Aufgaben:Aufgabe 2.8: COST-Verzögerungsmodelle: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(16 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
  
[[Datei:P_ID2178__Mob_Z_2_7.png|right|frame|Zweiwegekanäle]]
+
[[Datei:Mob_A_2_8_version2.png|right|frame|COST–Verzögerungsmodelle]]
Rechts sind vier Verzögerungs–Leistungsdichtespektren als Funktion der Verzögerungszeit $\tau$ logarithmisch aufgetragen:
+
Rechts sind vier Verzögerungs–Leistungsdichtespektren als Funktion der Verzögerungszeit  $\tau$  logarithmisch aufgetragen:
:$$10 \cdot {\rm lg}\hspace{0.15cm} ({{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}) \hspace{0.05cm},$$
+
:$$10 \cdot {\rm lg}\hspace{0.15cm} [{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}] \hspace{0.05cm},$$
  
Hierbei ist als Abkürzung $\phi_0 = \phi_{\rm V}(\tau = 0)$ verwendet.
+
Hierbei ist als Abkürzung&nbsp; $\phi_0 = \phi_{\rm V}(\tau = 0)$&nbsp; verwendet.&nbsp; Es handelt sich um die so genannten <i>COST&ndash;Verzögerungsmodelle</i>.  
  
Es handelt sich um die sog. <i>COST&ndash;Verzögerungsmodelle</i>. Die obere Skizze beinhaltet die beiden Profile <b>RA</b> (<i>Rural Area</i>) und <b>TU</b> (<i>Typical Urban</i>). Für diese gilt folgender Verlauf:
+
Die obere Skizze beinhaltet die beiden Profile &nbsp;${\rm RA}$&nbsp; ("Rural Area") und &nbsp;${\rm TU}$&nbsp; ("Typical Urban").&nbsp; Für diese gilt folgender Verlauf:
:$${{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm exp}[ -\tau / \tau_0] \hspace{0.05cm}.$$
+
:$${{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.05cm}.$$
  
Der Wert des Parameters $\tau_0$ (Zeitkonstante der AKF) soll in der Teilaufgabe (1) aus der Grafik ermittelt werden. Beachten Sie hierzu die angegebenen $\tau$&ndash;Werte für $&ndash;30 \ \rm dB$:
+
Der Wert des Parameters&nbsp; $\tau_0$&nbsp; (Zeitkonstante der AKF) soll in der Teilaufgabe&nbsp; '''(1)'''&nbsp; aus der Grafik ermittelt werden.&nbsp; Beachten Sie hierzu die angegebenen&nbsp; $\tau$&ndash;Werte für&nbsp; $-30 \ \rm dB$:
:$${\rm RA:}\hspace{0.15cm}\tau_{-30} = 0.75\,{\rm \mu s} \hspace{0.05cm},\hspace{0.2cm}
+
:$${\rm RA}\text{:}\hspace{0.15cm}\tau_{-30} = 0.75\,{\rm &micro; s} \hspace{0.05cm},\hspace{0.2cm}
  {\rm TU:}\hspace{0.15cm}\tau_{-30} = 6.9\,{\rm \mu s} \hspace{0.05cm}.  $$
+
  {\rm TU}\text{:}\hspace{0.15cm}\tau_{-30} = 6.9\,{\rm &micro; s} \hspace{0.05cm}.  $$
  
 
Die untere Grafik gilt für ungünstigere Verhältnisse in
 
Die untere Grafik gilt für ungünstigere Verhältnisse in
* städtischen Gebieten (<i>Bad Urban</i>, <b>BU</b>):
+
* städtischen Gebieten&nbsp; $($"Bad Urban", &nbsp;${\rm BU})$:
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
  = \left\{ \begin{array}{c} {\rm exp}[ -\tau / \tau_0]\\
+
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\
  0.5 \cdot {\rm exp}[ (5\,{\rm \mu s}-\tau) / \tau_0]   \end{array} \right.\quad
+
  0.5 \cdot {\rm e}^{ (5\,{\rm \mu s}-\tau) / \tau_0}   \end{array} \right.\quad
\begin{array}{*{1}c} \hspace{-0.55cm}  {\rm Bereich}\hspace{0.15cm}0 < \tau < 5\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s} \hspace{0.05cm},
+
\begin{array}{*{1}c} \hspace{-0.55cm}  {\rm Bereich}\hspace{0.15cm}0 < \tau < 5\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm},
\\  \hspace{-0.15cm} {\,\, \,\, \rm Bereich}\hspace{0.15cm}5\,{\rm \mu s} < \tau < 10\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s} \hspace{0.05cm}, \end{array}$$
+
\\  \hspace{-0.15cm} {\,\, \,\, \rm Bereich}\hspace{0.15cm}5\,{\rm &micro; s} < \tau < 10\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}, \end{array}$$
  
* in ländlichen Gebieten (<i>Hilly Terrain</i>, <b>HT</b>):
+
* in ländlichen Gebieten&nbsp; $($"Hilly Terrain", &nbsp;${\rm HT})$:
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
 
:$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}}   
  = \left\{ \begin{array}{c} {\rm exp}[ -\tau / \tau_0]\\
+
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\
  {0.04 \cdot \rm exp}[ (15\,{\rm \mu s}-\tau) / \tau_0]   \end{array} \right.\quad
+
  {0.04 \cdot \rm e}^{ (15\,{\rm \mu s}-\tau) / \tau_0}   \end{array} \right.\quad
\begin{array}{*{1}c} \hspace{-0.55cm}  {\rm Bereich}\hspace{0.15cm}0 < \tau < 2\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm \mu s} \hspace{0.05cm},
+
\begin{array}{*{1}c} \hspace{-0.55cm}  {\rm Bereich}\hspace{0.15cm}0 < \tau < 2\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm &micro; s} \hspace{0.05cm},
\\  \hspace{-0.35cm} {\rm Bereich}\hspace{0.15cm}15\,{\rm \mu s} < \tau < 20\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s} \hspace{0.05cm}. \end{array}$$
+
\\  \hspace{-0.35cm} {\rm Bereich}\hspace{0.15cm}15\,{\rm &micro; s} < \tau < 20\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}. \end{array}$$
  
Für die Modelle RA, TU und BU sollen folgende Kenngrößen ermittelt werden:
 
* Die <b>Mehrwegeverbreiterung</b> $T_{\rm V}$ ist die Standardabweichung der Verzögerungszeit $\tau$. Hat das Verzögerungs&ndash;LDS ${\it \Phi}_{\rm V}(\tau)$ einen exponentiellen Verlauf wie bei den Profilen &bdquo;RA&rdquo; und &bdquo;TU&rdquo;, so gilt $T_{\rm V} = \tau_0$, siehe [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe A2.7]].
 
  
* Die <b>Kohärenzbandbreite</b> $B_{\rm K}$ ist der $\Delta f$&ndash;Wert, bei dem die Frequenzkorrelationsfunktion $\varphi_{\rm F}(\Delta f)$ betragsmäßig erstmals auf die Hälfte abgefallen ist. Bei exponentiellem ${\it \Phi}_{\rm V}(\tau)$ wie bei &bdquo;RA&rdquo; und &bdquo;TU&rdquo; ist das Produkt $T_{\rm V} \cdot B_{\rm K} \approx 0.276$, siehe [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe A2.7]].
+
Für die Modelle&nbsp; &nbsp;${\rm RA}$, &nbsp;${\rm TU}$&nbsp; und&nbsp; &nbsp;${\rm BU}$&nbsp; sollen folgende Kenngrößen ermittelt werden:
 +
* Die&nbsp; <b>Mehrwegeverbreiterung</b>&nbsp; $T_{\rm V}$&nbsp; ist die Standardabweichung der Verzögerungszeit&nbsp; $\tau$. <br>Hat das Verzögerungs&ndash;LDS&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; einen exponentiellen Verlauf wie bei den Profilen &nbsp;${\rm RA}$&nbsp; und &nbsp;${\rm TU}$, so gilt&nbsp; $T_{\rm V} = \tau_0$, siehe&nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe 2.7]].
  
 +
* Die <b>Kohärenzbandbreite</b>&nbsp; $B_{\rm K}$&nbsp; ist der &nbsp;$\Delta f$&ndash;Wert, bei dem die Frequenz&ndash;Korrelationsfunktion&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; betragsmäßig erstmals auf die Hälfte abgefallen ist. <br>Bei exponentiellem&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; wie bei &nbsp;${\rm RA}$&nbsp; und &nbsp;${\rm TU}$&nbsp; ist das Produkt&nbsp; $T_{\rm V} \cdot B_{\rm K} \approx 0.276$, siehe&nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe 2.7]].
  
''Hinweis:''
+
 
* Die Aufgabe gehört zum Kapitel [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]].  
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
* Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| GWSSUS&ndash;Kanalmodell]].  
 
* Vorgegeben sind die folgenden Integrale:
 
* Vorgegeben sind die folgenden Integrale:
 
:$$\frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\rm e}^{ -\tau / \tau_0} \hspace{0.15cm}{\rm d} \tau = 1  
 
:$$\frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\rm e}^{ -\tau / \tau_0} \hspace{0.15cm}{\rm d} \tau = 1  
Zeile 44: Zeile 52:
 
  \hspace{0.05cm},\hspace{0.6cm}
 
  \hspace{0.05cm},\hspace{0.6cm}
 
\frac{1}{\tau_0} \cdot \int_{0}^{\infty} \hspace{-0.15cm}{\tau^2} \cdot{\rm e}^{ -\tau / \tau_0}\hspace{0.15cm}{\rm d} \tau = 2\tau_0^2\hspace{0.05cm}.$$
 
\frac{1}{\tau_0} \cdot \int_{0}^{\infty} \hspace{-0.15cm}{\tau^2} \cdot{\rm e}^{ -\tau / \tau_0}\hspace{0.15cm}{\rm d} \tau = 2\tau_0^2\hspace{0.05cm}.$$
 +
  
  
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie den LDS&ndash;Parameter $\tau_0$ für die Profile ${\rm RA}$ und ${\rm TU}$ an.
+
{Geben Sie den LDS&ndash;Parameter&nbsp; $\tau_0$&nbsp; für die Profile &nbsp;${\rm RA}$&nbsp; und &nbsp;${\rm TU}$&nbsp; an.
 
|type="{}"}
 
|type="{}"}
${\rm RA} \text{:} \hspace{0.4cm} \tau_0 \ = \ ${ 0.109 3% } $\ \rm \mu s$
+
${\rm RA} \text{:} \hspace{0.4cm} \tau_0 \ = \ ${ 0.109 3% } $\ \rm &micro; s$
${\rm TU} \text{:} \hspace{0.4cm} \tau_0 \ = \ ${ 1 3% } $\ \rm \mu s$
+
${\rm TU} \text{:} \hspace{0.4cm} \tau_0 \ = \ ${ 1 3% } $\ \rm &micro; s$
  
{Wie groß ist die Mehrwegeverbreiterung dieser Kanäle?
+
{Wie groß ist die Mehrwegeverbreiterung&nbsp; $T_{\rm V}$&nbsp; dieser Kanäle?
 
|type="{}"}
 
|type="{}"}
${\rm RA} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.109 3% } $\ \rm \mu s$
+
${\rm RA} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 0.109 3% } $\ \rm &micro; s$
${\rm TU} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 1 3% } $\ \rm \mu s$
+
${\rm TU} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 1 3% } $\ \rm &micro; s$
  
{Welche Kohärenzbandbreite stellen diese Kanäle bereit?
+
{Welche Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; stellen diese Kanäle bereit?
 
|type="{}"}
 
|type="{}"}
 
${\rm RA} \text{:} \hspace{0.4cm} B_{\rm K} \ = \ ${ 2500 3% } $\ \rm kHz$
 
${\rm RA} \text{:} \hspace{0.4cm} B_{\rm K} \ = \ ${ 2500 3% } $\ \rm kHz$
Zeile 64: Zeile 73:
  
 
{Bei welchem Kanal spielt Frequenzselektivität eine größere Rolle?
 
{Bei welchem Kanal spielt Frequenzselektivität eine größere Rolle?
|type="[]"}
+
|type="()"}
- Bei &bdquo;Rural Area&rdquo;.
+
- Bei &bdquo;Rural Area&rdquo; &nbsp;$({\rm RA})$.
+ Bei &bdquo;Typical Urban&rdquo;.
+
+ Bei &bdquo;Typical Urban&rdquo; &nbsp;$({\rm TU})$.
  
{Wie groß ist die (normierte) Leistungsdichte für &bdquo;Bad Urban&rdquo; und $\tau = 5.001 \ \rm \mu s$ bzw. $\tau = 4.999 \ \rm \mu s$?
+
{Wie groß ist die (normierte) Leistungsdichte für &bdquo;Bad Urban&rdquo;&nbsp; $({\rm BU})$ &nbsp; sowie &nbsp; $\tau = 5.001 \ \rm &micro; s$&nbsp; bzw.&nbsp; $\tau = 4.999 \ \rm &micro; s$?
 
|type="{}"}
 
|type="{}"}
${\rm BU} \text{:} \hspace{0.4cm} {\it \Phi}_{\rm V}(\tau = 5.001 \ \rm \mu s) \ = \ ${ 0.5 3% } $\ \cdot 10^0 \cdot {\it \Phi}_0$
+
${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm &micro; s) \ = \ ${ 0.5 3% } $\ \cdot {\it \Phi}_0$
$\hspace{1.175cm} {\it \Phi}_{\rm V}(\tau = 4.999 \ \rm \mu s) \ = \ ${ 6.74 3% } $\ \cdot 10^{&ndash;3} \cdot {\it \Phi}_0$
+
${\it \Phi}_{\rm V}(\tau = 4.999 \ \rm &micro; s) \ = \ ${ 0.00674 3% } $\ \cdot {\it \Phi}_0$
  
{Wir betrachten weiterhin ${\rm BU}$. Wie groß ist der prozentuale Leistungsanteil $P_1$ der Signalanteile zwischen $0$ und $5 \ \rm \mu s$?
+
{Wir betrachten weiterhin&nbsp; ${\rm BU}$. Wie groß ist der prozentuale Leistungsanteil&nbsp; $P_1$&nbsp; der Signalanteile zwischen&nbsp; $0$&nbsp; und&nbsp; $5 \ \rm &micro; s$?
 
|type="{}"}
 
|type="{}"}
${\rm BU} \text{:} \hspace{0.4cm} P_1/(P_1 + P_2) \ = \ ${ 66.7 3% } $\ \rm \%$
+
$P_1/(P_1 + P_2) \ = \ ${ 66.7 3% } $\ \rm \%$
  
{Berechnen Sie die Mehrwegeverbreiterung $T_{\rm V}$ des Profils &bdquo;${\rm BU}$&rdquo;. Hinweis: Die mittlere Laufzeit beträgt $m_{\rm V} = E[\tau] = 2.667 \ \rm \mu s$.
+
{Berechnen Sie die Mehrwegeverbreiterung&nbsp; $T_{\rm V}$&nbsp; des Profils&nbsp; ${\rm BU}$.&nbsp; ''Hinweis'':&nbsp; Die mittlere Laufzeit beträgt&nbsp; $m_{\rm V} = E[\hspace{0.03cm}\tau\hspace{0.03cm}] = 2.667 \ \rm &micro; s$.
 
|type="{}"}
 
|type="{}"}
${\rm BU} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ ${ 2.56 3% } $\ \rm \mu s$
+
$T_{\rm V} \ = \ ${ 2.56 3% } $\ \rm &micro; s$
 
</quiz>
 
</quiz>
  
Zeile 89: Zeile 98:
 
:$$\Rightarrow \hspace{0.3cm} {\rm lg}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{  \tau_{\rm 0}}]\right ] = -3
 
:$$\Rightarrow \hspace{0.3cm} {\rm lg}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{  \tau_{\rm 0}}]\right ] = -3
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{  \tau_{\rm 0}}]\right ] = -3 \cdot  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{  \tau_{\rm 0}}]\right ] = -3 \cdot  
  {\rm ln}\hspace{0.1cm}(10)$$
+
  {\rm ln}\hspace{0.1cm}(10)\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} \tau_{\rm 0} = \frac{\tau_{\rm -30}}{ 3 \cdot {\rm ln}\hspace{0.1cm}(10)}\approx \frac{\tau_{\rm -30}}{ 6.9}   
+
\Rightarrow \hspace{0.3cm} \tau_{\rm 0} = \frac{\tau_{\rm -30}}{ 3 \cdot {\rm ln}\hspace{0.1cm}(10)}\approx \frac{\tau_{\rm -30}}{ 6.9}   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Hierbei bezeichnet $\tau_{&ndash;30}$ die Verzögerungszeit, die zum logarithmischen Ordinatenwert $&ndash;30 \ \rm dB$ führt. Damit erhält man
+
Hierbei bezeichnet&nbsp; $\tau_{-30}$&nbsp; die Verzögerungszeit, die zum logarithmischen Ordinatenwert&nbsp; $-30 \ \rm dB$&nbsp; führt.&nbsp; Damit erhält man
* für ländlichen Gebiet (<i>Rural Area</i>, <b>RA</b>) mit $\tau_{&ndash;30} = 0.75 \ \rm \mu s$:
+
* für ländliches Gebiet&nbsp; $($<i>Rural Area</i>,&nbsp; $\rm RA)$&nbsp; mit&nbsp; $\tau_{&ndash;30} = 0.75 \ \rm &micro; s$:
:$$\tau_{\rm 0} = \frac{0.75\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm \mu s}}
+
:$$\tau_{\rm 0} = \frac{0.75\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm &micro; s}}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
* für Städte und Verbote (<i>Typical Urban</i>, <b>TU</b>) mit $\tau_{&ndash;30} = 6.9 \ \rm \mu s$:
+
* für Städte und Vororte&nbsp; $($<i>Typical Urban</i>,&nbsp; $\rm TU)$&nbsp; mit&nbsp; $\tau_{&ndash;30} = 6.9 \ \rm &micro; s$:
:$$\tau_{\rm 0} = \frac{6.9\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm \mu s}}
+
:$$\tau_{\rm 0} = \frac{6.9\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm &micro; s}}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
  
'''(2)'''&nbsp; In der [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe A2.7]] wurde gezeigt, dass die Mehrwegeverbreitung $T_{\rm V}$ gleich $\tau_0$ ist, wenn das Verzögerungs&ndash;Leistungsdichtespektrum entsprechend $\exp {(&ndash;\tau/\tau_0)}$ exponentiell abfällt. Es gilt demnach
 
* für &bdquo;Rural Area&rdquo;: $T_{\rm V} \ \underline {= 0.109 \ \rm \mu s}$,
 
* für &bdquo;Typical Urban&rdquo;: $T_{\rm V} \ \underline {= 1 \ \rm \mu s}$.
 
  
 +
'''(2)'''&nbsp; In der&nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe 2.7]]&nbsp; wurde gezeigt, dass die Mehrwegeverbreitung&nbsp; $T_{\rm V} =\tau_0$&nbsp; ist, wenn das Verzögerungs&ndash;Leistungsdichtespektrum entsprechend&nbsp; ${\rm e}^{-\tau/\tau_0}$&nbsp; exponentiell abfällt.&nbsp; Es gilt demnach
 +
* für &bdquo;Rural Area&rdquo;: $\hspace{0.4cm} T_{\rm V} \ \underline {= 0.109 \ \rm &micro; s}$,
 +
* für &bdquo;Typical Urban&rdquo;: $\hspace{0.4cm} T_{\rm V} \ \underline {= 1 \ \rm &micro; s}$.
 +
 +
 +
 +
 +
'''(3)'''&nbsp; In der&nbsp;  [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe A2.7]]&nbsp; wurde auch gezeigt, dass für die Kohärenzbandbreite&nbsp; $B_{\rm K} \approx 0.276/\tau_0$&nbsp; gilt.&nbsp; Daraus folgt:
 +
*$B_{\rm K} \ \underline {\approx 2500 \ \rm kHz}$&nbsp;  (&bdquo;Rural Area&rdquo;),
 +
* $B_{\rm K} \ \underline {\approx 276 \ \rm kHz}$&nbsp; (&bdquo;Typical Urban&rdquo;).
 +
 +
 +
 +
 +
'''(4)'''&nbsp; Richtig ist hier der <u>zweite Lösungsvorschlag</u>:
 +
*Frequenzselektivität des Mobilfunkkanals ist immer dann gegeben, wenn die Signalbandbreite $B_{\rm S}$ größer ist als die Kohärenzbandbreite&nbsp; $B_{\rm K}$ <br>(oder zumindest in der gleichen Größenordnung liegt).
 +
*Je kleiner&nbsp; $B_{\rm K}$&nbsp; ist, um so häufiger ist dies der Fall.
  
'''(3)'''&nbsp; In [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe A2.7]] wurde auch gezeigt, dass für die Kohärenzbandbreite $B_{\rm K} \approx 0.276/\tau_0$ gilt. Daraus folgt $B_{\rm K} \ \underline {\approx 2500 \ \rm kHz}$ (&bdquo;Rural Area&rdquo;) bzw. $B_{\rm K} \ \underline {\approx 276 \ \rm kHz}$ (&bdquo;Typical Union&rdquo;).
 
  
  
'''(4)'''&nbsp; Richtig ist hier der <u>zweite Lösungsvorschlag</u>. Frequenzselektivität des Mobilfunkkanals ist immer dann gegeben, wenn die Signalbandbreite $B_{\rm S}$ größer ist als die Kohärenzbandbreite $B_{\rm K}$ (oder zumindest in der gleichen Größenordnung liegt). Je kleiner $B_{\rm K}$ ist, um so häufiger ist dies der Fall.
 
  
 +
'''(5)'''&nbsp; Entsprechend der angegebenen Gleichung ist&nbsp; ${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm &micro; s)/{\it \Phi}_0 \hspace{0.15cm}\underline{\approx0.5}$.
 +
*Dagegen gilt für geringfügig kleineres&nbsp; $\tau$&nbsp; $($zum Beispiel&nbsp; $\tau = 4.999 \ \rm &micro; s)$&nbsp; mit guter Näherung:
 +
:$${{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}/{{\it \Phi}_{\rm 0}} = {\rm e}^{ -{4.999\,{\rm &micro; s}}/{ 1\,{\rm \mu s}}}
 +
\approx {\rm e}^{-5} \hspace{0.1cm}\underline {= 0.00674 }\hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Entsprechend der angegebenen Gleichung ist ${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm \mu s}/{\it \Phi}_0$ <u>näherungsweise $0.5$</u>. Dagegen gilt für geringfügig kleineres $\tau$ (z.B. $\tau = 4.999 \ \rm \mu s$) mit guter Näherung:
 
:$$\frac{{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}{{\it \Phi}_{\rm 0}} = {\rm exp}( -\frac{4.999\,{\rm \mu s}}{ 1\,{\rm \mu s}})
 
\approx {\rm exp}(-5) \hspace{0.1cm}\underline {= 6.74 \cdot 10^{-3}}\hspace{0.05cm}.$$
 
  
  
'''(6)'''&nbsp; Für die Leistung $P_1$ aller Signalanteile mit Verzögerungszeiten zwischen $0$ und $5 \ \rm \mu s$ gilt:
+
'''(6)'''&nbsp; Für die Leistung&nbsp; $P_1$&nbsp; aller Signalanteile mit Verzögerungszeiten zwischen&nbsp; $0$&nbsp; und&nbsp; $5 \ \rm &micro; s$&nbsp; gilt:
 
:$$P_1 =  {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}
 
:$$P_1 =  {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}
  {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  
+
  {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm e}^{ -{\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau  
 
  = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.$$
 
  = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.$$
  
Für den zweiten Anteil erhält man:
+
*Für den zweiten Anteil erhält man:
:$$P_2 =  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm \mu s}}^{\infty} {\rm exp}[ \frac{5\,{\rm \mu s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}  
+
:$$P_2 =  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm &micro; s}}^{\infty} {\rm exp}[ \frac{5\,{\rm &micro; s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm}  
 
  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  
 
  \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  
 
  = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}. $$
 
  = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}. $$
  
Dementsprechend beträgt der prozentuale Anteil des ersten Anteils:
+
[[Datei:P_ID2184__Mob_A_2_8f.png|right|frame|Verzögerungs–Leistungsdichte der COST–Profile &nbsp;${\rm BU}$&nbsp;  und &nbsp;${\rm HT}$]]
 +
*Der prozentuale Anteil des ersten Anteils beträgt:
 +
 
 
:$$\frac{P_1}{P_1+ P_2} =  \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.$$
 
:$$\frac{P_1}{P_1+ P_2} =  \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.$$
  
Die folgende Grafik zeigt ${\it \Phi}_{\rm V}(\tau)$ in linearem Maßstab. Eingezeichnet sind die Flächen $P_1$ und $P_2$. Die linke Abbildung gilt für &bdquo;Bad Urban&rdquo;, die rechte für &bdquo;Hilly Terrain&rdquo;. Bei Letzterem beträgt der Leistungsanteil aller späteren Echos (später als $15 \ \rm \mu s$) nur etwa $12\%$.
+
Die Grafik zeigt&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; in linearem Maßstab:
 +
*Eingezeichnet sind die Flächen&nbsp; $P_1$&nbsp; und&nbsp; $P_2$.  
 +
*Die linke Abbildung gilt für &nbsp;${\rm BU}$, die rechte für &nbsp;${\rm HT}$.  
 +
*Bei Letzterem beträgt der Leistungsanteil aller späteren Echos&nbsp; $($später als&nbsp; $15 \ \rm &micro; s)$&nbsp; nur etwa&nbsp; $12\%$.
 +
<br clear=all>
 +
'''(7)'''&nbsp; Die Fläche über das gesamte Leistungsdichtespektrum ergibt&nbsp; $P = 1.5 \cdot \phi_0 \cdot \tau_0$.
 +
*Normiert man&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; auf diesen Wert, so erhält man die Wahrscheinlichkeitsdichtefunktion&nbsp; $f_{\rm V}(\tau)$, wie in der nächsten Grafik dargestellt (linkes Diagramm).
  
[[Datei:P_ID2184__Mob_A_2_8f.png|center|frame|Verzögerungs–Leistungsdichte der COST–Profile „BU”  und „HT”]]
+
[[Datei:P_ID2185__Mob_A_2_8g.png|right|frame|Verzögerungs–WDF des Profils &nbsp;${\rm BU}$]]
  
 +
*Mit&nbsp; $\tau_0 = 1 \ \rm &micro; s$,&nbsp; $\tau_5 = 5 \ \rm &micro; s$&nbsp; ergibt sich für den linearen Mittelwert:
 +
:$$m_{\rm V}=  \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau$$
 +
:$$\Rightarrow \hspace{0.3cm}m_{\rm V}=  \frac{2}{3\tau_0} \cdot  \int_{0}^{\tau_5} \tau \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau \  + $$
 +
:$$ \hspace{1.7cm}+\  \frac{1}{3\tau_0} \cdot  \int_{\tau_5}^{\infty} \tau \cdot {\rm e}^{ (\tau_5 -\tau)/\tau_0}\hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}. $$
  
'''(7)'''&nbsp; Die Fläche über das gesamte Leistungsdichtespektrum ergibt $P = 1.5 \cdot \phi_0 \cdot \tau_0$. Normiert man ${\it \Phi}_{\rm V}(\tau)$ auf diesen Wert, so erhält man die Wahrscheinlichkeitsdichtefunktion $f_{\rm V}(\tau)$, wie in der nächsten Grafik dargestellt (linkes Diagramm).
+
*Das erste Integral ist nach der angegebenen Gleichung gleich&nbsp; $2\tau_0/3$.  
  
[[Datei:P_ID2185__Mob_A_2_8g.png|center|frame|Verzögerungs–WDF des Profils „BU”]]
+
*Mit der Substitution&nbsp; $\tau' = \tau \, -\tau_5$&nbsp; erhält man schließlich unter Verwendung der vorne angegebenen Integrallösungen:
 +
:$$m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} +  \frac{1}{3\tau_0}  \cdot  \int_{0}^{\infty} (\tau_5 + \tau') \cdot{\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' =  \frac{2\tau_0}{3} + 
 +
\frac{\tau_5}{3\tau_0}  \cdot  \int_{0}^{\infty} \cdot{\rm e}^{ - {\tau}'/{ \tau_0}}  \hspace{0.15cm}{\rm d} \tau ' +
 +
\frac{1}{3\tau_0}  \cdot  \int_{0}^{\infty} \tau' \cdot \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' $$
 +
:$$\Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2\tau_0}{3} +  \frac{\tau_5}{3}+  \frac{\tau_0}{3} = \tau_0 +  \frac{\tau_5}{3}
 +
\hspace{0.15cm}\underline {\approx 2.667\,{\rm &micro; s}}
 +
\hspace{0.05cm}. $$
  
Mit $\tau_0 = 1 \ \rm \mu s$ und $\tau_5 = 5 \ \rm \mu s$ ergibt sich somit für den linearen Mittelwert:
+
*Die Varianz&nbsp; $\sigma_{\rm V}^2$&nbsp; ist gleich dem quadratischen Mittelwert der mittelwertbefreiten Zufallsgröße&nbsp; $\theta = \tau \, &ndash;m_{\rm V}$, deren WDF in der rechten Grafik dargestellt ist.  
:$$m_{\rm V}=  \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau =  \frac{2}{3\tau_0} \cdot  \int_{0}^{\tau_5} \tau \cdot {\rm exp}[ - \frac{\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  +  \frac{1}{3\tau_0} \cdot  \int_{\tau_5}^{\infty} \tau \cdot {\rm exp}[ \frac{\tau_5 -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}. $$
+
*Daraus lässt sich&nbsp; $T_{\rm V} = \sigma_{\rm V}$&nbsp; angeben.
 
 
Das erste Interal ist nach der angegebenen Gleichung gleich $2\tau_0/3$. Mit der Substitution $\tau' = \tau \, &ndash;\tau_5$ erhält man schließlich unter Verwendung der vorne angegebenen Integrallösungen:
 
:$$m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} +  \frac{1}{3\tau_0}  \cdot  \int_{0}^{\infty} (\tau_5 + \tau') \cdot {\rm exp}[ -\frac{\tau '}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau ' = $$
 
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} + 
 
\frac{\tau_5}{3\tau_0}  \cdot  \int_{0}^{\infty}  {\rm exp}[ - \frac{\tau '}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau ' +
 
\frac{1}{3\tau_0}  \cdot  \int_{0}^{\infty} \tau' \cdot {\rm exp}[ - \frac{\tau '}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau ' =$$
 
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} +  \frac{\tau_5}{3}+  \frac{\tau_0}{3} = \tau_0 +  \frac{\tau_5}{3}
 
\hspace{0.15cm}\underline {\approx 2.667\,{\rm \mu s}}
 
\hspace{0.05cm}. $$
 
  
Die Varianz $\sigma_{\rm V}^2$ ist gleich dem quadratischen Mittelwert der mittelwertbefreiten Zufallsgröße $\theta = \tau \, &ndash;m_{\rm V}$, deren WDF in der rechten Grafik dargestellt ist. Daraus lässt sich $T_{\rm V} = \sigma_{\rm V}$ angeben.
 
  
Eine zweite Möglichkeit besteht darin, zunächst den quadratischen Mittelwert der Zufallsgröße $\tau$ zu berechnen und daraus die Varianz $\sigma_{\rm V}^2$ mit dem Satz von Steiner. Mit den bereits oben beschriebenen Substitutionen und Näherungen erhält man so:
+
Eine zweite Möglichkeit besteht darin, zunächst den quadratischen Mittelwert der Zufallsgröße $\tau$ zu berechnen und daraus die Varianz $\sigma_{\rm V}^2$ mit dem Satz von Steiner.  
:$$m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm}    \frac{2}{3\tau_0} \cdot  \int_{0}^{\infty} \tau^2 \cdot {\rm exp}[ - \frac{\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  +  \frac{1}{3\tau_0} \cdot  \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm exp}[ -\frac{\tau '}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau ' =$$
+
*Mit den bereits oben beschriebenen Substitutionen und Näherungen erhält man so:
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{2}{3} \cdot  \int_{0}^{\infty} \frac{\tau^2}{\tau_0} \cdot {\rm exp}[ - \frac{\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau  +  \frac{\tau_5^2}{3} \cdot  \int_{0}^{\infty} \frac{1}{\tau_0} \cdot {\rm exp}[ -\frac{\tau '}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau ' +$$
+
:$$m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm}    \frac{2}{3\tau_0} \cdot  \int_{0}^{\infty} \tau^2 \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau  +  \frac{1}{3\tau_0} \cdot  \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm e}^{ - {\tau}'/{ \tau_0}\hspace{0.15cm}{\rm d} \tau ' $$
:$$\hspace{-0.1cm} \ + \ \hspace{-0.1cm} \frac{2\tau_5}{3} \cdot  \int_{0}^{\infty} \frac{\tau '}{\tau_0} \cdot {\rm exp}[ -\frac{\tau '}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3} \cdot  \int_{0}^{\infty} \frac{{\tau '}^2}{\tau_0} \cdot {\rm exp}[ -\frac{\tau '}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau '
+
:$$\Rightarrow \hspace{0.3cm}m_{\rm V2} = \frac{2}{3} \cdot  \int_{0}^{\infty} \frac{\tau^2}{\tau_0} \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau  +  \frac{\tau_5^2}{3} \cdot  \int_{0}^{\infty} \frac{1}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' +\frac{2\tau_5}{3} \cdot  \int_{0}^{\infty} \frac{\tau '}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3} \cdot  \int_{0}^{\infty} \frac{{\tau '}^2}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau '
 
   \hspace{0.05cm}. $$
 
   \hspace{0.05cm}. $$
  
Mit den vorne angegebenen Integralen folgt daraus:
+
*Mit den vorne angegebenen Integralen folgt daraus:
 
:$$m_{\rm V2}  \approx  \frac{2}{3} \cdot 2 \tau_0^2 + \frac{\tau_5^2}{3} \cdot 1 + \frac{2\tau_5}{3} \cdot \tau_0 +   
 
:$$m_{\rm V2}  \approx  \frac{2}{3} \cdot 2 \tau_0^2 + \frac{\tau_5^2}{3} \cdot 1 + \frac{2\tau_5}{3} \cdot \tau_0 +   
 
  \frac{1}{3} \cdot 2 \tau_0^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3}  + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} $$
 
  \frac{1}{3} \cdot 2 \tau_0^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3}  + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} $$
 
:$$\Rightarrow \hspace{0.3cm} \sigma_{\rm V}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_{\rm V2} - m_{\rm V}^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3}  + \frac{2 \cdot \tau_0 \cdot \tau_5}{3}  
 
:$$\Rightarrow \hspace{0.3cm} \sigma_{\rm V}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_{\rm V2} - m_{\rm V}^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3}  + \frac{2 \cdot \tau_0 \cdot \tau_5}{3}  
- (\tau_0 +  \frac{\tau_5}{3})^2 =$$
+
- (\tau_0 +  \frac{\tau_5}{3})^2 =\tau_0^2 +  \frac{2\tau_5^2}{9} = (1\,{\rm &micro; s})^2 + \frac{2\cdot (5\,{\rm &micro; s})^2}{9} = 6.55\,({\rm &micro; s})^2$$
:$$\hspace{-0.1cm} \ = \ \hspace{-0.1cm}\tau_0^2 +  \frac{2\tau_5^2}{9} = (1\,{\rm \mu s})^2 + \frac{2\cdot (5\,{\rm \mu s})^2}{9} = 6.55\,({\rm \mu s})^2$$
+
:$$\Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm &micro; s}}\hspace{0.05cm}.$$
:$$\Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm \mu s}}\hspace{0.05cm}.$$
 
  
In obiger Grafik sind die Kenngrößen $T_{\rm V}$ und $\sigma_{\rm V}$ eingezeichnet.
+
In obiger Grafik sind diese Kenngrößen eingezeichnet.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 16. Februar 2021, 12:05 Uhr

COST–Verzögerungsmodelle

Rechts sind vier Verzögerungs–Leistungsdichtespektren als Funktion der Verzögerungszeit  $\tau$  logarithmisch aufgetragen:

$$10 \cdot {\rm lg}\hspace{0.15cm} [{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}] \hspace{0.05cm},$$

Hierbei ist als Abkürzung  $\phi_0 = \phi_{\rm V}(\tau = 0)$  verwendet.  Es handelt sich um die so genannten COST–Verzögerungsmodelle.

Die obere Skizze beinhaltet die beiden Profile  ${\rm RA}$  ("Rural Area") und  ${\rm TU}$  ("Typical Urban").  Für diese gilt folgender Verlauf:

$${{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.05cm}.$$

Der Wert des Parameters  $\tau_0$  (Zeitkonstante der AKF) soll in der Teilaufgabe  (1)  aus der Grafik ermittelt werden.  Beachten Sie hierzu die angegebenen  $\tau$–Werte für  $-30 \ \rm dB$:

$${\rm RA}\text{:}\hspace{0.15cm}\tau_{-30} = 0.75\,{\rm µ s} \hspace{0.05cm},\hspace{0.2cm} {\rm TU}\text{:}\hspace{0.15cm}\tau_{-30} = 6.9\,{\rm µ s} \hspace{0.05cm}. $$

Die untere Grafik gilt für ungünstigere Verhältnisse in

  • städtischen Gebieten  $($"Bad Urban",  ${\rm BU})$:
$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\ 0.5 \cdot {\rm e}^{ (5\,{\rm \mu s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.55cm} {\rm Bereich}\hspace{0.15cm}0 < \tau < 5\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}, \\ \hspace{-0.15cm} {\,\, \,\, \rm Bereich}\hspace{0.15cm}5\,{\rm µ s} < \tau < 10\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}, \end{array}$$
  • in ländlichen Gebieten  $($"Hilly Terrain",  ${\rm HT})$:
$${{\it \Phi}_{\rm V}(\tau)}/{{\it \Phi}_{\rm 0}} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0} \\ {0.04 \cdot \rm e}^{ (15\,{\rm \mu s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.55cm} {\rm Bereich}\hspace{0.15cm}0 < \tau < 2\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm µ s} \hspace{0.05cm}, \\ \hspace{-0.35cm} {\rm Bereich}\hspace{0.15cm}15\,{\rm µ s} < \tau < 20\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \end{array}$$


Für die Modelle   ${\rm RA}$,  ${\rm TU}$  und   ${\rm BU}$  sollen folgende Kenngrößen ermittelt werden:

  • Die  Mehrwegeverbreiterung  $T_{\rm V}$  ist die Standardabweichung der Verzögerungszeit  $\tau$.
    Hat das Verzögerungs–LDS  ${\it \Phi}_{\rm V}(\tau)$  einen exponentiellen Verlauf wie bei den Profilen  ${\rm RA}$  und  ${\rm TU}$, so gilt  $T_{\rm V} = \tau_0$, siehe  Aufgabe 2.7.
  • Die Kohärenzbandbreite  $B_{\rm K}$  ist der  $\Delta f$–Wert, bei dem die Frequenz–Korrelationsfunktion  $\varphi_{\rm F}(\Delta f)$  betragsmäßig erstmals auf die Hälfte abgefallen ist.
    Bei exponentiellem  ${\it \Phi}_{\rm V}(\tau)$  wie bei  ${\rm RA}$  und  ${\rm TU}$  ist das Produkt  $T_{\rm V} \cdot B_{\rm K} \approx 0.276$, siehe  Aufgabe 2.7.





Hinweise:

$$\frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\rm e}^{ -\tau / \tau_0} \hspace{0.15cm}{\rm d} \tau = 1 \hspace{0.05cm},\hspace{0.6cm} \frac{1}{\tau_0} \cdot \int_{0}^{\infty}\hspace{-0.15cm} {\tau} \cdot{\rm e}^{ -\tau / \tau_0}\hspace{0.15cm}{\rm d} \tau = \tau_0 \hspace{0.05cm},\hspace{0.6cm} \frac{1}{\tau_0} \cdot \int_{0}^{\infty} \hspace{-0.15cm}{\tau^2} \cdot{\rm e}^{ -\tau / \tau_0}\hspace{0.15cm}{\rm d} \tau = 2\tau_0^2\hspace{0.05cm}.$$


Fragebogen

1

Geben Sie den LDS–Parameter  $\tau_0$  für die Profile  ${\rm RA}$  und  ${\rm TU}$  an.

${\rm RA} \text{:} \hspace{0.4cm} \tau_0 \ = \ $

$\ \rm µ s$
${\rm TU} \text{:} \hspace{0.4cm} \tau_0 \ = \ $

$\ \rm µ s$

2

Wie groß ist die Mehrwegeverbreiterung  $T_{\rm V}$  dieser Kanäle?

${\rm RA} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$
${\rm TU} \text{:} \hspace{0.4cm} T_{\rm V} \ = \ $

$\ \rm µ s$

3

Welche Kohärenzbandbreite  $B_{\rm K}$  stellen diese Kanäle bereit?

${\rm RA} \text{:} \hspace{0.4cm} B_{\rm K} \ = \ $

$\ \rm kHz$
${\rm TU} \text{:} \hspace{0.4cm} B_{\rm K} \ = \ $

$\ \rm kHz$

4

Bei welchem Kanal spielt Frequenzselektivität eine größere Rolle?

Bei „Rural Area”  $({\rm RA})$.
Bei „Typical Urban”  $({\rm TU})$.

5

Wie groß ist die (normierte) Leistungsdichte für „Bad Urban”  $({\rm BU})$   sowie   $\tau = 5.001 \ \rm µ s$  bzw.  $\tau = 4.999 \ \rm µ s$?

${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm µ s) \ = \ $

$\ \cdot {\it \Phi}_0$
${\it \Phi}_{\rm V}(\tau = 4.999 \ \rm µ s) \ = \ $

$\ \cdot {\it \Phi}_0$

6

Wir betrachten weiterhin  ${\rm BU}$. Wie groß ist der prozentuale Leistungsanteil  $P_1$  der Signalanteile zwischen  $0$  und  $5 \ \rm µ s$?

$P_1/(P_1 + P_2) \ = \ $

$\ \rm \%$

7

Berechnen Sie die Mehrwegeverbreiterung  $T_{\rm V}$  des Profils  ${\rm BU}$.  Hinweis:  Die mittlere Laufzeit beträgt  $m_{\rm V} = E[\hspace{0.03cm}\tau\hspace{0.03cm}] = 2.667 \ \rm µ s$.

$T_{\rm V} \ = \ $

$\ \rm µ s$


Musterlösung

(1)  Aus der Grafik auf der Angabenseite erkennt man folgende Eigenschaft:

$$10 \cdot {\rm lg}\hspace{0.1cm} (\frac{{\it \Phi}_{\rm V}(\tau_{\rm -30})}{{\it \Phi}_0}) = 10 \cdot {\rm lg}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{ \tau_{\rm 0}}]\right ] \stackrel {!}{=} -30\,{\rm dB}$$
$$\Rightarrow \hspace{0.3cm} {\rm lg}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{ \tau_{\rm 0}}]\right ] = -3 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\left [{\rm exp}[ -\frac{\tau_{\rm -30}}{ \tau_{\rm 0}}]\right ] = -3 \cdot {\rm ln}\hspace{0.1cm}(10)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \tau_{\rm 0} = \frac{\tau_{\rm -30}}{ 3 \cdot {\rm ln}\hspace{0.1cm}(10)}\approx \frac{\tau_{\rm -30}}{ 6.9} \hspace{0.05cm}.$$

Hierbei bezeichnet  $\tau_{-30}$  die Verzögerungszeit, die zum logarithmischen Ordinatenwert  $-30 \ \rm dB$  führt.  Damit erhält man

  • für ländliches Gebiet  $($Rural Area,  $\rm RA)$  mit  $\tau_{–30} = 0.75 \ \rm µ s$:
$$\tau_{\rm 0} = \frac{0.75\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm µ s}} \hspace{0.05cm},$$
  • für Städte und Vororte  $($Typical Urban,  $\rm TU)$  mit  $\tau_{–30} = 6.9 \ \rm µ s$:
$$\tau_{\rm 0} = \frac{6.9\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm µ s}} \hspace{0.05cm},$$


(2)  In der  Aufgabe 2.7  wurde gezeigt, dass die Mehrwegeverbreitung  $T_{\rm V} =\tau_0$  ist, wenn das Verzögerungs–Leistungsdichtespektrum entsprechend  ${\rm e}^{-\tau/\tau_0}$  exponentiell abfällt.  Es gilt demnach

  • für „Rural Area”: $\hspace{0.4cm} T_{\rm V} \ \underline {= 0.109 \ \rm µ s}$,
  • für „Typical Urban”: $\hspace{0.4cm} T_{\rm V} \ \underline {= 1 \ \rm µ s}$.



(3)  In der  Aufgabe A2.7  wurde auch gezeigt, dass für die Kohärenzbandbreite  $B_{\rm K} \approx 0.276/\tau_0$  gilt.  Daraus folgt:

  • $B_{\rm K} \ \underline {\approx 2500 \ \rm kHz}$  („Rural Area”),
  • $B_{\rm K} \ \underline {\approx 276 \ \rm kHz}$  („Typical Urban”).



(4)  Richtig ist hier der zweite Lösungsvorschlag:

  • Frequenzselektivität des Mobilfunkkanals ist immer dann gegeben, wenn die Signalbandbreite $B_{\rm S}$ größer ist als die Kohärenzbandbreite  $B_{\rm K}$
    (oder zumindest in der gleichen Größenordnung liegt).
  • Je kleiner  $B_{\rm K}$  ist, um so häufiger ist dies der Fall.



(5)  Entsprechend der angegebenen Gleichung ist  ${\it \Phi}_{\rm V}(\tau = 5.001 \ \rm µ s)/{\it \Phi}_0 \hspace{0.15cm}\underline{\approx0.5}$.

  • Dagegen gilt für geringfügig kleineres  $\tau$  $($zum Beispiel  $\tau = 4.999 \ \rm µ s)$  mit guter Näherung:
$${{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}/{{\it \Phi}_{\rm 0}} = {\rm e}^{ -{4.999\,{\rm µ s}}/{ 1\,{\rm \mu s}}} \approx {\rm e}^{-5} \hspace{0.1cm}\underline {= 0.00674 }\hspace{0.05cm}.$$


(6)  Für die Leistung  $P_1$  aller Signalanteile mit Verzögerungszeiten zwischen  $0$  und  $5 \ \rm µ s$  gilt:

$$P_1 = {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm e}^{ -{\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.$$
  • Für den zweiten Anteil erhält man:
$$P_2 = \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm µ s}}^{\infty} {\rm exp}[ \frac{5\,{\rm µ s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}. $$
Verzögerungs–Leistungsdichte der COST–Profile  ${\rm BU}$  und  ${\rm HT}$
  • Der prozentuale Anteil des ersten Anteils beträgt:
$$\frac{P_1}{P_1+ P_2} = \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.$$

Die Grafik zeigt  ${\it \Phi}_{\rm V}(\tau)$  in linearem Maßstab:

  • Eingezeichnet sind die Flächen  $P_1$  und  $P_2$.
  • Die linke Abbildung gilt für  ${\rm BU}$, die rechte für  ${\rm HT}$.
  • Bei Letzterem beträgt der Leistungsanteil aller späteren Echos  $($später als  $15 \ \rm µ s)$  nur etwa  $12\%$.


(7)  Die Fläche über das gesamte Leistungsdichtespektrum ergibt  $P = 1.5 \cdot \phi_0 \cdot \tau_0$.

  • Normiert man  ${\it \Phi}_{\rm V}(\tau)$  auf diesen Wert, so erhält man die Wahrscheinlichkeitsdichtefunktion  $f_{\rm V}(\tau)$, wie in der nächsten Grafik dargestellt (linkes Diagramm).
Verzögerungs–WDF des Profils  ${\rm BU}$
  • Mit  $\tau_0 = 1 \ \rm µ s$,  $\tau_5 = 5 \ \rm µ s$  ergibt sich für den linearen Mittelwert:
$$m_{\rm V}= \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau$$
$$\Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2}{3\tau_0} \cdot \int_{0}^{\tau_5} \tau \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau \ + $$
$$ \hspace{1.7cm}+\ \frac{1}{3\tau_0} \cdot \int_{\tau_5}^{\infty} \tau \cdot {\rm e}^{ (\tau_5 -\tau)/\tau_0}\hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}. $$
  • Das erste Integral ist nach der angegebenen Gleichung gleich  $2\tau_0/3$.
  • Mit der Substitution  $\tau' = \tau \, -\tau_5$  erhält man schließlich unter Verwendung der vorne angegebenen Integrallösungen:
$$m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau') \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' = \frac{2\tau_0}{3} + \frac{\tau_5}{3\tau_0} \cdot \int_{0}^{\infty} \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} \tau' \cdot \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' $$
$$\Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2\tau_0}{3} + \frac{\tau_5}{3}+ \frac{\tau_0}{3} = \tau_0 + \frac{\tau_5}{3} \hspace{0.15cm}\underline {\approx 2.667\,{\rm µ s}} \hspace{0.05cm}. $$
  • Die Varianz  $\sigma_{\rm V}^2$  ist gleich dem quadratischen Mittelwert der mittelwertbefreiten Zufallsgröße  $\theta = \tau \, –m_{\rm V}$, deren WDF in der rechten Grafik dargestellt ist.
  • Daraus lässt sich  $T_{\rm V} = \sigma_{\rm V}$  angeben.


Eine zweite Möglichkeit besteht darin, zunächst den quadratischen Mittelwert der Zufallsgröße $\tau$ zu berechnen und daraus die Varianz $\sigma_{\rm V}^2$ mit dem Satz von Steiner.

  • Mit den bereits oben beschriebenen Substitutionen und Näherungen erhält man so:
$$m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm} \frac{2}{3\tau_0} \cdot \int_{0}^{\infty} \tau^2 \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' $$
$$\Rightarrow \hspace{0.3cm}m_{\rm V2} = \frac{2}{3} \cdot \int_{0}^{\infty} \frac{\tau^2}{\tau_0} \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{\tau_5^2}{3} \cdot \int_{0}^{\infty} \frac{1}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' +\frac{2\tau_5}{3} \cdot \int_{0}^{\infty} \frac{\tau '}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3} \cdot \int_{0}^{\infty} \frac{{\tau '}^2}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' \hspace{0.05cm}. $$
  • Mit den vorne angegebenen Integralen folgt daraus:
$$m_{\rm V2} \approx \frac{2}{3} \cdot 2 \tau_0^2 + \frac{\tau_5^2}{3} \cdot 1 + \frac{2\tau_5}{3} \cdot \tau_0 + \frac{1}{3} \cdot 2 \tau_0^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} $$
$$\Rightarrow \hspace{0.3cm} \sigma_{\rm V}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_{\rm V2} - m_{\rm V}^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} - (\tau_0 + \frac{\tau_5}{3})^2 =\tau_0^2 + \frac{2\tau_5^2}{9} = (1\,{\rm µ s})^2 + \frac{2\cdot (5\,{\rm µ s})^2}{9} = 6.55\,({\rm µ s})^2$$
$$\Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm µ s}}\hspace{0.05cm}.$$

In obiger Grafik sind diese Kenngrößen eingezeichnet.