp; '''(5)'''&nbsp; wird nach Sendechips gefragt.&nbsp; Hierbei bezeichnet beispielsweise das „Sendechip”&nbsp; $s_{3}$&nbsp; den konstanten Signalwert von&nbsp; $s(t)$&nbsp; im Zeitintervall&nbsp; $2T_{\rm C}$ ... $3T_{\rm C}$.
 +
 
 +
 +
 
  
  
Zeile 9: Zeile 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{Welche Aussagen sind richtig?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- Bei UMTS ist die Bitdauer&nbsp; $T_{\rm B}$&nbsp; fest vorgegeben.
+ Richtig
+
+ Bei UMTS ist die Chipdauer&nbsp; $T_{\rm C}$&nbsp; fest vorgegeben.
 +
- Beide Größen hängen von den Kanalbedingungen ab.
  
 +
{Geben Sie die Chipdauer&nbsp; $T_{\rm C}$&nbsp; und die Chiprate&nbsp; $R_{\rm C}$&nbsp; im Downlink an.
 +
|type="{}"}
 +
$R_{\rm C} \ = \ $ { 3.84 3% } $\ \rm Mchip/s $
 +
$T_{\rm C} \hspace{0.18cm} = \ $ {  0.26 3% } $ \ \rm &micro; s $
  
{Input-Box Frage
+
{Welcher Spreizfaktor ist aus der Grafik auf der Angabenseite ablesbar?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$J \ = \ $ { 4 }
  
 +
{Welche Bitrate ergibt sich bei diesem Spreizfaktor?
 +
|type="{}"}
 +
$R_{\rm B} \ = \ $ { 960 3% } $\ \rm kbit/s $
  
 +
{Welche Werte haben die &bdquo;Chips&rdquo; des Sendesignals?
 +
|type="{}"}
 +
$s_{3} \ = \ $ { -1.03--0.97 }
 +
$s_{4} \ = \ $ { 1 3% }
 +
$s_{5} \ = \ $ { -1.03--0.97 }
 +
$s_{6} \ = \ $ { 1 3% }
  
 
</quiz>
 
</quiz>
Zeile 26: Zeile 66:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; Richtig ist der  <u>Lösungsvorschlag 2</u>:
'''(2)'''&nbsp;
+
*Fest vorgegeben ist bei UMTS die Chipdauer&nbsp; $T_{\rm C}$, die in der Teilaufgabe&nbsp; '''(2)'''&nbsp; noch berechnet werden soll.
'''(3)'''&nbsp;
+
*Je größer der Spreizgrad $J$ ist, desto größer ist die Bitdauer.
'''(4)'''&nbsp;
+
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
 
'''(7)'''&nbsp;
+
'''(2)'''&nbsp; Laut dem Hinweis auf der Angabenseite werden in&nbsp; $10 \ \rm ms$&nbsp; genau&nbsp; $15 \cdot 2560 = 38400 \ \rm Chips$&nbsp; übertragen.
 +
*Damit beträgt die Chiprate &nbsp; $R_{\rm C} = 100 \cdot 38400 \ {\rm Chips/s} \ \underline{= 3.84 \ \rm Mchip/s}$.
 +
*Die Chipdauer ist der Kehrwert hierzu: &nbsp; $T_{\rm C} \ \underline{\approx 0.26 \ \rm &micro; s}$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Jedes Datenbit besteht aus vier Spreizchips  &nbsp; &rArr; &nbsp;  $\underline{J = 4}$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Die Bitrate ergibt sich mit dem Spreizfaktor&nbsp; $J = 4$&nbsp; zu&nbsp; $R_{\rm B} = R_{\rm C}/J \ \underline{= 960 \ \rm  kbit/s}$.
 +
* Mit dem für UMTS maximalen Spreizfaktor&nbsp; $J = 512$&nbsp; beträgt die Bitrate dagegen nur&nbsp;  $7.5 \ \rm kbit/s$.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Für das Sendesignal gilt&nbsp; $s(t) = q(t) \cdot c(t)$.
 +
*Die Chips&nbsp; $s_{3}$&nbsp; und&nbsp; $s_{4}$&nbsp; des Sendesignals gehören zum ersten Datenbit&nbsp; $(q_{1} = +1)$:
 +
:$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
 +
*Dagegen sind die beiden weiteren gesuchten Sendechips dem zweiten Datenbit $(q_{2} = -1)$ zuzuordnen:
 +
:$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 17. August 2020, 16:30 Uhr

Quellensignal und Spreizsignal

Bei UMTS/CDMA wird die so genannte PN–Modulation angewandt:

  • Das rechteckförmige Digitalsignal  $q(t)$  wird dabei mit dem Spreizsignal  $c(t)$  multipliziert und ergibt das Sendesignal  $s(t)$.
  • Dieses ist um den Spreizfaktor  $J$  höherfrequenter als  $q(t)$; man spricht von  Bandspreizung.


Beim Empfänger wird das gleiche Spreizsignal  $c(t)$  zugesetzt (und zwar phasensynchron!).  Dadurch wird die Bandspreizung rückgängig gemacht   ⇒   Bandstauchung.

Die Grafik zeigt beispielhafte Signalverläufe von  $q(t)$  und  $c(t)$.




Hinweise:

  • Die Aufgabe gehört zum Kapitel  Die Charakteristika von UMTS.
  • Bezug genommen wird auch auf das Kapitel  Nachrichtentechnische Aspekte von UMTS  im Buch „Beispiele von Nachrichtensystemen”.
  • Zur Berechnung der Chipdauer  $T_{\rm C}$  wird auf die Seite  Physikalische Kanäle  verwiesen.
  • Dort findet man unter anderem die für diese Aufgabe wichtige Information, dass auf dem so genannten  Dedicated Physical Channel  (DPCH) in zehn Millisekunden genau  $15 \cdot 2560 \ \rm Chips$  übertragen werden.
  • In Teilaufgabe  (5)  wird nach Sendechips gefragt.  Hierbei bezeichnet beispielsweise das „Sendechip”  $s_{3}$  den konstanten Signalwert von  $s(t)$  im Zeitintervall  $2T_{\rm C}$ ... $3T_{\rm C}$.



Fragebogen

1

Welche Aussagen sind richtig?

Bei UMTS ist die Bitdauer  $T_{\rm B}$  fest vorgegeben.
Bei UMTS ist die Chipdauer  $T_{\rm C}$  fest vorgegeben.
Beide Größen hängen von den Kanalbedingungen ab.

2

Geben Sie die Chipdauer  $T_{\rm C}$  und die Chiprate  $R_{\rm C}$  im Downlink an.

$R_{\rm C} \ = \ $

$\ \rm Mchip/s $
$T_{\rm C} \hspace{0.18cm} = \ $

$ \ \rm µ s $

3

Welcher Spreizfaktor ist aus der Grafik auf der Angabenseite ablesbar?

$J \ = \ $

4

Welche Bitrate ergibt sich bei diesem Spreizfaktor?

$R_{\rm B} \ = \ $

$\ \rm kbit/s $

5

Welche Werte haben die „Chips” des Sendesignals?

$s_{3} \ = \ $

$s_{4} \ = \ $

$s_{5} \ = \ $

$s_{6} \ = \ $


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 2:

  • Fest vorgegeben ist bei UMTS die Chipdauer  $T_{\rm C}$, die in der Teilaufgabe  (2)  noch berechnet werden soll.
  • Je größer der Spreizgrad $J$ ist, desto größer ist die Bitdauer.


(2)  Laut dem Hinweis auf der Angabenseite werden in  $10 \ \rm ms$  genau  $15 \cdot 2560 = 38400 \ \rm Chips$  übertragen.

  • Damit beträgt die Chiprate   $R_{\rm C} = 100 \cdot 38400 \ {\rm Chips/s} \ \underline{= 3.84 \ \rm Mchip/s}$.
  • Die Chipdauer ist der Kehrwert hierzu:   $T_{\rm C} \ \underline{\approx 0.26 \ \rm µ s}$.


(3)  Jedes Datenbit besteht aus vier Spreizchips   ⇒   $\underline{J = 4}$.


(4)  Die Bitrate ergibt sich mit dem Spreizfaktor  $J = 4$  zu  $R_{\rm B} = R_{\rm C}/J \ \underline{= 960 \ \rm kbit/s}$.

  • Mit dem für UMTS maximalen Spreizfaktor  $J = 512$  beträgt die Bitrate dagegen nur  $7.5 \ \rm kbit/s$.


(5)  Für das Sendesignal gilt  $s(t) = q(t) \cdot c(t)$.

  • Die Chips  $s_{3}$  und  $s_{4}$  des Sendesignals gehören zum ersten Datenbit  $(q_{1} = +1)$:
$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
  • Dagegen sind die beiden weiteren gesuchten Sendechips dem zweiten Datenbit $(q_{2} = -1)$ zuzuordnen:
$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$