Aufgaben:Aufgabe 1.7: WDF des Rice–Fadings: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(21 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente}}
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente}}
  
[[Datei:P_ID2133__Mob_A_1_7.png|right|frame|Rice-Fading für verschiedene Werte von |<i>z</i><sub>0</sub>|<sup>2</sup>]]
+
[[Datei:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von&nbsp; $|z_0|^2$]]
Wie aus der Grafik zu ersehen, betrachten wir das gleiche Szenario wie in [[Aufgaben:1.6_Rice%E2%80%93Fading_%E2%80%93_AKF/LDS| Aufgabe A1.6]]
+
Wie bereits aus der Grafik zu ersehen ist, betrachten wir das gleiche Szenario wie in&nbsp; [[Aufgaben:Aufgabe_1.6:_AKF_und_LDS_bei_Rice–Fading| Aufgabe 1.6]]:
* <i>Rice&ndash;Fading</i> mit der Varianz $\sigma^2 = 1$ der Gaußprozesse und dem Parameter $|z_0|$ für den Direktpfad.
+
* Rice&ndash;Fading mit der Varianz&nbsp; $\sigma^2 = 1$&nbsp; der Gaußprozesse und dem Parameter&nbsp; $|z_0|$&nbsp; für den Direktpfad.
* Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte $|z_0|^2 = 0, 2, 4, 10$ und $20$ (siehe Grafik).
+
* Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte&nbsp; $|z_0|^2 = 0, \ 2, 4, \ 10, \ 20$&nbsp; (siehe Grafik).
* Die WDF des Betrags $a(t) = |z(t)|$ ist
+
* Die WDF des Betrags&nbsp; $a(t) = |z(t)|$&nbsp; lautet:
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.$$
+
:$$f_a(a) ={a}/{\sigma^2} \cdot {\rm e}^{  -{(a^2+ |z_0|^2) }/({2\sigma^2})}\cdot {\rm I}_0 \left [ {a \cdot |z_0|}/{\sigma^2} \right ]\hspace{0.05cm}.$$  
* Die modifizierte Besselfunktion nullter Ordnung liefert folgende Werte:
+
 
 +
* Die modifizierte Besselfunktion nullter Ordnung liefert beispielsweise folgende Werte:
 
:$${\rm I }_0 (2)  = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4)  = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3)  = 67.23  
 
:$${\rm I }_0 (2)  = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4)  = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3)  = 67.23  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Der quadratische Erwartungswert &#8658; Leistung des multiplikativen Faktors $|z(t)|$, ist gleich  
+
* Der quadratische Erwartungswert &nbsp; &#8658; &nbsp; Leistung des multiplikativen Faktors&nbsp; $|z(t)|$, ist gleich  
 
:$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
 
:$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
* Mit $z_0 = 0$ wird aus dem <i>Rice&ndash;Fading</i> das kritischere <i>Rayleigh&ndash;Fading</i>. In diesem Fall gilt für die Wahrscheinlichkeit, dass $a$ im gelb hintergelegten Bereich zwischen $0$ und $1$ liegt:
+
* Mit&nbsp; $z_0 = 0$&nbsp; wird aus dem Rice&ndash;Fading das kritischere Rayleigh&ndash;Fading.&nbsp; In diesem Fall gilt für die Wahrscheinlichkeit, dass&nbsp; $a$&nbsp; im gelb hintergelegten Bereich zwischen&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; liegt:
 
:$$ {\rm Pr}(a \le 1) =  1 - {\rm e}^{-0.5/\sigma^2}  \approx 0.4
 
:$$ {\rm Pr}(a \le 1) =  1 - {\rm e}^{-0.5/\sigma^2}  \approx 0.4
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In dieser Aufgabe soll die Wahrscheinlichkeit ${\rm Pr}(a &#8804; 1)$ für $|z_0| &ne; 0$ angenähert werden. Dazu gibt es zwei Möglichkeiten, nämlich
+
In dieser Aufgabe soll die Wahrscheinlichkeit&nbsp; ${\rm Pr}(a &#8804; 1)$&nbsp; für &nbsp;$|z_0| &ne; 0$&nbsp; angenähert werden. Dazu gibt es zwei Möglichkeiten, nämlich:
* Die <i>Dreiecksnäherung</i>:
+
* die <u>Dreiecksnäherung</u>:
 
:$${\rm Pr}(a \le 1) =  {1}/{2} \cdot f_a(a=1)  
 
:$${\rm Pr}(a \le 1) =  {1}/{2} \cdot f_a(a=1)  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* die <i>Gaußnäherung</i>: Ist $|z_0| >> \sigma$, so kann die Riceverteilung durch eine Gaußverteilung durch eine Gaußverteilung mit Mittelwert $|z_0|$ und Streuung $\sigma$ angenähert werden.
+
* die <u>Gaußnäherung</u>: <br> &nbsp; &nbsp; Ist&nbsp; $|z_0| \gg \sigma$, so kann die Riceverteilung durch eine Gaußverteilung mit Mittelwert&nbsp; $|z_0|$&nbsp; und Streuung&nbsp; $\sigma$&nbsp; angenähert werden.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe gehört zum Kapitel [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente| Nichtfrequenzselektives Fading mit Direktkomponente]].
+
* Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente| Nichtfrequenzselektives Fading mit Direktkomponente]].
* Für die numerischen Lösungen zu den letzten Teilaufgaben empfehlen wir das folgende Interaktionsmodul: [[Komplementäre Gaußsche Fehlerfunktionen]]
+
* Für die numerischen Lösungen zu den letzten Teilaufgaben empfehlen wir das Applets&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]].
 +
  
  
Zeile 33: Zeile 42:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie einige WDF&ndash;Werte für $|z_0| = 0$ und $\sigma = 2$:
+
{Berechnen Sie einige WDF&ndash;Werte für&nbsp; $|z_0| = 2$&nbsp; und&nbsp; $\sigma = 1$:
 
|type="{}"}
 
|type="{}"}
 
$f_a(a = 1) \ = \ ${ 0.187 3% }
 
$f_a(a = 1) \ = \ ${ 0.187 3% }
Zeile 39: Zeile 48:
 
$f_a(a = 3) \ = \ ${ 0.303 3% }
 
$f_a(a = 3) \ = \ ${ 0.303 3% }
  
{Es sei $|z_0| = 2$ (blaue Kurve). Wie groß ist ${\rm Pr}(a &#8804; 1)$? Verwenden Sie die Dreiecksnäherung.
+
{Es sei&nbsp; $|z_0| = 2$ &nbsp; &rArr; &nbsp; $|z_0|^2 = 4$&nbsp; ('''blaue Kurve''').&nbsp; Wie groß ist&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Verwenden Sie die&nbsp; '''Dreiecksnäherung'''.
 
|type="{}"}
 
|type="{}"}
$|z_0| = 2, \ {\rm Dreieck} \text{:} \hspace{0.4cm} {\rm Pr}(a &#8804; 1)\ = \ ${ 9.5 3% } $\ \%$
+
${\rm Pr}(a &#8804; 1)\ = \ ${ 9.4 3% } $\ \%$
  
{Es sei $|z_0|^2 = 2$ (rote Kurve). Wie groß ist ${\rm Pr}(a &#8804; 1)$? Verwenden Sie die Dreiecksnäherung.
+
{Es sei&nbsp; $|z_0|^2 = 2$&nbsp; ('''rote Kurve''').&nbsp; Wie groß ist&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Verwenden Sie die &nbsp;'''Dreiecksnäherung'''.
 
|type="{}"}
 
|type="{}"}
$|z_0|^2 = 2, \ {\rm Dreieck} \text{:} \hspace{0.4cm} {\rm Pr}(a &#8804; 1) \ = \ ${ 17.5 3% } $\ \%$
+
${\rm Pr}(a &#8804; 1) \ = \ ${ 17.5 3% } $\ \%$
  
{Es sei $|z_0|^2 = 10$ (grüne Kurve). Wie groß ist ${\rm Pr}(a &#8804; 1)$? Verwenden Sie die Gaußnäherung.
+
{Es sei&nbsp; $|z_0|^2 = 10$&nbsp; ('''grüne Kurve''').&nbsp; Wie groß ist&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Verwenden Sie die&nbsp; '''Gaußnäherung'''.
 
|type="{}"}
 
|type="{}"}
$|z_0|^2 = 10, \ {\rm Gauß} \text{:} \hspace{0.4cm} {\rm Pr}(a &#8804; 1) \ = \ ${ 1.5 3% } $\ \%$
+
${\rm Pr}(a &#8804; 1) \ = \ ${ 1.5 3% } $\ \%$
  
{Es sei $|z_0|^2 = 20$ (violette Kurve). Wie groß ist ${\rm Pr}(a &#8804; 1)$? Verwenden Sie die Gaußnäherung.
+
{Es sei&nbsp; $|z_0|^2 = 20$&nbsp; ('''violette Kurve''').&nbsp; Wie groß ist&nbsp; ${\rm Pr}(a &#8804; 1)$?&nbsp; Verwenden Sie die &nbsp;'''Gaußnäherung'''.
 
|type="{}"}
 
|type="{}"}
$|z_0|^2 = 20, \ {\rm Gauß} \text{:} \hspace{0.4cm} {\rm Pr}(a &#8804; 1) \ = \ ${ 0.02 3% } $\ \%$
+
${\rm Pr}(a &#8804; 1) \ = \ ${ 0.02 3% } $\ \%$
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit $|z_0| = 2$ und $\sigma = 2$ lässt sich die Rice&ndash;WDF wie folgt darstellen
+
'''(1)'''&nbsp; Mit&nbsp; $|z_0| = 2$&nbsp; und&nbsp; $\sigma = 1$&nbsp; lässt sich die Rice&ndash;WDF wie folgt darstellen
:$$f_a(a) = a \cdot {\rm exp} [ -\frac{a^2 + 4}{2}] \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$
+
:$$f_a(a) = a \cdot {\rm e}^{  -({a^2 + 4})/{2}} \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$
  
Daraus ergeben sich die gesuchten Werte:
+
*Daraus ergeben sich die gesuchten Werte:
 
:$$f_a(a = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \cdot {\rm e}^{-2.5}  \cdot {\rm I}_0 (2) = 0.082 \cdot 2.28 \hspace{0.15cm} \underline{ = 0.187}\hspace{0.05cm},$$
 
:$$f_a(a = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \cdot {\rm e}^{-2.5}  \cdot {\rm I}_0 (2) = 0.082 \cdot 2.28 \hspace{0.15cm} \underline{ = 0.187}\hspace{0.05cm},$$
 
:$$f_a(a = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm e}^{-4}  \cdot {\rm I}_0 (4) = 2 \cdot 0.0183 \cdot 11.3 \hspace{0.15cm} \underline{ = 0.414}\hspace{0.05cm},$$
 
:$$f_a(a = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm e}^{-4}  \cdot {\rm I}_0 (4) = 2 \cdot 0.0183 \cdot 11.3 \hspace{0.15cm} \underline{ = 0.414}\hspace{0.05cm},$$
 
:$$f_a(a = 3) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \cdot {\rm e}^{-6.5}  \cdot {\rm I}_0 (6) = 3 \cdot 0.0015 \cdot 67.23 \hspace{0.15cm} \underline{ = 0.303}\hspace{0.05cm}.$$
 
:$$f_a(a = 3) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \cdot {\rm e}^{-6.5}  \cdot {\rm I}_0 (6) = 3 \cdot 0.0015 \cdot 67.23 \hspace{0.15cm} \underline{ = 0.303}\hspace{0.05cm}.$$
  
Die Ergebnisse passen gut zu der blauen Kurve auf der Angabenseite.
+
*Die Ergebnisse passen gut zu der blauen Kurve auf der Angabenseite.
 +
 
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Mit dem Ergebnis der Teilaufgabe&nbsp; '''(1)''' &nbsp; &rArr; &nbsp; $f_a(a = 1) = 0.187$ erhält man mit der Dreiecksnäherung:
 +
:$${\rm Pr}(a \le 1) =  {1}/{2} \cdot 0.187 \cdot 1\hspace{0.15cm} \underline{ \approx 9.4\,\%} \hspace{0.05cm}.$$
  
 +
*Dieses Ergebnis wird etwas zu groß sein, da die blaue Kurve unterhalb der Verbindungslinie von&nbsp; $(0, 0)$&nbsp; nach&nbsp; $(1, 0.187)$&nbsp; liegt &nbsp; &rArr; &nbsp; konvexer Kurvenverlauf.
  
'''(2)'''&nbsp; Mit dem Ergebnis der Teilaufgabe (1) erhält man:
 
:$${\rm Pr}(a \le 1) =  \frac{1}{2} \cdot 0.187 \hspace{0.15cm} \underline{ \approx 9.5\,\%} \hspace{0.05cm}.$$
 
  
Dieses Ergebnis wird etwas zu groß sein, da die blaue Kurve unterhalb der Verbindungslinie von $(0, 0)$ nach $(1, 0.187)$ liegt &#8658; konvexer Kurvenverlauf.
 
  
  
'''(3)'''&nbsp; Der WDF&ndash;Wert $f_a(a = 1) \approx 0.35$ kann aus der [[Aufgaben:1.7_WDF_des_Rice%E2%80%93Fadings| Grafik]] abgelesen werden. Daraus folgt:
+
'''(3)'''&nbsp; Für die rote Kurve kann der WDF&ndash;Wert&nbsp; $f_a(a = 1) \approx 0.35$&nbsp; aus der&nbsp; [[Aufgaben:1.7_WDF_des_Rice%E2%80%93Fadings|Grafik]]&nbsp; auf der Angabenseite abgelesen werden.&nbsp; Daraus folgt:
 
:$${\rm Pr}(a \le 1) =  \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$$
 
:$${\rm Pr}(a \le 1) =  \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$$
  
Dieser Wahrscheinlichkeitswert wird etwas zu klein sein, da die rote Kurve im Bereich zwischen $0$ und $1$ konkav verläuft.
+
*Dieser Wahrscheinlichkeitswert wird etwas zu klein sein, da die rote Kurve im Bereich zwischen&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; konkav verläuft.
 +
 
 +
 
  
  
'''(4)'''&nbsp; Die Gaußnäherung besagt, dass man die Riceverteilung durch eine Gaußverteilung mit Mittelwert $|z_0| = 3.16$ und Streuung $\sigma = 1$ annähern kann, wenn der Quotient $|z_0|/\sigma$ hinreichend groß ist. Dann gilt:
+
'''(4)'''&nbsp; Die Gaußnäherung besagt, dass man die Riceverteilung durch eine Gaußverteilung mit Mittelwert&nbsp; $|z_0| = \sqrt{10} = 3.16$&nbsp; und Streuung&nbsp; $\sigma = 1$&nbsp; annähern kann, wenn der Quotient&nbsp; $|z_0|/\sigma$&nbsp; hinreichend groß ist.&nbsp; Dann gilt:
 
:$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16)  \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$$
 
:$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16)  \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$$
  
Hierbei bezeichnet $g$ eine gaußverteilte Zufallsgröße mit dem Mittelwert $0$ und der Streuung $\sigma = 1$. Der Zahlenwert wurde mit dem angegeben [[ Flash&ndash;Modul]] ermittelt.
+
*Hierbei bezeichnet&nbsp; $g$&nbsp; eine gaußverteilte Zufallsgröße mit dem Mittelwert Null und der Streuung&nbsp; $\sigma = 1$.  
 +
*Der Zahlenwert wurde mit dem angegebenen interaktiven&nbsp; [[Applets:QFunction|Applet]]&nbsp; ermittelt.
 +
 
  
<u>Anmerkung:</u> Die Gaußnäherung ist hier sicher mit einem gewissen Fehler verbunden. Aus der Grafik erkennt man, dass der Mittelwert der grünen Kurve nicht bei $a = 3.16$ liegt, sondern eher bei $3.31$. Dann ist die Leistung der Gaußnäherung ($3.31^2 + 1^2 = 12$) genau so groß wie die der Riceverteilung:
+
<i>Anmerkung:</i> &nbsp; Die Gaußnäherung ist hier sicher mit einem gewissen Fehler verbunden:
 +
*Aus der Grafik erkennt man, dass der Mittelwert der grünen Kurve nicht bei&nbsp; $a = 3.16$&nbsp; liegt, sondern eher bei&nbsp; $3.31$.  
 +
*Dann ist die Leistung der Gaußnäherung&nbsp; $(3.31^2 + 1^2 = 12)$&nbsp; genau so groß wie die der Riceverteilung:
 
:$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$
 
:$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Nach gleichem Rechenweg ersetzt man hier die Rice&ndash;WDF durch eine Gauß&ndash;WDF mit Mittelwert $20^{0.5} \approx 4.47$ und Streuung $\sigma = 1$ und man erhält
+
 
 +
'''(5)'''&nbsp; Nach gleichem Rechenweg ersetzt man hier die Rice&ndash;WDF durch eine Gauß&ndash;WDF mit Mittelwert&nbsp; $\sqrt{20} \approx 4.47$&nbsp; und Streuung&nbsp; $\sigma = 1$&nbsp; und man erhält
 
:$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37)  { \approx 0.04\,\%} \hspace{0.05cm}.$$
 
:$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37)  { \approx 0.04\,\%} \hspace{0.05cm}.$$
  
Geht man von der leistungsgleichen Gaußverteilung aus (siehe Anmerkung zur letzten Aufgabe), so ergibt sich der Mittelwert zu $m_g = 21^{0.5} \approx 4.58$, und die Wahrscheinlichkeit wäre dann  
+
*Geht man von der leistungsgleichen Gaußverteilung aus&nbsp; (siehe Anmerkung zur letzten Teilaufgabe), so ergibt sich der Mittelwert zu&nbsp; $m_g = \sqrt{21}\approx 4.58$, und die Wahrscheinlichkeit wäre dann  
 
:$${\rm Pr}(a \le 1) \approx  {\rm Q}(3.58)  \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$
 
:$${\rm Pr}(a \le 1) \approx  {\rm Q}(3.58)  \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 7. Juli 2021, 09:23 Uhr

Rice-Fading für verschiedene Werte von  $|z_0|^2$

Wie bereits aus der Grafik zu ersehen ist, betrachten wir das gleiche Szenario wie in  Aufgabe 1.6:

  • Rice–Fading mit der Varianz  $\sigma^2 = 1$  der Gaußprozesse und dem Parameter  $|z_0|$  für den Direktpfad.
  • Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte  $|z_0|^2 = 0, \ 2, \ 4, \ 10, \ 20$  (siehe Grafik).
  • Die WDF des Betrags  $a(t) = |z(t)|$  lautet:
$$f_a(a) ={a}/{\sigma^2} \cdot {\rm e}^{ -{(a^2+ |z_0|^2) }/({2\sigma^2})}\cdot {\rm I}_0 \left [ {a \cdot |z_0|}/{\sigma^2} \right ]\hspace{0.05cm}.$$
  • Die modifizierte Besselfunktion nullter Ordnung liefert beispielsweise folgende Werte:
$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23 \hspace{0.05cm}.$$
  • Der quadratische Erwartungswert   ⇒   Leistung des multiplikativen Faktors  $|z(t)|$, ist gleich
$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$
  • Mit  $z_0 = 0$  wird aus dem Rice–Fading das kritischere Rayleigh–Fading.  In diesem Fall gilt für die Wahrscheinlichkeit, dass  $a$  im gelb hintergelegten Bereich zwischen  $0$  und  $1$  liegt:
$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2} \approx 0.4 \hspace{0.05cm}.$$

In dieser Aufgabe soll die Wahrscheinlichkeit  ${\rm Pr}(a ≤ 1)$  für  $|z_0| ≠ 0$  angenähert werden. Dazu gibt es zwei Möglichkeiten, nämlich:

  • die Dreiecksnäherung:
$${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1) \hspace{0.05cm}.$$
  • die Gaußnäherung:
        Ist  $|z_0| \gg \sigma$, so kann die Riceverteilung durch eine Gaußverteilung mit Mittelwert  $|z_0|$  und Streuung  $\sigma$  angenähert werden.





Hinweise:



Fragebogen

1

Berechnen Sie einige WDF–Werte für  $|z_0| = 2$  und  $\sigma = 1$:

$f_a(a = 1) \ = \ $

$f_a(a = 2) \ = \ $

$f_a(a = 3) \ = \ $

2

Es sei  $|z_0| = 2$   ⇒   $|z_0|^2 = 4$  (blaue Kurve).  Wie groß ist  ${\rm Pr}(a ≤ 1)$?  Verwenden Sie die  Dreiecksnäherung.

${\rm Pr}(a ≤ 1)\ = \ $

$\ \%$

3

Es sei  $|z_0|^2 = 2$  (rote Kurve).  Wie groß ist  ${\rm Pr}(a ≤ 1)$?  Verwenden Sie die  Dreiecksnäherung.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

4

Es sei  $|z_0|^2 = 10$  (grüne Kurve).  Wie groß ist  ${\rm Pr}(a ≤ 1)$?  Verwenden Sie die  Gaußnäherung.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

5

Es sei  $|z_0|^2 = 20$  (violette Kurve).  Wie groß ist  ${\rm Pr}(a ≤ 1)$?  Verwenden Sie die  Gaußnäherung.

${\rm Pr}(a ≤ 1) \ = \ $

$\ \%$


Musterlösung

(1)  Mit  $|z_0| = 2$  und  $\sigma = 1$  lässt sich die Rice–WDF wie folgt darstellen

$$f_a(a) = a \cdot {\rm e}^{ -({a^2 + 4})/{2}} \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$
  • Daraus ergeben sich die gesuchten Werte:
$$f_a(a = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \cdot {\rm e}^{-2.5} \cdot {\rm I}_0 (2) = 0.082 \cdot 2.28 \hspace{0.15cm} \underline{ = 0.187}\hspace{0.05cm},$$
$$f_a(a = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm e}^{-4} \cdot {\rm I}_0 (4) = 2 \cdot 0.0183 \cdot 11.3 \hspace{0.15cm} \underline{ = 0.414}\hspace{0.05cm},$$
$$f_a(a = 3) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \cdot {\rm e}^{-6.5} \cdot {\rm I}_0 (6) = 3 \cdot 0.0015 \cdot 67.23 \hspace{0.15cm} \underline{ = 0.303}\hspace{0.05cm}.$$
  • Die Ergebnisse passen gut zu der blauen Kurve auf der Angabenseite.



(2)  Mit dem Ergebnis der Teilaufgabe  (1)   ⇒   $f_a(a = 1) = 0.187$ erhält man mit der Dreiecksnäherung:

$${\rm Pr}(a \le 1) = {1}/{2} \cdot 0.187 \cdot 1\hspace{0.15cm} \underline{ \approx 9.4\,\%} \hspace{0.05cm}.$$
  • Dieses Ergebnis wird etwas zu groß sein, da die blaue Kurve unterhalb der Verbindungslinie von  $(0, 0)$  nach  $(1, 0.187)$  liegt   ⇒   konvexer Kurvenverlauf.



(3)  Für die rote Kurve kann der WDF–Wert  $f_a(a = 1) \approx 0.35$  aus der  Grafik  auf der Angabenseite abgelesen werden.  Daraus folgt:

$${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$$
  • Dieser Wahrscheinlichkeitswert wird etwas zu klein sein, da die rote Kurve im Bereich zwischen  $0$  und  $1$  konkav verläuft.



(4)  Die Gaußnäherung besagt, dass man die Riceverteilung durch eine Gaußverteilung mit Mittelwert  $|z_0| = \sqrt{10} = 3.16$  und Streuung  $\sigma = 1$  annähern kann, wenn der Quotient  $|z_0|/\sigma$  hinreichend groß ist.  Dann gilt:

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16) \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$$
  • Hierbei bezeichnet  $g$  eine gaußverteilte Zufallsgröße mit dem Mittelwert Null und der Streuung  $\sigma = 1$.
  • Der Zahlenwert wurde mit dem angegebenen interaktiven  Applet  ermittelt.


Anmerkung:   Die Gaußnäherung ist hier sicher mit einem gewissen Fehler verbunden:

  • Aus der Grafik erkennt man, dass der Mittelwert der grünen Kurve nicht bei  $a = 3.16$  liegt, sondern eher bei  $3.31$.
  • Dann ist die Leistung der Gaußnäherung  $(3.31^2 + 1^2 = 12)$  genau so groß wie die der Riceverteilung:
$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$


(5)  Nach gleichem Rechenweg ersetzt man hier die Rice–WDF durch eine Gauß–WDF mit Mittelwert  $\sqrt{20} \approx 4.47$  und Streuung  $\sigma = 1$  und man erhält

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37) { \approx 0.04\,\%} \hspace{0.05cm}.$$
  • Geht man von der leistungsgleichen Gaußverteilung aus  (siehe Anmerkung zur letzten Teilaufgabe), so ergibt sich der Mittelwert zu  $m_g = \sqrt{21}\approx 4.58$, und die Wahrscheinlichkeit wäre dann
$${\rm Pr}(a \le 1) \approx {\rm Q}(3.58) \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$