Aufgaben:Aufgabe 3.1Z: Faltungscodes der Rate 1/2: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Grundlagen der Faltungscodierung}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Grundlagen der Faltungscodierung}}
  
[[Datei:P_ID2589__KC_Z_3_1.png|right|frame|Zwei Faltungscodes der Rate 1/2]]
+
[[Datei:P_ID2589__KC_Z_3_1.png|right|frame|Zwei Faltungscodes der Rate  $1/2$]]
Die Grafik zeigt zwei Faltungscodierer der Rate $R = 1/2$. Am Eingang liegt die Informationssequenz $\underline {u} = (u_1, u_2, \ ... \ , u_i, \ ...$) an. Hieraus werden durch Modulo–2–Operationen die beiden Sequenzen
+
Die Grafik zeigt zwei Faltungscodierer der Rate  $R = 1/2$. 
:$$\underline{\it x}^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm},\hspace{0.05cm} 
+
*Am Eingang liegt die Informationssequenz  $\underline {u} = (u_1, u_2, \ \text{...} \ , u_i, \ \text{...})$  an.  
x_i^{(1)} \hspace{0.05cm}, ... \hspace{0.05cm} \big )\hspace{0.05cm},$$
 
:$$\underline{\it x}^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \big( \hspace{0.05cm}x_1^{(2)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm},\hspace{0.05cm} 
 
x_i^{(2)} \hspace{0.05cm}, ...  \hspace{0.05cm} \big )$$
 
  
erzeugt, wobei $x_i^{(j)}$ mit $j = 1$ bzw. $j = 2$ außer von $u_i$ auch von den vorherigen Informationsbits $u_{i&ndash;1}, \ ... \ , u_{i&ndash;m}$ abhängen kann. Man bezeichnet $m$ als das Gedächtnis und $\nu = m + 1$ als die Einflusslänge des Codes bzw. des Codierers. Die betrachteten Coder <span style="color: rgb(204, 0, 0);"><b>A</b></span> und <span style="color: rgb(204, 0, 0);"><b>B</b></span> unterscheiden sich hinsichtlich dieser Größen.
+
*Hieraus werden durch Modulo&ndash;2&ndash;Operationen die beiden Sequenzen erzeugt:
 +
:$$\underline{\it x}^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm},\hspace{0.05cm} 
 +
x_i^{(1)} \hspace{0.05cm},\text{...} \hspace{0.05cm} \big )\hspace{0.05cm},$$
 +
:$$\underline{\it x}^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \big( \hspace{0.05cm}x_1^{(2)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm},\hspace{0.05cm} 
 +
x_i^{(2)} \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big ).$$
  
In der Grafik nicht dargestellt ist das Multiplexen der beiden Teilsequenzen $\underline {x}^{(1)}$ und $\underline {x}^{(2)}$ zur resultierenden Codesequenz $\underline {x} = (x_1^{(1)}, x_1^{(2)}, x_2^{(1)}, x_2^{(2)}, \ ...)$.  
+
Die Sequenzen&nbsp; $x_i^{(j)}$&nbsp; mit&nbsp; $j = 1$&nbsp; bzw.&nbsp; $j = 2$&nbsp; können außer von&nbsp; $u_i$&nbsp; auch von früheren Info&ndash;Bits&nbsp; $u_{i-1}, \ \text{...} \ , u_{i-m}$&nbsp; abhängen.&nbsp;
 +
*Man bezeichnet&nbsp; $m$&nbsp; als das Gedächtnis und&nbsp; $\nu = m + 1$&nbsp; als die Einflusslänge des Codes bzw. des Codierers.  
  
In den Teilaufgaben (3) bis (5) sollen Sie den jeweiligen Beginn der Sequenzen $\underline {x}^{(1)}, \underline{x}^{(2)}$ und $\underline{x}$ ermitteln, wobei von der Informationssequenz $\underline{u} = (1, 0, 1, 1, 0, 0, \ ...)$ auszugehen ist.  
+
*Die betrachteten Coder &nbsp;$\rm A$&nbsp; und &nbsp;$\rm B$&nbsp; unterscheiden sich hinsichtlich dieser Größen.
  
''Hinweise:''
+
 
* Die Aufgabe bezieht sich auf das Themengebiet des Kapitels [[Kanalcodierung/Grundlagen_der_Faltungscodierung| Grundlagen der Faltungscodierung]].
+
 
* Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.$$
+
 
 +
 
 +
Hinweise:
 +
* Die Aufgabe bezieht sich auf das Kapitel&nbsp; [[Kanalcodierung/Grundlagen_der_Faltungscodierung| "Grundlagen der Faltungscodierung"]].
 +
 
 +
*In der Grafik nicht dargestellt ist das Multiplexen der beiden Teilsequenzen&nbsp; $\underline {x}^{(1)}$&nbsp; und&nbsp; $\underline {x}^{(2)}$&nbsp; zur resultierenden Codesequenz&nbsp;  
 +
:$$\underline {x} = (x_1^{(1)}, x_1^{(2)}, x_2^{(1)}, x_2^{(2)}, \ \text{...}).$$
 +
*In den Teilaufgaben&nbsp; '''(3)'''&nbsp; bis&nbsp; '''(5)'''&nbsp; sollen Sie den jeweiligen Beginn der Sequenze&nbsp; $\underline {x}^{(1)}, \underline{x}^{(2)}$&nbsp; und&nbsp; $\underline{x}$&nbsp; ermitteln,&nbsp; wobei von der Informationssequenz&nbsp; $\underline{u} = (1, 0, 1, 1, 0, 0, \ \text{...})$&nbsp; auszugehen ist.  
  
  
Zeile 22: Zeile 31:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{In welchen Codeparametern unterscheiden sich Coder &nbsp;$\rm A$&nbsp; und Coder &nbsp;$\rm B$?
 +
|type="[]"}
 +
- $k$: &nbsp; &nbsp; Anzahl der pro Codierschritt verarbeiteten Informationsbits,
 +
- $n$: &nbsp; &nbsp; Anzahl der pro Codierschritt ausgegebenen Codebits,
 +
+ $m$: &nbsp; Gedächtnisordnung des Codes bzw. des Coders,
 +
+ $\nu$: &nbsp; &nbsp; Einflusslänge des Codes.
 +
 
 +
{Welcher Coder weist das Gedächtnis&nbsp; $m = 2$&nbsp; auf?
 
|type="[]"}
 
|type="[]"}
+ correct
+
- Coder &nbsp;$\rm A$,
- false
+
+ Coder &nbsp;$\rm B$.
 +
 
 +
{Wie lautet die Teilcodesequenz&nbsp; $\underline {x}^{(1)}$&nbsp; von Coder &nbsp;$\rm B$&nbsp; für&nbsp; $\underline {u} = (1, 0, 1, 1, 0, 0, \ \text{...})$?
 +
|type="()"}
 +
+ $\underline {x}^{(1)} = (1, 1, 0, 0, 0, 1, 0, 0, \ ...)$,
 +
- $\underline {x}^{(1)} = (1, 0, 1, 1, 0, 0, 0, 0, \ ...)$.
 +
 
 +
{Wie lautet die Teilcodesequenz&nbsp; $\underline{x}^{(2)}$&nbsp; von Coder &nbsp;$\rm B$&nbsp; für&nbsp; $\underline {u} = (1, 0, 1, 1, 0, 0, \ \text{...})$
 +
|type="()"}
 +
- $\underline{x}^{(2)} = (1, 1, 0, 0, 0, 1, 0, 0, \ \text{...})$,
 +
+ $\underline{x}^{(2)} = (1, 0, 0, 1, 1, 1, 0, 0, \ \text{...})$.
  
{Input-Box Frage
+
{Wie beginnt die gesamte Codesequenz&nbsp; $\underline {x}$&nbsp; von von Coder &nbsp;$\rm B$&nbsp; nach Multiplexing?
|type="{}"}
+
|type="()"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
+ $\underline {x} = (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, \ \text{...})$,
 +
- $\underline {x} = (1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, \ \text{...})$.
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Für beide Coder gilt&nbsp; $k = 1$&nbsp; und&nbsp; $n = 2$.
'''(2)'''&nbsp;  
+
*Das Gedächtnis&nbsp; $m$&nbsp; und die Einflusslänge&nbsp; $\nu$&nbsp; sind unterschiedlich &nbsp; &#8658; &nbsp; <u>Antworten 3 und 4</u>.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
'''(2)'''&nbsp; Das Schieberegister von Coder &nbsp;$\rm A$&nbsp; beinhaltet zwar zwei Speicherzellen.
 +
 
 +
Da aber &nbsp; $x_i^{(1)} = u_i$ ist &nbsp; und &nbsp; $x_i^{(2)} = u_i + u_{i-1}$ &nbsp; außer vom aktuellen Informationsbit&nbsp; $u_i$&nbsp; nur noch vom unmittelbar vorherigen Bit&nbsp; $u_{i-1}$&nbsp; beeinflusst wird,&nbsp; ist
 +
[[Datei:P_ID2599__KC_Z_3_1b.png|right|frame|Äquivalente Coder–Darstellungen]]
 +
 +
*das Gedächtnis&nbsp; $m = 1$,&nbsp; und
 +
 +
*die Einflusslänge $\nu = m + 1 = 2$.
 +
 
 +
 
 +
Die Grafik zeigt die beiden Coder in anderer Darstellung,&nbsp; wobei die &bdquo;Gedächtnis&ndash;Speicherzellen&rdquo; gelb hinterlegt sind.
 +
*Beim Coder &nbsp;$\rm A$&nbsp; gibt es nur einen solchen Speicher &nbsp; &#8658; &nbsp; $m = 1$.
 +
 +
*Dagegen gilt für den Coder &nbsp;$\rm B$&nbsp; tatsächlich&nbsp; $m = 2$&nbsp; und&nbsp; $\nu = 3$.&nbsp; Richtig ist demnach der <u>Lösungsvorschlag 2</u>.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Für den oberen Ausgang von Coder &nbsp;$\rm B$&nbsp; gilt allgemein:
 +
:$$x_i^{(1)} = u_{i} + u_{i-1}+ u_{i-2} \hspace{0.05cm}.$$
 +
 
 +
*Unter Berücksichtigung der Vorbelegung&nbsp; $(u_0 = u_{-1} = 0)$&nbsp; erhält man mit den obigen Angaben:
 +
:$$x_1^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{1} + u_{0}+ u_{-1} = 1+0+0 = 1 \hspace{0.05cm},\hspace{1cm}x_2^{(1)} = u_{2} + u_{1}+ u_{0} = 0+1+0 = 1\hspace{0.05cm},$$
 +
:$$x_3^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{3} + u_{2}+ u_{1} \hspace{0.25cm}= 1+0+1 = 0 \hspace{0.05cm},\hspace{1cm}x_4^{(1)} = u_{4} + u_{3}+ u_{2} = 1+1+0 = 0\hspace{0.05cm},$$
 +
:$$x_5^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{5} + u_{4}+ u_{3} \hspace{0.25cm}= 0+1+1 = 0 \hspace{0.05cm},\hspace{1cm}x_6^{(1)} = u_{6} + u_{5}+ u_{4} = 0+0+1 = 1\hspace{0.05cm},$$
 +
:$$x_7^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x_8^{(1)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
 +
 
 +
*Richtig ist somit der&nbsp; <u>Lösungsvorschlag 1</u>.
 +
 
 +
*Der zweite Lösungsvorschlag &nbsp; &#8658; &nbsp; $\underline {x}^{(1)} = \underline {u}$&nbsp; würde dagegen nur bei einem systematischen Code gelten (der hier nicht vorliegt).
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(3)'''&nbsp; erhält man mit&nbsp; $x_i^{(2)} = u_i + u_{i&ndash;2}$:
 +
:$$x_1^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  1+0 = 1 \hspace{0.05cm},\hspace{0.2cm}x_2^{(2)} = 0+0 = 0\hspace{0.05cm},
 +
\hspace{0.2cm}x_3^{(3)} = 1+1 = 0\hspace{0.05cm},\hspace{0.2cm}x_4^{(2)} =  1+0 = 1 \hspace{0.05cm},$$
 +
:$$x_5^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  0+1 = 1\hspace{0.05cm},
 +
\hspace{0.2cm}x_6^{(2)} = 0+1 = 1\hspace{0.05cm},\hspace{0.2cm}
 +
x_7^{(2)} = x_8^{(2)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
 +
 
 +
*Richtig ist demnach der&nbsp; <u>Lösungsvorschlag 2</u>.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Für die&nbsp; (gesamte)&nbsp; Codesequenz kann man formal schreiben:
 +
:$$\underline{\it x} =  \big( \hspace{0.05cm}\underline{\it x}_1\hspace{0.05cm}, \hspace{0.05cm} \underline{\it x}_2\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.05cm}  \underline{\it x}_i \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}, \hspace{0.3cm}  \underline{\it x}_i = \big( x_i^{(1)}\hspace{0.05cm}, x_i^{(2)} \big)
 +
\hspace{0.4cm}\Rightarrow \hspace{0.4cm} \underline{\it x} =  \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_1^{(2)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.01cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}. $$
 +
 
 +
*Ein Vergleich mit den Lösungen der Aufgaben&nbsp; '''(3)'''&nbsp; und&nbsp; '''(4)'''&nbsp; zeigt die Richtigkeit von&nbsp; <u>Lösungsvorschlag 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Aufgaben zu  Kanalcodierung|^3.1 Grundlagen der Faltungscodierung^]]
 
[[Category:Aufgaben zu  Kanalcodierung|^3.1 Grundlagen der Faltungscodierung^]]

Aktuelle Version vom 8. November 2022, 10:38 Uhr

Zwei Faltungscodes der Rate  $1/2$

Die Grafik zeigt zwei Faltungscodierer der Rate  $R = 1/2$. 

  • Am Eingang liegt die Informationssequenz  $\underline {u} = (u_1, u_2, \ \text{...} \ , u_i, \ \text{...})$  an.
  • Hieraus werden durch Modulo–2–Operationen die beiden Sequenzen erzeugt:
$$\underline{\it x}^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm},\hspace{0.05cm} x_i^{(1)} \hspace{0.05cm},\text{...} \hspace{0.05cm} \big )\hspace{0.05cm},$$
$$\underline{\it x}^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( \hspace{0.05cm}x_1^{(2)}\hspace{0.05cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm},\hspace{0.05cm} x_i^{(2)} \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big ).$$

Die Sequenzen  $x_i^{(j)}$  mit  $j = 1$  bzw.  $j = 2$  können außer von  $u_i$  auch von früheren Info–Bits  $u_{i-1}, \ \text{...} \ , u_{i-m}$  abhängen. 

  • Man bezeichnet  $m$  als das Gedächtnis und  $\nu = m + 1$  als die Einflusslänge des Codes bzw. des Codierers.
  • Die betrachteten Coder  $\rm A$  und  $\rm B$  unterscheiden sich hinsichtlich dieser Größen.



Hinweise:

  • In der Grafik nicht dargestellt ist das Multiplexen der beiden Teilsequenzen  $\underline {x}^{(1)}$  und  $\underline {x}^{(2)}$  zur resultierenden Codesequenz 
$$\underline {x} = (x_1^{(1)}, x_1^{(2)}, x_2^{(1)}, x_2^{(2)}, \ \text{...}).$$
  • In den Teilaufgaben  (3)  bis  (5)  sollen Sie den jeweiligen Beginn der Sequenze  $\underline {x}^{(1)}, \underline{x}^{(2)}$  und  $\underline{x}$  ermitteln,  wobei von der Informationssequenz  $\underline{u} = (1, 0, 1, 1, 0, 0, \ \text{...})$  auszugehen ist.


Fragebogen

1

In welchen Codeparametern unterscheiden sich Coder  $\rm A$  und Coder  $\rm B$?

$k$:     Anzahl der pro Codierschritt verarbeiteten Informationsbits,
$n$:     Anzahl der pro Codierschritt ausgegebenen Codebits,
$m$:   Gedächtnisordnung des Codes bzw. des Coders,
$\nu$:     Einflusslänge des Codes.

2

Welcher Coder weist das Gedächtnis  $m = 2$  auf?

Coder  $\rm A$,
Coder  $\rm B$.

3

Wie lautet die Teilcodesequenz  $\underline {x}^{(1)}$  von Coder  $\rm B$  für  $\underline {u} = (1, 0, 1, 1, 0, 0, \ \text{...})$?

$\underline {x}^{(1)} = (1, 1, 0, 0, 0, 1, 0, 0, \ ...)$,
$\underline {x}^{(1)} = (1, 0, 1, 1, 0, 0, 0, 0, \ ...)$.

4

Wie lautet die Teilcodesequenz  $\underline{x}^{(2)}$  von Coder  $\rm B$  für  $\underline {u} = (1, 0, 1, 1, 0, 0, \ \text{...})$

$\underline{x}^{(2)} = (1, 1, 0, 0, 0, 1, 0, 0, \ \text{...})$,
$\underline{x}^{(2)} = (1, 0, 0, 1, 1, 1, 0, 0, \ \text{...})$.

5

Wie beginnt die gesamte Codesequenz  $\underline {x}$  von von Coder  $\rm B$  nach Multiplexing?

$\underline {x} = (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, \ \text{...})$,
$\underline {x} = (1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, \ \text{...})$.


Musterlösung

(1)  Für beide Coder gilt  $k = 1$  und  $n = 2$.

  • Das Gedächtnis  $m$  und die Einflusslänge  $\nu$  sind unterschiedlich   ⇒   Antworten 3 und 4.


(2)  Das Schieberegister von Coder  $\rm A$  beinhaltet zwar zwei Speicherzellen.

Da aber   $x_i^{(1)} = u_i$ ist   und   $x_i^{(2)} = u_i + u_{i-1}$   außer vom aktuellen Informationsbit  $u_i$  nur noch vom unmittelbar vorherigen Bit  $u_{i-1}$  beeinflusst wird,  ist

Äquivalente Coder–Darstellungen
  • das Gedächtnis  $m = 1$,  und
  • die Einflusslänge $\nu = m + 1 = 2$.


Die Grafik zeigt die beiden Coder in anderer Darstellung,  wobei die „Gedächtnis–Speicherzellen” gelb hinterlegt sind.

  • Beim Coder  $\rm A$  gibt es nur einen solchen Speicher   ⇒   $m = 1$.
  • Dagegen gilt für den Coder  $\rm B$  tatsächlich  $m = 2$  und  $\nu = 3$.  Richtig ist demnach der Lösungsvorschlag 2.


(3)  Für den oberen Ausgang von Coder  $\rm B$  gilt allgemein:

$$x_i^{(1)} = u_{i} + u_{i-1}+ u_{i-2} \hspace{0.05cm}.$$
  • Unter Berücksichtigung der Vorbelegung  $(u_0 = u_{-1} = 0)$  erhält man mit den obigen Angaben:
$$x_1^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{1} + u_{0}+ u_{-1} = 1+0+0 = 1 \hspace{0.05cm},\hspace{1cm}x_2^{(1)} = u_{2} + u_{1}+ u_{0} = 0+1+0 = 1\hspace{0.05cm},$$
$$x_3^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{3} + u_{2}+ u_{1} \hspace{0.25cm}= 1+0+1 = 0 \hspace{0.05cm},\hspace{1cm}x_4^{(1)} = u_{4} + u_{3}+ u_{2} = 1+1+0 = 0\hspace{0.05cm},$$
$$x_5^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{5} + u_{4}+ u_{3} \hspace{0.25cm}= 0+1+1 = 0 \hspace{0.05cm},\hspace{1cm}x_6^{(1)} = u_{6} + u_{5}+ u_{4} = 0+0+1 = 1\hspace{0.05cm},$$
$$x_7^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x_8^{(1)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
  • Richtig ist somit der  Lösungsvorschlag 1.
  • Der zweite Lösungsvorschlag   ⇒   $\underline {x}^{(1)} = \underline {u}$  würde dagegen nur bei einem systematischen Code gelten (der hier nicht vorliegt).


(4)  Analog zur Teilaufgabe  (3)  erhält man mit  $x_i^{(2)} = u_i + u_{i–2}$:

$$x_1^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1+0 = 1 \hspace{0.05cm},\hspace{0.2cm}x_2^{(2)} = 0+0 = 0\hspace{0.05cm}, \hspace{0.2cm}x_3^{(3)} = 1+1 = 0\hspace{0.05cm},\hspace{0.2cm}x_4^{(2)} = 1+0 = 1 \hspace{0.05cm},$$
$$x_5^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0+1 = 1\hspace{0.05cm}, \hspace{0.2cm}x_6^{(2)} = 0+1 = 1\hspace{0.05cm},\hspace{0.2cm} x_7^{(2)} = x_8^{(2)} = \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm}.$$
  • Richtig ist demnach der  Lösungsvorschlag 2.


(5)  Für die  (gesamte)  Codesequenz kann man formal schreiben:

$$\underline{\it x} = \big( \hspace{0.05cm}\underline{\it x}_1\hspace{0.05cm}, \hspace{0.05cm} \underline{\it x}_2\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.05cm} \underline{\it x}_i \hspace{0.05cm}, \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}, \hspace{0.3cm} \underline{\it x}_i = \big( x_i^{(1)}\hspace{0.05cm}, x_i^{(2)} \big) \hspace{0.4cm}\Rightarrow \hspace{0.4cm} \underline{\it x} = \big( \hspace{0.05cm}x_1^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(1)}\hspace{0.01cm},\hspace{0.05cm} x_1^{(2)}\hspace{0.01cm},\hspace{0.05cm} x_2^{(2)}\hspace{0.01cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm} \big )\hspace{0.05cm}. $$
  • Ein Vergleich mit den Lösungen der Aufgaben  (3)  und  (4)  zeigt die Richtigkeit von  Lösungsvorschlag 1.