Aufgaben:Aufgabe 3.8: OVSF–Codes: Unterschied zwischen den Versionen
(9 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID2261__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion eines OVSF–Codes]] | + | [[Datei:P_ID2261__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion <br>eines OVSF–Codes]] |
Die Spreizcodes für UMTS sollten | Die Spreizcodes für UMTS sollten | ||
*orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden, | *orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden, | ||
− | *gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren $J$ ermöglichen. | + | *gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren $J$ ermöglichen. |
− | Ein Beispiel hierfür sind die | + | Ein Beispiel hierfür sind die „Codes mit variablem Spreizfaktor” (englisch: ''Orthogonal Variable Spreading Factor'', OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. |
− | Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $(+C +C)$ und $(+C | + | Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $\mathcal{C}$ zwei neue Codes $(+\mathcal{C}\ +\mathcal{C})$ und $(+\mathcal{C} \ –\mathcal{C})$. |
− | Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen | + | Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen |
− | :$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}, | + | :$$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$ |
− | :$$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}, | + | :$$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ |
+ | :$$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ | ||
+ | :$$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ | ||
− | Gemäß dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle, ... ,\langle c_\nu^{(7)}\rangle.$ | + | Gemäß dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle.$ |
− | Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$. | + | Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf. |
+ | *Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden, oder | ||
+ | *die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$. | ||
− | |||
− | Die Aufgabe | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]]. | ||
+ | *Insbesondere Bezug genommen wird auf die Seite [[Modulationsverfahren/Spreizfolgen_für_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29|Codes mit variablem Spreizfaktor (OVSF–Code)]]. | ||
+ | |||
+ | |||
+ | |||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Konstruieren Sie das Baumdiagramm für $J = 8$. Welche OVSF–Codes ergeben sich daraus? | + | {Konstruieren Sie das Baumdiagramm für $J = 8$. Welche OVSF–Codes ergeben sich daraus? |
|type="[]"} | |type="[]"} | ||
− | + $\langle c_\nu^{(1)}\rangle = +1 +1 +1 +1 | + | + $\langle c_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$, |
− | - $\langle c_\nu^{(3)}\rangle = +1 +1 | + | - $\langle c_\nu^{(3)}\rangle = +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$, |
− | + $\langle c_\nu^{(5)}\rangle = +1 | + | + $\langle c_\nu^{(5)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1$, |
− | + $\langle c_\nu^{(7)}\rangle = +1 | + | + $\langle c_\nu^{(7)}\rangle = +\hspace{-0.05cm}1 \ -\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ +\hspace{-0.08cm}1 \ -\hspace{-0.08cm}1$. |
− | {Wieviele UMTS–Teilnehmer können mit $J = 8$ maximal bedient werden? | + | {Wieviele UMTS–Teilnehmer können mit $J = 8$ maximal bedient werden? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $K_{\rm max} \ = \ $ { 8 } |
− | {Wieviele Teilnehmer können versorgt werden, wenn drei von ihnen einen Spreizcode mit $J = 4$ verwenden sollen? | + | {Wieviele Teilnehmer können mit $J = 8$ versorgt werden, wenn drei von ihnen einen Spreizcode mit $J = 4$ verwenden sollen? |
|type="{}"} | |type="{}"} | ||
− | $K \ = \ $ { 5 | + | $K \ = \ $ { 5 } |
− | {Die Baumstruktur gelte für $J = 32$. Ist dann folgende Zuweisung machbar: Zweimal $J = 4$, einmal $J = 8$, | + | {Die Baumstruktur gelte für $J = 32$. Ist dann folgende Zuweisung machbar: Zweimal $J = 4$, einmal $J = 8$, eimal $J = 164$ und achtmal $J = 32$? |
− | |type=" | + | |type="()"} |
+ Ja. | + Ja. | ||
- Nein. | - Nein. | ||
Zeile 54: | Zeile 67: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Die folgende Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer. Daraus ist ersichtlich, dass die <u>Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite. | + | [[Datei:P_ID2263__Bei_A_4_6a.png|right|frame|OVSF–Baumstruktur für $J = 8$]] |
− | + | '''(1)''' Die folgende Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer. | |
+ | |||
+ | *Daraus ist ersichtlich, dass die <u>Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite. | ||
+ | |||
+ | |||
+ | '''(2)''' Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad $J = 8$ zugewiesen, so können $K_{\rm max} \ \underline{= 8}$ Teilnehmer versorgt werden. | ||
+ | |||
− | '''( | + | '''(3)''' Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in der Grafik) $\ \Rightarrow \ \ \underline{K = 5}$. |
− | |||
'''(4)''' Wir bezeichnen mit | '''(4)''' Wir bezeichnen mit | ||
− | *$K_{4} = 2$ die Anzahl der Spreizfolgen mit $J = 4$, | + | *$K_{4} = 2$ die Anzahl der Spreizfolgen mit $J = 4$, |
− | *$K_{8} = 1$ die Anzahl der Spreizfolgen mit $J = 8$, | + | *$K_{8} = 1$ die Anzahl der Spreizfolgen mit $J = 8$, |
− | *$K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$, | + | *$K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$, |
− | *$K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$, | + | *$K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$, |
Dann muss folgende Bedingung erfüllt sein: | Dann muss folgende Bedingung erfüllt sein: | ||
− | :$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 | + | :$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ | |
− | Wegen $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt | + | *Wegen $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt ⇒ <u>Antwort JA</u>. |
+ | *Die zweimalige Bereitstellung des Spreizgrads $J = 4$ blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit $J = 8$ bleiben auf der $J = 8$–Ebene noch drei der acht Äste zu belegen, und so weiter und so fort. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Aktuelle Version vom 17. August 2020, 16:42 Uhr
Die Spreizcodes für UMTS sollten
- orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
- gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren $J$ ermöglichen.
Ein Beispiel hierfür sind die „Codes mit variablem Spreizfaktor” (englisch: Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen.
Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $\mathcal{C}$ zwei neue Codes $(+\mathcal{C}\ +\mathcal{C})$ und $(+\mathcal{C} \ –\mathcal{C})$.
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen
- $$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
Gemäß dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle.$
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.
- Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden, oder
- die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
- Insbesondere Bezug genommen wird auf die Seite Codes mit variablem Spreizfaktor (OVSF–Code).
Fragebogen
Musterlösung
(1) Die folgende Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer.
- Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.
(2) Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad $J = 8$ zugewiesen, so können $K_{\rm max} \ \underline{= 8}$ Teilnehmer versorgt werden.
(3) Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in der Grafik) $\ \Rightarrow \ \ \underline{K = 5}$.
(4) Wir bezeichnen mit
- $K_{4} = 2$ die Anzahl der Spreizfolgen mit $J = 4$,
- $K_{8} = 1$ die Anzahl der Spreizfolgen mit $J = 8$,
- $K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$,
- $K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$,
Dann muss folgende Bedingung erfüllt sein:
- $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
- Wegen $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA.
- Die zweimalige Bereitstellung des Spreizgrads $J = 4$ blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit $J = 8$ bleiben auf der $J = 8$–Ebene noch drei der acht Äste zu belegen, und so weiter und so fort.