Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(32 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
  
== Zustandsdefinition für ein Speicherregister (1) ==
+
== Zustandsdefinition für ein Speicherregister ==
 
<br>
 
<br>
Ein Faltungscodierer kann auch als Automat mit endlicher Anzahl von Zuständen aufgefasst werden. Die Zustandsanzahl ergibt sich dabei aus der Zahl der Speicherelemente &nbsp;&#8658;&nbsp; Gedächtnis $m$ zu $2^m$.<br>
+
Ein Faltungscodierer kann auch als Automat mit endlicher Anzahl von Zuständen aufgefasst werden. Die Zustandsanzahl ergibt sich aus der Zahl der Speicherelemente &nbsp; &#8658; &nbsp; Gedächtnis&nbsp; $m$&nbsp; dabei zu&nbsp; $2^m$.<br>
  
[[Datei:P ID2630 KC T 3 3 S1 v2.png|Faltungscodierer mit <i>k</i> = 1, <i>n</i> = 2 und <i>m</i> = 2|class=fit]]<br>
+
[[Datei:P ID2630 KC T 3 3 S1 v2.png|right|frame|Faltungscodierer mit&nbsp; $k = 1, \ n = 2, \ m = 2$|class=fit]]
  
Im Kapitel 3.3 gehen wir meist vom gezeichneten Faltungscodierer aus, der durch folgende Kenngrößen charakterisiert wird:
+
In diesem Kapitel gehen wir meist vom gezeichneten Faltungscodierer aus, der durch folgende Kenngrößen charakterisiert wird:
*$k = 1, \ n = 2$ &nbsp;&#8658;&nbsp; Coderate $R = 1/2$,<br>
+
*$k = 1, \ n = 2$ &nbsp; &#8658; &nbsp; Coderate $R = 1/2$,<br>
  
*Gedächtnis $m = 2$ &nbsp;&#8658;&nbsp; Einflusslänge $\nu = 3$,<br>
+
*Gedächtnis&nbsp; $m = 2$ &nbsp; &#8658; &nbsp; Einflusslänge $\nu = 3$,<br>
  
*Übertragungsfunktionsmatrix in Oktalform $(7, 5)$ &nbsp;&#8658;&nbsp; $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$.<br><br>
+
*Übertragungsfunktionsmatrix in Oktalform&nbsp; $(7, 5)$:
 +
:$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2).$$
  
Die Codesequenz zum Zeitpunkt $i$ &nbsp;&#8658;&nbsp; $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$ hängt außer vom Informationsbit $u_i$ auch vom Inhalt $(u_{i&ndash;1}), \ u_{i&ndash;2})$ des Speichers ab. Hierfür gibt es $2^m = 4$ Möglichkeiten, die man als die Zustände $S_0, S_1, S_2$ und $S_3$ bezeichnet. Der Registerzustand $S_{\mu}$ sei dabei über den Index definiert:
+
Die Codesequenz zum Zeitpunkt&nbsp; $i$ &nbsp; &#8658; &nbsp; $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$&nbsp; hängt außer vom Informationsbit&nbsp; $u_i$&nbsp; auch vom Inhalt&nbsp; $(u_{i-1}, \ u_{i-2})$&nbsp; des Speichers ab.  
 +
*Hierfür gibt es&nbsp; $2^m = 4$&nbsp; Möglichkeiten, nämlich die Zustände&nbsp; $S_0, \ S_1, \ S_2$&nbsp; und&nbsp; $S_3$.  
 +
*Der Registerzustand&nbsp; $S_{\mu}$&nbsp; sei dabei über den Index definiert:
  
:<math>\mu =  u_{i-1} + 2 \cdot u_{i-2}\hspace{0.05cm}, \hspace{0.5cm}{\rm allgemein\hspace{-0.1cm}:}\hspace{0.15cm}
+
::<math>\mu =  u_{i-1} + 2 \cdot u_{i-2}\hspace{0.05cm}, \hspace{0.5cm}{\rm allgemein\hspace{-0.1cm}:}\hspace{0.15cm}
 
\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l}
 
\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Im Englischen verwendet man für &bdquo;Zustand&rdquo; den Begriff <i>State</i>. Entsprechend ist auch im deutschen Text manchmal vom <i>Registerstatus</i> die Rede.<br>
+
Im Englischen verwendet man für &bdquo;Zustand&rdquo; den Begriff &bdquo;State&rdquo;. Deshalb ist auch im deutschen Text manchmal vom <i>Registerstatus</i>&nbsp; die Rede.<br>
  
 
Um Verwechslungen zu vermeiden, unterscheiden wir im Weiteren durch Groß&ndash; bzw. Kleinbuchstaben:
 
Um Verwechslungen zu vermeiden, unterscheiden wir im Weiteren durch Groß&ndash; bzw. Kleinbuchstaben:
*die möglichen Zustände $S_{\mu}$ mit den Indizes $0 &#8804; \mu &#8804; 2^m \,&ndash;1$,<br>
+
*die möglichen Zustände&nbsp; $S_{\mu}$&nbsp; mit den Indizes&nbsp; $0 &#8804; \mu &#8804; 2^m \,-1$,<br>
  
*die aktuellen Zustände $s_i$ zu den Zeitpunkten $i = 1, \ 2, \ 3, \ ...$<br><br>
+
*die aktuellen Zustände&nbsp; $s_i$&nbsp; zu den Zeitpunkten&nbsp; $i = 1, \ 2, \ 3, \ \text{...}$<br>
  
Auf der nächsten Seite verdeutlichen wir die Zustände an einem Beispiel.<br>
 
  
== Zustandsdefinition für ein Speicherregister (2) ==
+
{{GraueBox|TEXT=
<br>
+
$\text{Beispiel 1:}$&nbsp;  Die Grafik zeigt für den oben skizzierten  Faltungscodierer
{{Beispiel}}''':''' Die folgende Grafik zeigt für obigen Faltungscodierer jeweils den Beginn $(i &#8804; 15)$  
+
*die Informationssequenz&nbsp; $\underline{u} = (u_1,u_2, \text{...} \ ) $ &nbsp; &#8658; &nbsp; Informationsbits&nbsp; $u_i$,
*der Informationssequenz $\underline{u}$ &nbsp;&#8658;&nbsp; Informationsbits $u_i$,<br>
+
 
 +
*die aktuellen Zustände zu den Zeitpunkten&nbsp; $i$ &nbsp; &#8658; &nbsp; $s_i &#8712; \{S_0, \ S_1, \ S_2, \ S_3\}$,<br>
 +
 
 +
*die 2 Bit&ndash;Sequenzen&nbsp; $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$ &nbsp; &#8658; &nbsp; Codierung des Informationsbits $u_i$.<br>
  
*der aktuellen Zustände $s_i &#8712; \{S_0, \ S_1, \ S_2, \ S_3\}$ zu den Zeitpunkten $i$, sowie<br>
 
  
*der jeweiligen Codesequenzen $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$.<br><br>
+
[[Datei:P ID2631 KC T 3 3 S1b v1.png|center|frame|Zur Verdeutlichung der Registerzustände&nbsp; $S_{\mu}$|class=fit]]
  
[[Datei:P ID2631 KC T 3 3 S1b v1.png|Zur Verdeutlichung der Registerzustände <i>S<sub>μ</sub></i>|class=fit]]<br>
+
Beispielsweise erkennt man aus dieser Darstellung (die Farben sollen den Übergang zu späteren Grafiken erleichtern):  
  
Die Farbkennzeichnungen sollen den Übergang zu den nachfolgenden Grafiken auf den nächsten Seiten erleichtern. Man erkennt aus obiger Darstellung beispielsweise:
+
*Zum Zeitpunkt&nbsp; $i = 5$&nbsp; gilt&nbsp; $u_{i-1} = u_4 = 0$,&nbsp; $u_{i-2} = u_3 = 1$. Das heißt, der Automat befindet sich im Zustand&nbsp; $s_5 = S_2$. Mit dem Informationsbit&nbsp; $u_i = u_5 = 0$&nbsp; erhält man die Codesequenz&nbsp; $\underline{x}_5 = (11)$.<br>
*Zum Zeitpunkt $i = 5$ gilt $u_{i&ndash;1} = u_4 = 0$, $u_{i&ndash;2} = u_3 = 1$. Das heißt, der Automat befindet sich im Zustand $s_5 = S_2$. Mit dem Informationsbit $u_i = u_5 = 0$ erhält man die Codesequenz $\underline{x}_5 = (11)$.<br>
 
  
*Der Zustand für den Zeitpunkt $i = 6$ ergibt sich aus $u_{i&ndash;1} = u_5 = 0$ und $u_{i&ndash;2} = u_4 = 0$ zu $s_6 = S_0$. Wegen $u_6 = 0$ wird nun $\underline{x}_6 = (00)$ ausgegeben und der neue Zustand $s_7$ ist wiederum $S_0$.<br>
+
*Der Zustand für den Zeitpunkt&nbsp; $i = 6$&nbsp; ergibt sich aus&nbsp; $u_{i-1} = u_5 = 0$&nbsp; und&nbsp; $u_{i-2} = u_4 = 0$&nbsp; zu&nbsp; $s_6 = S_0$. Wegen&nbsp; $u_6 = 0$&nbsp; wird nun&nbsp; $\underline{x}_6 = (00)$&nbsp; ausgegeben und der neue Zustand&nbsp; $s_7$&nbsp; ist wiederum&nbsp; $S_0$.<br>
  
*Auch zum Zeitpunkt $i = 12$ wird wegen $u_{12} = 0$ die Codesequenz $\underline{x}_{12} = (11)$ ausgegeben und man geht vom Zustand $s_{12} = S_2$ in den Zustand $s_{13} = S_0$ über.<br>
+
*Zum Zeitpunkt&nbsp; $i = 12$&nbsp; wird wegen&nbsp; $u_{12} = 0$&nbsp; wie zum Zeitpunkt&nbsp; $i = 5$&nbsp; die Codesequenz&nbsp; $\underline{x}_{12} = (11)$&nbsp; ausgegeben und man geht vom Zustand&nbsp; $s_{12} = S_2$&nbsp; in den Zustand&nbsp; $s_{13} = S_0$&nbsp; über.<br>
  
*Dagegen wird zum Zeitpunkt $i = 9$ die Codesequenz $(00)$ ausgegeben und auf $s_9 = S_2$ folgt $s_{10} = S_1$. Gleiches gilt auch für $i = 15$.  In beiden Fällen lautet das aktuelle Informationsbit $u_i = 1$.{{end}}<br>
+
*Dagegen wird zum Zeitpunkt&nbsp; $i = 9$&nbsp; die Codesequenz&nbsp; $\underline{x}_{9} = (00)$&nbsp; ausgegeben und auf&nbsp; $s_9 = S_2$&nbsp; folgt&nbsp; $s_{10} = S_1$. Gleiches gilt auch für&nbsp; $i = 15$.  In beiden Fällen lautet das aktuelle Informationsbit&nbsp; $u_i = 1$.}}<br>
  
Aus diesem Beispiel ist zu erkennen, dass die Codesequenz $\underline{x}_i$ zum Zeitpunkt $i$ allein
+
{{BlaueBox|TEXT= 
*vom aktuellen Zustand $s_i = S_{\mu} (0 &#8804; \mu &#8804; 2^m \, &ndash;1)$, sowie<br>
+
$\text{Fazit:}$&nbsp;  Aus diesem Beispiel ist zu erkennen, dass die Codesequenz&nbsp; $\underline{x}_i$&nbsp; zum Zeitpunkt&nbsp; $i$&nbsp; allein abhängt
 +
*vom aktuellen Zustand&nbsp; $s_i = S_{\mu} \ \ (0 &#8804; \mu &#8804; 2^m -1)$, sowie<br>
 +
*vom aktuellen Informationsbit&nbsp; $u_i$.<br><br>
  
*vom aktuellen Informationsbit $u_i$<br><br>
+
Ebenso wird der Nachfolgezustand&nbsp; $s_{i+1}$&nbsp; allein durch&nbsp; $s_i$&nbsp; und&nbsp; $u_i$&nbsp; bestimmt.
  
abhängt. Ebenso wird der Nachfolgezustand $s_{i+1}$ allein durch $s_i$ und $u_i$ bestimmt. Diese Eigenschaften werden im so genannten  <i>Zustandsübergangsdiagramm</i> auf der nächsten Seite berücksichtigt.<br>
+
Diese Eigenschaften werden im so genannten  <i>Zustandsübergangsdiagramm</i>&nbsp; auf der nächsten Seite berücksichtigt.}}<br>
  
== Darstellung im Zustandsübergangsdiagramm (1) ==
+
== Darstellung im Zustandsübergangsdiagramm ==
 
<br>
 
<br>
Die Grafik zeigt das <b>Zustandsübergangsdiagramm</b> (englisch: <i>State Transition Diagram</i>) für unseren Standardcodierer. Dieses liefert alle Informationen über den $(n = 2, \ k = 1, \ m = 2)$&ndash;Faltungscodierer in kompakter Form. Die Farbgebung ist mit der [http://www.lntwww.de/Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Zustandsdefinition_f.C3.BCr_ein_Speicherregister_.281.29 sequenziellen Darstellung] auf der vorherigen Seite abgestimmt. Der Vollständigkeit halber ist auch die Herleitungstabelle nochmals angegeben.<br>
+
Die Grafik zeigt das&nbsp; <b>Zustandsübergangsdiagramm</b>&nbsp; (englisch: &nbsp; <i>State Transition Diagram</i>&nbsp;) für unseren '''&bdquo;Standard&ndash;Codierer&rdquo;'''.  
 +
*Dieses liefert alle Informationen über den&nbsp; $(n = 2, \ k = 1, \ m = 2)$&ndash;Faltungscodierer in kompakter Form.  
 +
*Die Farbgebung ist mit der&nbsp; [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Zustandsdefinition_f.C3.BCr_ein_Speicherregister| sequenziellen Darstellung]]&nbsp; auf der vorherigen Seite abgestimmt.  
 +
*Der Vollständigkeit halber ist auch die Herleitungstabelle nochmals angegeben.<br>
  
[[Datei:P ID3022 KC T 3 3 S2 v2.png|Zustandsübertragungsdiagramm 1 für <i>n</i> = 2, <i>k</i> = 1, <i>m</i> = 2|class=fit]]<br>
 
  
Die $2^{m+k}$ Übergänge sind mit &bdquo;$u_i \ | \ \underline{x}_i$&rdquo; beschriftet. Beispielsweise ist abzulesen:
+
[[Datei:P ID3022 KC T 3 3 S2 v2.png|center|frame|Zustandsübertragungsdiagramm&nbsp; $\rm A$&nbsp; für&nbsp; $n = 2, \ k = 1, \ m = 2$|class=fit]]
*Durch das Informationsbit $u_i = 0$ (gekennzeichnet durch eine rote Beschriftung) gelangt man vom Zustand $s_i = S_1$ zum Zustand $s_{i+1} = S_2$ und die beiden Codebits lauten $x_i^{(1)} = 1, x_i^{(2)} = 0$.<br>
 
  
*Mit dem Informationsbit $u_i = 1$ (blaue Beschriftung) im Zustand $s_i = S_1$ ergeben sich dagegen die Codebits zu $x_i^{(1)} = 0, \ x_i^{(2)} = 1$, und man kommt zum neuen Zustand $s_{i+1} = S_3$.<br><br>
+
Die&nbsp; $2^{m+k}$&nbsp; Übergänge sind mit &bdquo;$u_i \ | \ \underline{x}_i$&rdquo; beschriftet. Beispielsweise ist abzulesen:
 +
*Durch das Informationsbit&nbsp; $u_i = 0$&nbsp; (gekennzeichnet durch eine rote Beschriftung) gelangt man vom Zustand&nbsp; $s_i = S_1$&nbsp; zum Zustand&nbsp; $s_{i+1} = S_2$&nbsp; und die beiden Codebits lauten&nbsp; $x_i^{(1)} = 1, \ x_i^{(2)} = 0$.<br>
  
Die Struktur des Zustandsübergangsdiagramms ist allein durch die Parameter <i>m</i> und <i>k</i> festgelegt:
+
*Mit dem Informationsbit&nbsp; $u_i = 1$&nbsp; (blaue Beschriftung) im Zustand&nbsp; $s_i = S_1$&nbsp; ergeben sich dagegen die Codebits zu&nbsp; $x_i^{(1)} = 0, \ x_i^{(2)} = 1$, und man kommt zum neuen Zustand&nbsp; $s_{i+1} = S_3$.<br><br>
*Die Anzahl der Zustände ist $2^{m \cdot k}$.<br>
 
  
*Von jedem Zustand gehen $2^k$ Pfeile ab.<br><br>
+
Betrachten wir nun einen weiteren systematischen Code, ebenfalls mit den Kenngrößen&nbsp; $n = 2, \ k = 1, \ m = 2$. Es handelt sich hierbei um die&nbsp; [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#.C3.84quivalenter_systematischer_Faltungscode|äquivalente systematische Repräsentation]]&nbsp; des oberen Codierers. Man bezeichnet diesen auch als&nbsp; '''RSC&ndash;Codierer'''&nbsp; (englisch: &nbsp;<i>Recursive Systematic Convolutional Encoder</i>).<br>
  
Ein weiteres Beispiel folgt auf der nächsten Seite.<br>
+
[[Datei:P ID2680 KC T 3 3 S2b v3.png|center|frame|Zustandsübertragungsdiagramm&nbsp; $\rm B$&nbsp; für&nbsp; $n = 2, \ k = 1, \ m = 2$|class=fit]]
  
== Darstellung im Zustandsübergangsdiagramm (2) ==
+
Gegenüber dem oberen Zustandsübergangsdiagramm erkennt man folgende Unterschiede:
<br>
+
*Da die früheren Informationsbits&nbsp; $u_{i-1}$&nbsp; und&nbsp; $u_{i-2}$&nbsp; nicht abgespeichert werden, beziehen sich hier die Zustände&nbsp; $s_i = S_{\mu}$&nbsp; auf die verarbeiteten Größen&nbsp; $w_{i-1}$&nbsp; und&nbsp; $w_{i-2}$, wobei&nbsp; $w_i = u_i + w_{i-1} + w_{i-2}$&nbsp; gilt.<br>
Die obere Grafik zeigt nochmals das Zustandsübergangsdiagramm für unseren Standardcodierer. Dieses dient lediglich als Vergleichsgrundlage für das nachfolgende Beispiel.<br>
 
  
[[Datei:P ID2679 KC T 3 3 S2a v1.png|Zustandsübertragungsdiagramm 1 für <i>n</i> = 2, <i>k</i> = 1, <i>m</i> = 2|class=fit]]<br>
+
*Da dieser Code ebenfalls systematisch ist, gilt wieder&nbsp; $x_i^{(1)} = u_i$. Die Herleitung der zweiten Codebits&nbsp; $x_i^{(2)}$&nbsp; finden Sie in der&nbsp; [[Aufgaben:3.5_Rekursive_Filter_f%C3%BCr_GF(2)|Aufgabe 3.5]]. Es handelt sich um ein rekursives Filter, wie im Abschnitt&nbsp; [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Filterstruktur_bei_gebrochen.E2.80.93rationaler_.C3.9Cbertragungsfunktion| Filterstruktur bei gebrochen&ndash;rationaler Übertragungsfunktion]]&nbsp; beschrieben.<br><br>
  
Die untere Grafik gilt für einen systematischen Code, ebenfalls mit den Kenngrößen $n = 2, \ k = 1, \ m = 2$. Es handelt sich um die äquivalente systematische Repräsentation des obigen Codierers. Man bezeichnet diesen auch als RSC&ndash;Codierer (englisch: <i>Recursive Systematic Convolutional Encoder</i>).<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp; Der Bildervergleich zeigt, dass sich für beide Codierer ein ähnliches Zustandsübergangsdiagramm ergibt:
  
[[Datei:P ID2680 KC T 3 3 S2b v3.png|Zustandsübertragungsdiagramm 2 für <i>n</i> = 2, <i>k</i> = 1, <i>m</i> = 2|class=fit]]<br>
+
*Die Struktur des Zustandsübergangsdiagramms ist allein durch die Parameter&nbsp; $m$&nbsp; und&nbsp; $k$&nbsp; festgelegt.
  
Gegenüber dem oberen Zustandsübergangsdiagramm erkennt man folgende Unterschiede:
+
*Die Anzahl der Zustände ist&nbsp; $2^{m \hspace{0.05cm}\cdot \hspace{0.05cm}k}$.<br>
*Da die früheren Informationsbits $u_{i&ndash;1}$ und $u_{i&ndash;2}$ nicht abgespeichert werden, beziehen sich hier die Zustände $s_i = S_{\mu}$ auf die verarbeiteten Größen $w_{i&ndash;1}$ und $w_{i&ndash;2}$, wobei $w_i = u_i + w_{i&ndash;1} + w_{i&ndash;2}$ gilt.<br>
 
  
*Da dieser Code systematisch ist, gilt $x_i^{(1)} = u_i$. Die Herleitung der zweiten Codebits $x_i^{(2)}$ finden Sie in Aufgabe A3.5. Es handelt sich um ein rekursives Filter, wie in [http://www.lntwww.de/Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Filterstruktur_bei_gebrochen.E2.80.93rationaler_.C3.9Cbertragungsfunktion Kapitel 3.2] beschrieben.<br><br>
+
*Von jedem Zustand gehen&nbsp; $2^k$&nbsp; Pfeile ab.<br>
  
Der Bildervergleich zeigt, dass sich für beide Codierer ein ähnliches Zustandsübergangsdiagramm ergibt:
+
*Man gelangt auch von jedem Zustand&nbsp; $s_i &#8712; \{S_0, \ S_1, \ S_2, \ S_3\}$&nbsp; zu den gleichen Nachfolgezuständen&nbsp; $s_{i+1}$.<br>
*Man gelangt von jedem Zustand $s_i &#8712; \{S_0, \ S_1, \ S_2, \ S_3\}$ zu den gleichen Nachfolgezuständen $s_{i+1}$.<br>
 
  
*Ein Unterschied besteht hinsichtlich der ausgegebenen Codesequenzen $\underline{x}_i &#8712; \{00, 01, 10, 11\}$.<br><br>
+
*Ein Unterschied besteht allein hinsichtlich der ausgegebenen Codesequenzen, wobei in beiden Fällen&nbsp;  $\underline{x}_i &#8712; \{00, \ 01, \ 10, \ 11\}$&nbsp; gilt.}}<br><br>
  
==  Darstellung im Trellisdiagramm (1) ==
+
==  Darstellung im Trellisdiagramm ==
 
<br>
 
<br>
Man kommt vom Zustandsübergangsdiagramm zum so genannten <i>Trellisdiagramm</i> (oder kurz: Trellis), indem man zusätzlich eine Zeitkomponente &nbsp;&#8658;&nbsp; Laufvariable $i$ berücksichtigt. Die folgende Grafik stellt die beiden Diagramme für unseren Standardcodierer $(n = 2, \ k = 1, \ m = 2)$ gegenüber.<br>
+
Man kommt vom Zustandsübergangsdiagramm zum so genannten&nbsp; <i>Trellisdiagramm</i>&nbsp; (oder kurz: &nbsp;'''Trellis'''), indem man zusätzlich eine Zeitkomponente &nbsp; &#8658; &nbsp; Laufvariable&nbsp; $i$&nbsp; berücksichtigt. Die folgende Grafik stellt beide Diagramme für unseren &bdquo;Standard&ndash;Codierer&rdquo;&nbsp; $(n = 2, \ k = 1, \ m = 2)$&nbsp; gegenüber.<br>
  
[[Datei:P ID2635 KC T 3 3 S3 v2.png|Zustandsübergangsdiagramm vs. Trellisdiagramm (<i>n</i> = 2, <i>k</i> = 1, <i>m</i> = 2)|class=fit]]<br>
+
[[Datei:P ID2635 KC T 3 3 S3 v2.png|center|frame|Zustandsübergangsdiagramm vs. Trellisdiagramm&nbsp; $(n = 2, \ k = 1, \ m = 2)$|class=fit]]
  
 
Die untere Darstellung hat Ähnlichkeit mit einem Gartenspalier &ndash; etwas Phantasie vorausgesetzt. Die englische Übersetzung hierfür ist &bdquo;Trellis&rdquo;. Weiter ist anhand dieser Grafik zu erkennen:
 
Die untere Darstellung hat Ähnlichkeit mit einem Gartenspalier &ndash; etwas Phantasie vorausgesetzt. Die englische Übersetzung hierfür ist &bdquo;Trellis&rdquo;. Weiter ist anhand dieser Grafik zu erkennen:
*Da alle Speicherregister mit Nullen vorbelegt sind, startet das Trellis stets vom Zustand $s_1 = S_0$. Zum nächsten Zeitpunkt $(i = 2)$ sind dann nur die beiden Zustände $S_0$ und $S_1$ möglich.<br>
+
*Da alle Speicherregister mit Nullen vorbelegt sind, startet das Trellis stets vom Zustand&nbsp; $s_1 = S_0$. Zum nächsten Zeitpunkt&nbsp; $(i = 2)$&nbsp; sind dann nur die beiden (Start&ndash;)Zustände&nbsp; $S_0$&nbsp; und&nbsp; $S_1$&nbsp; möglich.<br>
 +
 
 +
*Ab dem Zeitpunkt&nbsp; $i = m + 1 = 3$&nbsp; hat das Trellis für jeden Übergang von&nbsp; $s_i$&nbsp; nach&nbsp; $s_{i+1}$&nbsp; genau das gleiche Aussehen. Jeder Zustand&nbsp; $S_{\mu}$&nbsp; ist durch einen roten Pfeil&nbsp; $(u_i = 0)$&nbsp; und einen blauen Pfeil&nbsp; $(u_i = 1)$&nbsp; mit einem Nachfolgezustand verbunden.<br>
  
*Ab dem Zeitpunkt $i = m + 1 = 3$ hat das Trellis für jeden Übergang von $s_i$ nach $s_{i+1}$ genau das gleiche Aussehen. Jeder Zustand $S_{\mu}$ ist durch einen roten Pfeil $(u_i = 0)$ und einen blauen Pfeil $(u_i = 1)$ mit einem Nachfolgezustand verbunden.<br>
+
*Gegenüber einem&nbsp; <i>Codebaum</i>, der mit jedem Zeitschritt&nbsp; $i$&nbsp; exponentiell anwächst &ndash; siehe zum Beispiel Abschnitt&nbsp; [[Digitalsignalübertragung/Viterbi–Empfänger#Fehlergr.C3.B6.C3.9Fen_und_Gesamtfehlergr.C3.B6.C3.9Fen| Fehlergrößen und Gesamtfehlergrößen]]&nbsp; im Buch &bdquo;Digitalsignalübertragung&rdquo; &ndash; ist hier die Zahl der Knoten (also der möglichen Zustände) auf&nbsp; $2^m$&nbsp; begrenzt.<br>
  
*Gegenüber einem <i>Codebaum</i>, der mit jedem Zeitschritt <i>i</i> exponentiell anwächst &ndash; siehe zum Beispiel [http://www.lntwww.de/Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger#Fehlergr.C3.B6.C3.9Fen_und_Gesamtfehlergr.C3.B6.C3.9Fen_.281.29 Kapitel 3.8, Seite 2a] im Buch &bdquo;Digitalsignalübertragung&rdquo; &ndash; ist hier die Zahl der Knoten (also der möglichen Zustände) auf $2^m$ begrenzt.<br>
+
*Diese erfreuliche Eigenschaft eines jeden Trellisdiagramms nutzt auch der&nbsp; [[Kanalcodierung/Decodierung_von_Faltungscodes| Viterbi&ndash;Algorithmus]]&nbsp; zur effizienten Maximum&ndash;Likelihood&ndash;Decodierung von Faltungscodes.<br><br>
  
*Diese erfreuliche Eigenschaft eines jeden Trellisdiagramms nutzt auch der [http://www.lntwww.de/Kanalcodierung/Decodierung_von_Faltungscodes#Blockschaltbild_und_Voraussetzungen Viterbi&ndash;Algorithmus] zur effizienten Maximum&ndash;Likelihood&ndash;Decodierung von Faltungscodes.<br><br>
+
Das folgende Beispiel soll zeigen, dass zwischen der Aneinanderreihung der Codesequenzen&nbsp; $\underline{x}_i$&nbsp; und den Pfaden durch das Trellisdiagramm eine&nbsp; $1\text{:}1$&ndash;Zuordnung besteht.  
 +
*Auch die Informationssequenz&nbsp; $\underline{u}$&nbsp; ist aus dem ausgewählten Trellispfad anhand der Farben der einzelnen Zweige ablesbar.
 +
*Ein roter Zweig steht für das Informationsbit&nbsp; $u_i = 0$, ein blauer für&nbsp; $u_i = 1$.<br>
  
== Darstellung im Trellisdiagramm (2) ==
 
<br>
 
Das folgende Beispiel soll zeigen, dass zwischen der Aneinanderreihung der Codesequenzen $\underline{x}_i$ und den Pfaden durch das Trellisdiagramm eine 1:1&ndash;Zuordnung besteht. Auch die Informationssequenz $\underline{u}$ ist aus dem ausgewählten Trellispfad anhand der Farben der einzelnen Zweige ablesbar. Ein roter Zweig steht für das Informationsbit $u_i = 0$, ein blauer für $u_i = 1$.<br>
 
  
{{Beispiel}}''':''' Auf der ersten Seite dieses Abschnitts wurde für unseren Rate&ndash;$1/2$&ndash;Standardcodierer mit Gedächtnis $m = 2$ sowie die Informationssequenz $\underline{u} = (1, 1, 1, 0, 0, 0, 1, 0, 1, \ ...)$ die Codesequenz $\underline{x}$ hergeleitet, die in nachfolgender Tabelle für $i &#8804; 9$ nochmals angegeben ist.<br>
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;  Im&nbsp; [[Kanalcodierung/Codebeschreibung_mit_Zustands–_und_Trellisdiagramm#Zustandsdefinition_f.C3.BCr_ein_Speicherregister|$\text{Beispiel 1}$]]&nbsp; wurde für unseren Rate&ndash;$1/2$&ndash;Standardcodierer mit Gedächtnis&nbsp; $m = 2$&nbsp; sowie die Informationssequenz&nbsp; $\underline{u} = (1, 1, 1, 0, 0, 0, 1, 0, 1, \ \text{...})$&nbsp; die Codesequenz&nbsp; $\underline{x}$&nbsp; hergeleitet, die hier für&nbsp; $i &#8804; 9$&nbsp; nochmals angegeben wird.<br>
  
[[Datei:P ID2636 KC T 3 3 S3b v1.png|Trellisdiagramm einer Beispielssequenz|class=fit]]<br>
+
[[Datei:P ID2636 KC T 3 3 S3b v1.png|center|frame|Trellisdiagramm einer Beispielssequenz|class=fit]]
  
 
Darunter gezeichnet ist das Trellisdiagramm. Man erkennt:
 
Darunter gezeichnet ist das Trellisdiagramm. Man erkennt:
*Der ausgewählte Pfad durch das Trellis ergibt sich durch die Aneinanderreihung roter und blauer Pfeile, die für die möglichen Informationsbits $u_i = 0$ bzw. $u_i = 1$ stehen. Diese Aussage gilt für jeden Rate&ndash;$1/n$&ndash;Faltungscode. Bei einem Code mit $k > 1$ gäbe es $2^k$ verschiedenfarbige Pfeile.<br>
+
*Der ausgewählte Pfad durch das Trellis ergibt sich durch die Aneinanderreihung roter und blauer Pfeile, die für die möglichen Informationsbits&nbsp; $u_i \in \{ 0, \ 1\}$&nbsp;  stehen. Diese Aussage gilt für jeden Rate&ndash;$1/n$&ndash;Faltungscode. Bei einem Code mit&nbsp; $k > 1$&nbsp; gäbe es&nbsp; $2^k$&nbsp; verschiedenfarbige Pfeile.<br>
  
*Bei einem Rate&ndash;$1/n$&ndash;Faltungscode sind die Pfeile mit den Codeworten $\underline{x}_i = (x_i^{(1)}, \ ... \ , \ x_i^{(n)})$ beschriftet, die sich aus dem Informationsbit $u_i$ und den aktuellen Registerzuständen $s_i$ ergeben. Für $n = 2$ gibt es nur vier mögliche Codeworte, nämlich $00, 01, 10$ und $11$.<br>
+
*Bei einem Rate&ndash;$1/n$&ndash;Faltungscode sind die Pfeile mit den Codeworten&nbsp; $\underline{x}_i = (x_i^{(1)}, \ \text{...} \ , \ x_i^{(n)})$&nbsp; beschriftet, die sich aus dem Informationsbit&nbsp; $u_i$&nbsp; und den aktuellen Registerzuständen&nbsp; $s_i$&nbsp; ergeben. Für&nbsp; $n = 2$&nbsp; gibt es nur vier mögliche Codeworte, nämlich&nbsp; $00, \ 01, \ 10$&nbsp; und&nbsp; $11$.<br>
  
*In vertikaler Richtung erkennt man aus dem Trellis die möglichen Registerzustände $S_{\mu}$. Bei einem Rate&ndash;$k/n$&ndash;Faltungscode mit der Gedächtnisordnung $m$ gibt es $2^{k \cdot m}$ verschiedene Zustände. Im vorliegenden Beispiel $(k = 1, \ m = 2)$ sind dies nur die Zustände $S_0, \ S_1, \ S_2$ und $S_3$.{{end}}<br>
+
*In vertikaler Richtung erkennt man aus dem Trellis die Registerzustände&nbsp; $S_{\mu}$. Bei einem Rate&ndash;$k/n$&ndash;Faltungscode mit der Gedächtnisordnung&nbsp; $m$&nbsp; gibt es&nbsp; $2^{k \hspace{0.05cm}\cdot \hspace{0.05cm}m}$&nbsp; verschiedene Zustände. Im vorliegenden Beispiel&nbsp; $(k = 1, \ m = 2)$&nbsp; sind dies die Zustände&nbsp; $S_0, \ S_1, \ S_2$ und $S_3$.}}<br>
  
== Definition der freien Distanz (1) ==
+
== Definition der freien Distanz ==
 
<br>
 
<br>
Als eine wichtige Kenngröße der linearen Blockcodes wurde in [http://www.lntwww.de/Kanalcodierung/Zielsetzung_der_Kanalcodierung#Fehlererkennung_und_Fehlerkorrektur Kapitel 1.1] die <b>minimale Hamming&ndash;Distanz</b> zwischen zwei beliebigen Codeworten $\underline{x}$ und $\underline{x}'$ eingeführt:
+
Eine wichtige Kenngröße der linearen Blockcodes ist die&nbsp; [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung| minimale Hamming&ndash;Distanz]]&nbsp; '''zwischen zwei beliebigen Codeworten'''&nbsp; $\underline{x}$&nbsp; und&nbsp; $\underline{x}\hspace{0.05cm}'$:
 +
 
 +
::<math>d_{\rm min}(\mathcal{C}) =
 +
\min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.03cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.03cm}')\hspace{0.05cm}.</math>
 +
 
 +
*Aufgrund der Linearität gehört  zu jedem Blockcode auch das Nullwort&nbsp; $\underline{0}$. Damit ist&nbsp; $d_{\rm min}$&nbsp; identisch mit dem minimalen&nbsp; [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung| Hamming&ndash;Gewicht]]&nbsp; $w_{\rm H}(\underline{x})$&nbsp; eines Codewortes&nbsp; $\underline{x} &ne; \underline{0}$.<br>
  
:<math>d_{\rm min}(\mathcal{C}) =
+
*Bei Faltungscodes erweist sich allerdings die Beschreibung der Distanzverhältnisse als wesentlich aufwändiger, da ein Faltungscode aus unendlich langen und unendlich vielen Codesequenzen besteht. Deshalb definieren wir hier anstelle der minimalen Hamming&ndash;Distanz:
\min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.</math>
 
  
Aufgrund der Linearität gehört  zu jedem Blockcode auch das Nullwort $\underline{0}$. Damit ist $d_{\rm min}$ auch gleich dem minimalen [http://www.lntwww.de/Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung Hamming&ndash;Gewicht] $w_{\rm H}(\underline{x})$ eines Codewortes $\underline{x} &ne; \underline{0}$.<br>
 
  
Bei Faltungscodes erweist sich die Beschreibung der Distanzverhältnisse als wesentlich aufwändiger, da ein Faltungscode aus unendlich langen und unendlich vielen Codesequenzen besteht.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; 
 +
*Die&nbsp; <b>freie Distanz</b>&nbsp; $d_{\rm F}$&nbsp; eines Faltungscodes ist gleich der Anzahl der Bits, in dem sich zwei beliebige Codesequenzen&nbsp; $\underline{x}$&nbsp; und&nbsp; $\underline{x}\hspace{0.03cm}'$&nbsp; (mindestens) unterscheiden.
 +
*Anders ausgedrückt: &nbsp; Die freie Distanz ist gleich der ''minimalen''&nbsp; Hamming&ndash;Distanz&nbsp; '''zwischen zwei beliebigen Pfaden'''&nbsp; durch das Trellis.}}
  
{{Definition}}''':''' Die <b>freie Distanz</b> $d_{\rm F}$ eines Faltungscodes ist gleich der Anzahl der Bits, in dem sich zwei beliebige Codesequenzen $\underline{x}$ und $\underline{x}'$ (mindestens) unterscheiden. Anders ausgedrückt: Die freie Distanz ist gleich der <b>minimalen</b> Hamming&ndash;Distanz zwischen zwei beliebigen Pfaden durch das Trellis.{{end}}<br>
 
  
Da Faltungscodes ebenfalls linear sind, kann man auch hier als Bezugssequenz die unendlich lange Nullsequenz heranziehen: $\underline{x} = \underline{0}$. Damit ist die freie Distanz $d_{\rm F}$ gleich dem minimalen Hamming&ndash;Gewicht (Anzahl der Einsen) einer Codesequenz $\underline{x} &ne; \underline{0}$.<br>
+
Da Faltungscodes ebenfalls linear sind, kann man auch hier als Bezugssequenz die unendlich lange Nullsequenz heranziehen: &nbsp;  $\underline{x}\hspace{0.03cm}' = \underline{0}$. Damit ist die freie Distanz&nbsp; $d_{\rm F}$&nbsp; gleich dem minimalen Hamming&ndash;Gewicht (Anzahl der Einsen) einer Codesequenz&nbsp; $\underline{x} &ne; \underline{0}$.<br>
  
{{Beispiel}}''':''' Wir betrachten die Nullsequenz $\underline{0}$ (weiß markiert) sowie zwei andere Codesequenzen $\underline{x}$ sowie $\underline{x}'$ (mit gelber bzw. dunkler Hinterlegung) in unserem Standard&ndash;Trellis und charakterisieren diese Sequenzen anhand der Zustandsfolgen:
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 3:}$&nbsp;  Wir betrachten die Nullsequenz&nbsp; $\underline{0}$&nbsp; (mit weiß gefüllten Kreisen markiert) sowie zwei andere Codesequenzen&nbsp; $\underline{x}$&nbsp; sowie&nbsp; $\underline{x}\hspace{0.03cm}'$&nbsp; (mit gelber bzw. dunkler Hinterlegung) in unserem Standard&ndash;Trellis und charakterisieren diese Sequenzen anhand der Zustandsfolgen:
  
:<math>\underline{0} \hspace{-0.15cm}  = \hspace{-0.15cm} \left ( S_0 \rightarrow S_0 \rightarrow S_0\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 00, 00, 00, 00, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm},</math>
+
:<math>\underline{0} =\left ( S_0 \rightarrow S_0 \rightarrow S_0\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}\text{...} \hspace{0.05cm}\right)= \left ( 00, 00, 00, 00, 00,\hspace{0.05cm} \text{...} \hspace{0.05cm}\right) \hspace{0.05cm},</math>
:<math>\underline{x} \hspace{-0.15cm}  = \hspace{-0.15cm} \left ( S_0 \rightarrow S_1 \rightarrow S_2\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 11, 10, 11, 00, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm},</math>
+
:<math>\underline{x} =\left ( S_0 \rightarrow S_1 \rightarrow S_2\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}\text{...} \hspace{0.05cm}\right)= \left ( 11, 10, 11, 00, 00,\hspace{0.05cm} \text{...} \hspace{0.05cm}\right) \hspace{0.05cm},</math>
:<math>\underline{x}' \hspace{-0.15cm} = \hspace{-0.15cm} \left ( S_0 \rightarrow S_1 \rightarrow S_3\rightarrow S_2\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 11, 01, 01, 11, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm}.</math>
+
:<math>\underline{x}\hspace{0.03cm}' = \left ( S_0 \rightarrow S_1 \rightarrow S_3\rightarrow S_2\rightarrow S_0\rightarrow \hspace{0.05cm}\text{...} \hspace{0.05cm}\right)= \left ( 11, 01, 01, 11, 00,\hspace{0.05cm} \text{...} \hspace{0.05cm}\right) \hspace{0.05cm}.</math>
  
[[Datei:P ID2638 KC T 3 3 S4b v2.png|Zur Definition der freien Distanz|class=fit]]<br>
+
[[Datei:P ID2638 KC T 3 3 S4b v2.png|center|frame|Zur Definition der freien Distanz|class=fit]]
  
 
Man erkennt aus diesen Darstellungen:
 
Man erkennt aus diesen Darstellungen:
*Die freie Distanz $d_{\rm F} = 5$ ist gleich dem Hamming&ndash;Gewicht $w_{\rm H}(\underline{x})$. Keine andere Sequenz als die gelb hinterlegte unterscheidet sich von $\underline{0}$ um weniger als $5 \ \rm Bit$. Beispielsweise ist $w_{\rm H}(\underline{x}') = 6$.<br>
+
*Die freie Distanz&nbsp; $d_{\rm F} = 5$&nbsp; ist gleich dem Hamming&ndash;Gewicht&nbsp; $w_{\rm H}(\underline{x})$. Keine andere Sequenz als die gelb hinterlegte unterscheidet sich von&nbsp; $\underline{0}$&nbsp; um weniger als fünf Bit. Beispielsweise ist&nbsp; $w_{\rm H}(\underline{x}') = 6$.<br>
  
*In diesem Beispiel ergibt sich die freie Distanz $d_{\rm F} = 5$ auch als die Hamming&ndash;Distanz zwischen den Sequenzen $\underline{x}$ und $\underline{x}'$, die sich genau in fünf Bitpositionen unterscheiden.{{end}}<br>
+
*In diesem Beispiel ergibt sich die freie Distanz&nbsp; $d_{\rm F} = 5$&nbsp; auch als die Hamming&ndash;Distanz zwischen den Sequenzen&nbsp; $\underline{x}$&nbsp; und&nbsp; $\underline{x}\hspace{0.03cm}'$, die sich genau in fünf Bitpositionen unterscheiden.}}
  
== Definition der freien Distanz (2) ==
 
<br>
 
Je größer die freie Distanz $d_{\rm F}$ ist, desto besser ist das asymptotische Verhalten des Faltungscoders. Zur genauen Berechnung von Fehlerwahrscheinlichkeit benötigt man allerdings &ndash; ebenso wie bei den linearen Blockcodes &ndash; die [http://www.lntwww.de/Kanalcodierung/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Distanzspektrum_eines_linearen_Codes_.282.29 Gewichtsfunktion] (englisch: <i>Weight Enumerator Function</i>) &nbsp;&#8658;&nbsp; siehe [http://www.lntwww.de/Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL#Motivation_f.C3.BCr_xDSL Kapitel 3.5.]<br>
 
  
Die freie Distanz $d_{\rm F}$ nimmt mit wachsendem Gedächtnis $m$ zu, vorausgesetzt, man verwendet für die Übertragungsfunktionsmatrix $\mathbf{G}(D)$ geeignete Polynome. In der Tabelle sind für Rate&ndash;$1/2$&ndash;Faltungscodes die $n = 2$ Polynome zusammen mit dem $d_{\rm F}$&ndash;Wert angegeben. Von Bedeutung ist insbesondere der sog. <i>Industriestandardcode</i> mit $m = 6$ &nbsp;&#8658;&nbsp; $64$ Zustände und der freien Distanz $d_{\rm F} = 10$.<br>
+
Je größer die freie Distanz&nbsp; $d_{\rm F}$&nbsp; ist, desto besser ist das &bdquo;asymptotische Verhalten&rdquo; des Faltungscoders.
 +
*Zur genauen Fehlerwahrscheinlichkeitsberechnung benötigt man allerdings ebenso wie bei den linearen Blockcodes die genaue Kenntnis der&nbsp; [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Distanzspektrum_eines_linearen_Codes| Gewichtsfunktion]]&nbsp; (englisch: &nbsp;<i>Weight Enumerator Function</i>&nbsp;).
 +
*Diese wird für die Faltungscodes  im Detail erst im Kapitel&nbsp; [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken|Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]]&nbsp; angegeben.
 +
<br clear=all>
 +
[[Datei:P ID2639 KC T 3 3 S4c.png|right|frame|Optimale Faltungscodes der Rate&nbsp; $1/2$|class=fit]]
 +
Vorneweg nur einige wenige Bemerkungen:
 +
*Die freie Distanz&nbsp; $d_{\rm F}$&nbsp; nimmt mit wachsendem Gedächtnis&nbsp; $m$&nbsp; zu, vorausgesetzt, dass man für die Übertragungsfunktionsmatrix&nbsp; $\mathbf{G}(D)$&nbsp; geeignete Polynome verwendet.  
 +
*In der Tabelle sind für Rate&ndash;$1/2$&ndash;Faltungscodes die&nbsp; $n = 2$&nbsp; Polynome zusammen mit dem&nbsp; $d_{\rm F}$&ndash;Wert angegeben.
 +
* Von größerer praktischer Bedeutung ist der <i>Industrie&ndash;Standardcode</i>&nbsp; mit&nbsp; $m = 6$ &nbsp; &#8658; &nbsp; $64$&nbsp; Zustände und der freien Distanz&nbsp; $d_{\rm F} = 10$&nbsp; (in der Tabelle ist dieser rot hinterlegt).
  
[[Datei:P ID2639 KC T 3 3 S4c.png|Optimale Faltungscodes der Rate 1/2|class=fit]]<br>
 
  
Das folgende Beispiel zeigt, welche Auswirkungen es hat, wenn man ungünstige Polynome zugrundelegt.<br>
+
Das folgende Beispiel zeigt, welche Auswirkungen es hat, wenn man ungünstige Polynome zugrundelegt.
 +
<br clear=all>
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 4:}$&nbsp;  Im&nbsp; $\text{Beispiel 3}$&nbsp; wurde gezeigt, dass unser Standard&ndash;Faltungscoder&nbsp; $(n = 2, \ k = 1, \ m = 2)$&nbsp; die freie Distanz&nbsp; $d_{\rm F} = 5$&nbsp; aufweist. Dieser basiert auf der Übertragungsfunktionsmatrix&nbsp; $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$, wie aus dem gezeigten Modell (ohne rote Streichung) hervorgeht.
  
{{Beispiel}}''':''' Unser $(n = 2, \ k = 1, \ m = 2)$&ndash;Standard&ndash;Coder basiert auf der Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$. Dieser weist die freie Distanz $d_{\rm F} = 5$ auf.<br>
+
[[Datei:P ID2640 KC T 3 3 S4d v3.png|center|frame|Zustandsübergangsdiagramm&nbsp; $\rm C$&nbsp; für&nbsp; $n = 2, \ k = 1, \ m = 2$|class=fit]]
  
[[Datei:P ID2640 KC T 3 3 S4d v3.png|Zustandsübergangsdiagramm 3 für <i>n</i> = 2, <i>k</i> = 1, <i>m</i> = 2|class=fit]]<br>
+
Verwendet man&nbsp; $\mathbf{G}(D) = (1 + D, \ 1 + D^2)$ &nbsp; &rArr; &nbsp; rote Änderung, so ändert sich das Zustandsübergangsdiagramm gegenüber dem&nbsp; [[Kanalcodierung/Codebeschreibung_mit_Zustands–_und_Trellisdiagramm#Darstellung_im_Zustands.C3.BCbergangsdiagramm| Zustandsübergangsdiagramm $\rm A$]]&nbsp; auf den ersten Blick nur wenig. Die Auswirkungen sind aber gravierend:
 +
*Die freie Distanz ist nun nicht mehr&nbsp; $d_{\rm F} = 5$, sondern nur noch&nbsp; $d_{\rm F} = 3$, wobei die Codesequenz&nbsp; $\underline{x} = (11, \ 01, \ 00, \ 00, \ \text{...})$&nbsp; mit nur drei Einsen zur Informationssequenz&nbsp; $\underline{u} = \underline{1} = (1, \ 1, \ 1, \ 1, \ \text{...})$&nbsp; gehört.<br>
  
Verwendet man $\mathbf{G}(D) = (1 + D, \ 1 + D^2)$, so ändert sich das Zustandsübergangsdiagramm gegenüber dem Standard&ndash;Coder &nbsp;&#8658;&nbsp; [http://www.lntwww.de/Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Darstellung_im_Zustands.C3.BCbergangsdiagramm_.281.29 Seite 2a] nur wenig. Die Auswirkungen sind aber gravierend:
+
*Das heißt:&nbsp; Durch nur drei Übertragungsfehler an den Positionen 1, 2, und 4 verfälscht man die Einssequenz&nbsp; $(\underline{1})$&nbsp; in die Nullsequenz&nbsp; $(\underline{0})$&nbsp; und produziert so unendlich viele Decodierfehler im Zustand&nbsp; $S_3$.<br>
*Die freie Distanz ist nun nicht mehr $d_{\rm F} = 5$, sondern nur noch $d_{\rm F} = 3$, wobei die Codesequenz $\underline{x} = (11, 01, 00, 00, \ ...)$ zur Informationssequenz $\underline{u} = \underline{1} = (1, 1, 1, 1, \ ...)$ gehört.<br>
 
  
*Das heißt: Durch nur drei Übertragungsfehler an den Positionen 1, 2, und 4 verfälscht man die Einssequenz $(\underline{1})$ in die Nullsequenz $(\underline{0})$ und produziert so unendlich viele Decodierfehler.<br>
+
*Einen Faltungscodierer mit diesen Eigenschaften bezeichnet man als &bdquo;katastrophal&rdquo;. Der Grund für dieses extrem ungünstige Verhalten ist, dass hier die beiden Polynome&nbsp; $1 + D$&nbsp; und&nbsp; $1 + D^2$&nbsp; nicht teilerfemd sind.}}<br>
 
 
*Einen Faltungscodierer mit diesen Eigenschaften bezeichnet man als <i>katastrophal</i>. Der Grund für dieses extrem ungünstige Verhalten ist, dass hier $1 + D$ und $1 + D^2$ nicht teilerfemd sind.{{end}}<br>
 
  
 
== Terminierte Faltungscodes ==
 
== Terminierte Faltungscodes ==
 
<br>
 
<br>
Bei der theoretischen Beschreibung der Faltungscodes geht man stets von Informationssequenzen $\underline{u}$ und Codesequenzen $\underline{x}$ aus, die per Definition unendlich lang sind. In praktischen Anwendungen, siehe zum Beispiel GSM und UMTS verwendet man dagegen stets eine Informationssequenz endlicher Länge $L$. Bei einem Rate&ndash;$1/n$&ndash;Faltungscode hat dann die Codesequenz mindestens die Länge $n \cdot L$.<br>
+
Bei der theoretischen Beschreibung der Faltungscodes geht man stets von Informationssequenzen&nbsp; $\underline{u}$&nbsp; und Codesequenzen&nbsp; $\underline{x}$&nbsp; aus, die per Definition unendlich lang sind.  
 +
*In praktischen Anwendungen &ndash; zum Beispiel&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_GSM|GSM]]&nbsp; und&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS|UMTS]]&nbsp; &ndash; verwendet man dagegen stets eine Informationssequenz endlicher Länge $L$.  
 +
*Bei einem Rate&ndash;$1/n$&ndash;Faltungscode hat dann die Codesequenz mindestens die Länge&nbsp; $n \cdot L$.<br>
  
[[Datei:P ID2641 KC T 3 3 S5 v2.png| Terminierter Faltungscode der Rate <i>R</i> = 128/260|class=fit]]<br>
 
  
Die Grafik zeigt ohne Hinterlegung das Trellis unseres Standard&ndash;Rate&ndash;$1/2$&ndash;Faltungscodes bei binärer Eingangsfolge $\underline{u}$ der endlichen Länge $L = 128$. Damit hat die Codefolge $\underline{x}$ die Länge $2 \cdot L = 256$. Aufgrund des undefinierten Endzustands ist eine vollständige Maximum&ndash;Likelihood&ndash;Decodierung der gesendeten Folge allerdings nicht möglich. Da man nicht weiß, welcher der Zustände $S_0, \ ... \ , \ S_3$ sich für $i > L$ einstellen würden, wird die Fehlerwahrscheinlichkeit (etwas) größer sein als im Grenzfall $L &#8594; &#8734;$.<br>
+
[[Datei:P ID2641 KC T 3 3 S5 v2.png|center|frame|Terminierter Faltungscode der Rate&nbsp; $R = 128/260$|class=fit]]
 +
 
 +
Die Grafik ohne die graue Hinterlegung rechts  zeigt das Trellis unseres Standard&ndash;Rate&ndash;$1/2$&ndash;Faltungscodes bei binärer Eingangsfolge&nbsp; $\underline{u}$&nbsp; der endlichen Länge&nbsp; $L = 128$. Damit hat die Codefolge&nbsp; $\underline{x}$&nbsp; die Länge&nbsp; $2 \cdot L = 256$.  
 +
 
 +
Aufgrund des undefinierten Endzustands ist eine vollständige Maximum&ndash;Likelihood&ndash;Decodierung der gesendeten Folge allerdings nicht möglich. Da man nicht weiß, welcher der Zustände&nbsp; $S_0, \ \text{...} \ , \ S_3$&nbsp; sich für&nbsp; $i > L$&nbsp; einstellen würden, wird die Fehlerwahrscheinlichkeit (etwas) größer sein als im Grenzfall&nbsp; $L &#8594; &#8734;$.<br>
  
 
Um dies zu verhindern, terminiert man den Faltungscode entsprechend der Hinterlegung in obiger Grafik:
 
Um dies zu verhindern, terminiert man den Faltungscode entsprechend der Hinterlegung in obiger Grafik:
*Man fügt an die $L = 128$ Informationsbits noch $m = 2$ Nullen an &nbsp;&#8658;&nbsp; $L' = 130$.
+
*Man fügt an die&nbsp; $L = 128$&nbsp; Informationsbits noch&nbsp; $m = 2$&nbsp; Nullen an &nbsp; &#8658; &nbsp; $L' = 130$.
  
 
*Damit ergibt sich beispielsweise für den farblich hervorgehobenen Pfad durch das Trellis:
 
*Damit ergibt sich beispielsweise für den farblich hervorgehobenen Pfad durch das Trellis:
  
::<math>\underline{x}' = (11\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 00 \hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm},\hspace{0.05cm} 10\hspace{0.05cm},\hspace{0.05cm}00\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 11 \hspace{0.05cm} ) </math>
+
::<math>\underline{x}' = (11\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 00 \hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.1cm},\hspace{0.05cm} 10\hspace{0.05cm},\hspace{0.05cm}00\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 11 \hspace{0.05cm} ) \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}\underline{u}' = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.1cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm} ) \hspace{0.05cm}.</math>
  
::<math>\Rightarrow \hspace{0.3cm}\underline{u}' = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm} ) \hspace{0.05cm}.</math>
+
*Das Trellis endet nun stets (also unabhängig von den Daten) im definierten Endzustand&nbsp; $S_0$&nbsp; und man erreicht so die bestmögliche Fehlerwahrscheinlichkeit entsprechend Maximum&ndash;Likelihood.<br>
  
*Das Trellis endet nun stets (also unabhängig von den Daten) im definierten Endzustand $S_0$ und man erreicht so die bestmögliche Fehlerwahrscheinlichkeit entsprechend Maximum&ndash;Likelihood.<br>
+
*Die Verbesserung hinsichtlich der Fehlerwahrscheinlichkeit erkauft man sich allerdings auf Kosten einer kleineren Coderate.  
 
+
*Bei&nbsp; $L \gg m$&nbsp; ist dieser Verlust nur gering. Im betrachteten Beispiel ergibt sich anstelle von&nbsp; $R = 0.5$&nbsp; mit Terminierung die Coderate  
*Die Verbesserung hinsichtlich der Fehlerwahrscheinlichkeit erkauft man sich allerdings auf Kosten einer kleineren Coderate. Gilt $L >> m$, so ist dieser Verlust nur gering. Im betrachteten Beispiel ergibt sich mit Terminierung die Coderate $R' = 0.5 \cdot L/(L + m) \approx 0.492$ anstelle von $R = 0.5$.<br>
+
:$$R\hspace{0.05cm}' = 0.5 \cdot L/(L + m) \approx 0.492.$$<br>
  
 
== Punktierte Faltungscodes ==
 
== Punktierte Faltungscodes ==
 
<br>
 
<br>
Wir gehen von einem Faltungscode der Rate $R_0 = 1/n_0$ aus, den wir <i>Muttercode</i> nennen. Streicht man von dessen Codesequenz einige Bits entsprechend einem vorgegebenen Muster, so spricht man von einem <i>punktierten Faltungscode</i> (englisch: <i>Punctured Convolutional Code</i>) mit der Coderate $R > R_0$.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; 
 +
*Wir gehen von einem Faltungscode der Rate&nbsp; $R_0 = 1/n_0$&nbsp; aus, den wir <i>Muttercode</i>&nbsp; nennen.  
 +
*Streicht man von dessen Codesequenz einige Bits nach einem vorgegebenen Muster, so spricht man von einem&nbsp; <b>punktierten Faltungscode</b>&nbsp; (englisch: &nbsp; <i>Punctured Convolutional Code</i>&nbsp;) mit der Coderate&nbsp; $R > R_0$.}}<br>
 +
 
 +
Die Punktierung geschieht mittels der Punktierungsmatrix&nbsp; $\mathbf{P}$&nbsp; mit folgenden Eigenschaften:
 +
*Die Zeilenzahl ist&nbsp; $n_0$, die Spaltenzahl gleich der Punktierungsperiode&nbsp; $p$, die durch die gewünschte Coderate bestimmt wird.<br>
 +
 
 +
*Die&nbsp; $n_0 \cdot p$&nbsp; Matrixelemente&nbsp; $P_{ij}$&nbsp; sind binär &nbsp;$(0$&nbsp; oder&nbsp; $1)$. Bei&nbsp; $P_{ij} = 1$&nbsp; wird das entsprechende Codebit übernommen, bei&nbsp; $P_{ij} = 0$&nbsp; punktiert.<br>
  
Die Punktierung geschieht mittels der Punktierungsmatrix $\mathbf{P}$ mit folgenden Eigenschaften:
+
*Die Rate des punktierten Codes ist gleich dem Quotienten aus der Punktierungsperiode&nbsp; $p$&nbsp; und der Anzahl&nbsp; $N_1$&nbsp; der Einsen in der&nbsp; $\mathbf{P}$&ndash;Matrix.<br>
*Die Zeilenzahl ist $n_0$, die Spaltenzahl gleich der Punktierungsperiode $p$, die durch die gewünschte Coderate bestimmt wird.<br>
 
  
*Die $n_0 \cdot p$ Matrixelemente $P_{ij}$ sind binär ($0$ oder $1$). Bei $P_{ij} = 1$ wird das entsprechende Codebit übernommen, bei $P_{ij} = 0$ punktiert.<br>
 
  
*Die Rate des punktierten Faltungscodes ergibt sich als der Quotient aus $p$ und der Anzahl $N_1$ der Einsen in der $\mathbf{P}$&ndash;Matrix.<br><br>
+
Man findet günstig punktierte Faltungscodes üblicherweise nur mittels computergestützter Suche.  
  
Man findet günstig punktierte Faltungscodes üblicherweise nur mittels computergestützter Suche. Dabei bezeichnet man einen punktierten Faltungscode dann als günstig, wenn er
+
Dabei bezeichnet man einen punktierten Faltungscode dann als günstig, wenn er
*die gleiche Gedächtnisordnung $m$ aufweist wie der Muttercode (auch die Gesamteinflusslänge ist in beiden Fällen gleich: $\nu = m + 1$),<br>
+
*die gleiche Gedächtnisordnung&nbsp; $m$&nbsp; aufweist wie der Muttercode $($auch die Gesamteinflusslänge ist in beiden Fällen gleich: &nbsp; $\nu = m + 1)$,<br>
  
*eine möglichst große freie Distanz $d_{\rm F}$ besitzt, die natürlich kleiner ist als die des Muttercodes.<br><br>
+
*eine möglichst große freie Distanz&nbsp; $d_{\rm F}$&nbsp; besitzt, die natürlich kleiner ist als die des Muttercodes.<br><br>
  
{{Beispiel}}''':''' Ausgehend von unserem [http://www.lntwww.de/Kanalcodierung/Grundlagen_der_Faltungscodierung#Rate.E2.80.931.2F2.E2.80.93Faltungscodierer_.281.29 Rate&ndash;1/2&ndash;Standardcode] mit den Parametern $n_0 = 2, \ m = 2$ erhält man mit der Punktierungsmatrix
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 5:}$&nbsp;  Ausgehend von unserem&nbsp; [[Kanalcodierung/Codebeschreibung_mit_Zustands–_und_Trellisdiagramm#Zustandsdefinition_f.C3.BCr_ein_Speicherregister| Rate&ndash;1/2&ndash;Standardcode]]&nbsp; mit den Parametern&nbsp; $n_0 = 2$&nbsp; und&nbsp; $m = 2$&nbsp; erhält man mit der Punktierungsmatrix
  
:<math>{\boldsymbol{\rm P}} =  
+
::<math>{\boldsymbol{\rm P} } =  
 
  \begin{pmatrix}
 
  \begin{pmatrix}
 
1 & 1 & 0  \\
 
1 & 1 & 0  \\
Zeile 223: Zeile 253:
 
\end{pmatrix}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p = 3\hspace{0.05cm}, \hspace{0.2cm}N_1 = 4</math>
 
\end{pmatrix}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p = 3\hspace{0.05cm}, \hspace{0.2cm}N_1 = 4</math>
  
einen punktierten Faltungscode der Rate $R = p/N_1 = 3/4$. Wir betrachten hierzu folgende Konstellation:
+
einen punktierten Faltungscode der Rate&nbsp; $R = p/N_1 = 3/4$. Wir betrachten hierzu folgende Konstellation:
*Informationssequenz: $\hspace{2cm} \underline{u} = (1, 0, 0, 1, 1, 0, \ ...)$,<br>
+
*Informationssequenz: $\hspace{2.5cm} \underline{u} = (1, 0, 0, 1, 1, 0, \ \text{...}\hspace{0.03cm})$,<br>
 +
 
 +
*Codesequenz ohne Punktierung: $\hspace{0.7cm} \underline{x} = (11, 1 \color{grey}{0}, \color{gray}{1}1, 11, 0\color{gray}{1}, \color{gray}{0}1, \ \text{...}\hspace{0.03cm})$,<br>
  
*Codesequenz ohne Punktierung: $\hspace{0.2cm} \underline{x} = (11, 1 \color{grey}{0}, \color{gray}{1}1, 11, 0\color{gray}{1}, \color{gray}{0}1, \ ...)$,<br>
+
*Codesequenz mit Punktierung: $\hspace{0.90cm} \underline{x}\hspace{0.05cm}' = (11, 1\_, \_1, 11, 0\_, \_1, \ \text{...}\hspace{0.03cm})$,<br>
  
*Codesequenz mit Punktierung: $\hspace{0.40cm} \underline{x}' = (11, 1\_, \_1, 11, 0\_, \_1, \ ...)$,<br>
+
*Empfangssequenz ohne Fehler: $\hspace{0.88cm} \underline{y} = (11, 1\_, \_1, 11, 0\_, \_1, \ \text{...}\hspace{0.03cm})$,<br>
  
*Empfangssequenz ohne Fehler: $\hspace{0.38cm} \underline{y} = (11, 1\_, \_1, 11, 0\_, \_1, \ ...)$,<br>
+
*Modifizierte Empfangssequenz: $\hspace{0.8cm} \underline{y}\hspace{0.05cm}' = (11, 1\rm E, E1, 11, 0E, E1, \ \text{...}\hspace{0.03cm})$.<br>
  
*Modifizierte Empfangssequenz: $\hspace{0.3cm} \underline{y}' = (11, 1\rm E, E1, 11, 0E, E1, \ ...)$.<br>
 
  
Jedes punktierte Bit in der Empfangssequenz $\underline{y}$ (markiert durch einen Unterstrich) wird also durch ein <i>Erasure</i> $\rm E$ ersetzt &ndash; siehe [[Kanalcodierung/Klassifizierung_von_Signalen#Binary_Erasure_Channel_.E2.80.93_BEC| Binary Erasure Channel]]. Ein solches durch die Punktierung entstandene <i>Erasure</i> wird vom Decoder genauso behandelt wie eine Auslöschung durch den Kanal.
+
Jedes punktierte Bit in der Empfangssequenz&nbsp; $\underline{y}$&nbsp; (markiert durch einen Unterstrich) wird also durch ein&nbsp; <i>Erasure</i>&nbsp; $\rm E$&nbsp; ersetzt &ndash; siehe&nbsp; [[Kanalcodierung/Klassifizierung_von_Signalen#Binary_Erasure_Channel_.E2.80.93_BEC| Binary Erasure Channel]]. Ein solches durch die Punktierung entstandene&nbsp; <i>Erasure</i>&nbsp; wird vom Decoder genauso behandelt wie eine Auslöschung durch den Kanal.
  
Natürlich erhöht sich durch die Punktierung die Fehlerwahrscheinlichkeit. Dies kann man bereits daran erkennen, dass die freie Distanz nach der Punktierung auf $d_{\rm F} = 3$ sinkt. Demgegenüber besitzt der Muttercode die freie Distanz $d_{\rm F} = 5$.{{end}}<br>
+
Natürlich erhöht sich durch die Punktierung die Fehlerwahrscheinlichkeit. Dies kann man bereits daran erkennen, dass die freie Distanz nach der Punktierung auf&nbsp; $d_{\rm F} = 3$&nbsp; sinkt. Demgegenüber besitzt der Muttercode die freie Distanz&nbsp; $d_{\rm F} = 5$.}}<br>
  
Eine Anwendung findet die Punktierung zum Beispiel bei den so genannten RCPC&ndash;Codes (<i>Rate Compatible Punctered Convolutional Codes</i>). Näheres hierzu in der Aufgabe A3.8.<br>
+
Eine Anwendung findet die Punktierung zum Beispiel bei den so genannten RCPC&ndash;Codes (<i>Rate Compatible Punctered Convolutional Codes</i>). Näheres hierzu in&nbsp; [[Aufgaben:Aufgabe_3.8:_Rate_Compatible_Punctured_Convolutional_Codes| Aufgabe 3.8]].<br>
  
  
== Aufgaben ==
+
== Aufgaben zum Kapitel==
 
<br>
 
<br>
[[Aufgaben:3.6 Zustandsübergangsdiagramm|A3.6 Zustandsübergangsdiagramm]]
+
[[Aufgaben:Aufgabe_3.6:_Zustandsübergangsdiagramm|Aufgabe 3.6: Zustandsübergangsdiagramm]]
  
[[Zusatzaufgaben:3.6 Übergangsdiagramm für m = 3]]
+
[[Aufgaben:Aufgabe_3.6Z:_Übergangsdiagramm_bei_3_Zuständen|Aufgabe 3.6Z: Übergangsdiagramm bei 3 Zuständen]]
  
[[Aufgaben:3.7 Vergleich zweier Faltungscoder|A3.7 Vergleich zweier Faltungscoder]]
+
[[Aufgaben:Aufgabe_3.7:_Vergleich_zweier_Faltungscodierer|Aufgabe 3.7: Vergleich zweier Faltungscodierer]]
  
[[Zusatzaufgaben:3.7 Welcher Code ist katastrophal ?]]
+
[[Aufgaben:Aufgabe_3.7Z:_Welcher_Code_ist_katastrophal%3F|Aufgabe 3.7Z: Welcher Code ist katastrophal?]]
  
[[Aufgaben:3.8 RCPC–Codes|A3.8 RCPC–Codes]]
+
[[Aufgaben:Aufgabe_3.8:_Rate_Compatible_Punctured_Convolutional_Codes|Aufgabe 3.8: Rate Compatible Punctured Convolutional Codes]]
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 7. Juni 2019, 14:16 Uhr

Zustandsdefinition für ein Speicherregister


Ein Faltungscodierer kann auch als Automat mit endlicher Anzahl von Zuständen aufgefasst werden. Die Zustandsanzahl ergibt sich aus der Zahl der Speicherelemente   ⇒   Gedächtnis  $m$  dabei zu  $2^m$.

Faltungscodierer mit  $k = 1, \ n = 2, \ m = 2$

In diesem Kapitel gehen wir meist vom gezeichneten Faltungscodierer aus, der durch folgende Kenngrößen charakterisiert wird:

  • $k = 1, \ n = 2$   ⇒   Coderate $R = 1/2$,
  • Gedächtnis  $m = 2$   ⇒   Einflusslänge $\nu = 3$,
  • Übertragungsfunktionsmatrix in Oktalform  $(7, 5)$:
$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2).$$

Die Codesequenz zum Zeitpunkt  $i$   ⇒   $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$  hängt außer vom Informationsbit  $u_i$  auch vom Inhalt  $(u_{i-1}, \ u_{i-2})$  des Speichers ab.

  • Hierfür gibt es  $2^m = 4$  Möglichkeiten, nämlich die Zustände  $S_0, \ S_1, \ S_2$  und  $S_3$.
  • Der Registerzustand  $S_{\mu}$  sei dabei über den Index definiert:
\[\mu = u_{i-1} + 2 \cdot u_{i-2}\hspace{0.05cm}, \hspace{0.5cm}{\rm allgemein\hspace{-0.1cm}:}\hspace{0.15cm} \mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l} \hspace{0.05cm}.\]

Im Englischen verwendet man für „Zustand” den Begriff „State”. Deshalb ist auch im deutschen Text manchmal vom Registerstatus  die Rede.

Um Verwechslungen zu vermeiden, unterscheiden wir im Weiteren durch Groß– bzw. Kleinbuchstaben:

  • die möglichen Zustände  $S_{\mu}$  mit den Indizes  $0 ≤ \mu ≤ 2^m \,-1$,
  • die aktuellen Zustände  $s_i$  zu den Zeitpunkten  $i = 1, \ 2, \ 3, \ \text{...}$


$\text{Beispiel 1:}$  Die Grafik zeigt für den oben skizzierten Faltungscodierer

  • die Informationssequenz  $\underline{u} = (u_1,u_2, \text{...} \ ) $   ⇒   Informationsbits  $u_i$,
  • die aktuellen Zustände zu den Zeitpunkten  $i$   ⇒   $s_i ∈ \{S_0, \ S_1, \ S_2, \ S_3\}$,
  • die 2 Bit–Sequenzen  $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$   ⇒   Codierung des Informationsbits $u_i$.


Zur Verdeutlichung der Registerzustände  $S_{\mu}$

Beispielsweise erkennt man aus dieser Darstellung (die Farben sollen den Übergang zu späteren Grafiken erleichtern):

  • Zum Zeitpunkt  $i = 5$  gilt  $u_{i-1} = u_4 = 0$,  $u_{i-2} = u_3 = 1$. Das heißt, der Automat befindet sich im Zustand  $s_5 = S_2$. Mit dem Informationsbit  $u_i = u_5 = 0$  erhält man die Codesequenz  $\underline{x}_5 = (11)$.
  • Der Zustand für den Zeitpunkt  $i = 6$  ergibt sich aus  $u_{i-1} = u_5 = 0$  und  $u_{i-2} = u_4 = 0$  zu  $s_6 = S_0$. Wegen  $u_6 = 0$  wird nun  $\underline{x}_6 = (00)$  ausgegeben und der neue Zustand  $s_7$  ist wiederum  $S_0$.
  • Zum Zeitpunkt  $i = 12$  wird wegen  $u_{12} = 0$  wie zum Zeitpunkt  $i = 5$  die Codesequenz  $\underline{x}_{12} = (11)$  ausgegeben und man geht vom Zustand  $s_{12} = S_2$  in den Zustand  $s_{13} = S_0$  über.
  • Dagegen wird zum Zeitpunkt  $i = 9$  die Codesequenz  $\underline{x}_{9} = (00)$  ausgegeben und auf  $s_9 = S_2$  folgt  $s_{10} = S_1$. Gleiches gilt auch für  $i = 15$. In beiden Fällen lautet das aktuelle Informationsbit  $u_i = 1$.


$\text{Fazit:}$  Aus diesem Beispiel ist zu erkennen, dass die Codesequenz  $\underline{x}_i$  zum Zeitpunkt  $i$  allein abhängt

  • vom aktuellen Zustand  $s_i = S_{\mu} \ \ (0 ≤ \mu ≤ 2^m -1)$, sowie
  • vom aktuellen Informationsbit  $u_i$.

Ebenso wird der Nachfolgezustand  $s_{i+1}$  allein durch  $s_i$  und  $u_i$  bestimmt.

Diese Eigenschaften werden im so genannten Zustandsübergangsdiagramm  auf der nächsten Seite berücksichtigt.


Darstellung im Zustandsübergangsdiagramm


Die Grafik zeigt das  Zustandsübergangsdiagramm  (englisch:   State Transition Diagram ) für unseren „Standard–Codierer”.

  • Dieses liefert alle Informationen über den  $(n = 2, \ k = 1, \ m = 2)$–Faltungscodierer in kompakter Form.
  • Die Farbgebung ist mit der  sequenziellen Darstellung  auf der vorherigen Seite abgestimmt.
  • Der Vollständigkeit halber ist auch die Herleitungstabelle nochmals angegeben.


Zustandsübertragungsdiagramm  $\rm A$  für  $n = 2, \ k = 1, \ m = 2$

Die  $2^{m+k}$  Übergänge sind mit „$u_i \ | \ \underline{x}_i$” beschriftet. Beispielsweise ist abzulesen:

  • Durch das Informationsbit  $u_i = 0$  (gekennzeichnet durch eine rote Beschriftung) gelangt man vom Zustand  $s_i = S_1$  zum Zustand  $s_{i+1} = S_2$  und die beiden Codebits lauten  $x_i^{(1)} = 1, \ x_i^{(2)} = 0$.
  • Mit dem Informationsbit  $u_i = 1$  (blaue Beschriftung) im Zustand  $s_i = S_1$  ergeben sich dagegen die Codebits zu  $x_i^{(1)} = 0, \ x_i^{(2)} = 1$, und man kommt zum neuen Zustand  $s_{i+1} = S_3$.

Betrachten wir nun einen weiteren systematischen Code, ebenfalls mit den Kenngrößen  $n = 2, \ k = 1, \ m = 2$. Es handelt sich hierbei um die  äquivalente systematische Repräsentation  des oberen Codierers. Man bezeichnet diesen auch als  RSC–Codierer  (englisch:  Recursive Systematic Convolutional Encoder).

Zustandsübertragungsdiagramm  $\rm B$  für  $n = 2, \ k = 1, \ m = 2$

Gegenüber dem oberen Zustandsübergangsdiagramm erkennt man folgende Unterschiede:

  • Da die früheren Informationsbits  $u_{i-1}$  und  $u_{i-2}$  nicht abgespeichert werden, beziehen sich hier die Zustände  $s_i = S_{\mu}$  auf die verarbeiteten Größen  $w_{i-1}$  und  $w_{i-2}$, wobei  $w_i = u_i + w_{i-1} + w_{i-2}$  gilt.

$\text{Fazit:}$  Der Bildervergleich zeigt, dass sich für beide Codierer ein ähnliches Zustandsübergangsdiagramm ergibt:

  • Die Struktur des Zustandsübergangsdiagramms ist allein durch die Parameter  $m$  und  $k$  festgelegt.
  • Die Anzahl der Zustände ist  $2^{m \hspace{0.05cm}\cdot \hspace{0.05cm}k}$.
  • Von jedem Zustand gehen  $2^k$  Pfeile ab.
  • Man gelangt auch von jedem Zustand  $s_i ∈ \{S_0, \ S_1, \ S_2, \ S_3\}$  zu den gleichen Nachfolgezuständen  $s_{i+1}$.
  • Ein Unterschied besteht allein hinsichtlich der ausgegebenen Codesequenzen, wobei in beiden Fällen  $\underline{x}_i ∈ \{00, \ 01, \ 10, \ 11\}$  gilt.



Darstellung im Trellisdiagramm


Man kommt vom Zustandsübergangsdiagramm zum so genannten  Trellisdiagramm  (oder kurz:  Trellis), indem man zusätzlich eine Zeitkomponente   ⇒   Laufvariable  $i$  berücksichtigt. Die folgende Grafik stellt beide Diagramme für unseren „Standard–Codierer”  $(n = 2, \ k = 1, \ m = 2)$  gegenüber.

Zustandsübergangsdiagramm vs. Trellisdiagramm  $(n = 2, \ k = 1, \ m = 2)$

Die untere Darstellung hat Ähnlichkeit mit einem Gartenspalier – etwas Phantasie vorausgesetzt. Die englische Übersetzung hierfür ist „Trellis”. Weiter ist anhand dieser Grafik zu erkennen:

  • Da alle Speicherregister mit Nullen vorbelegt sind, startet das Trellis stets vom Zustand  $s_1 = S_0$. Zum nächsten Zeitpunkt  $(i = 2)$  sind dann nur die beiden (Start–)Zustände  $S_0$  und  $S_1$  möglich.
  • Ab dem Zeitpunkt  $i = m + 1 = 3$  hat das Trellis für jeden Übergang von  $s_i$  nach  $s_{i+1}$  genau das gleiche Aussehen. Jeder Zustand  $S_{\mu}$  ist durch einen roten Pfeil  $(u_i = 0)$  und einen blauen Pfeil  $(u_i = 1)$  mit einem Nachfolgezustand verbunden.
  • Gegenüber einem  Codebaum, der mit jedem Zeitschritt  $i$  exponentiell anwächst – siehe zum Beispiel Abschnitt  Fehlergrößen und Gesamtfehlergrößen  im Buch „Digitalsignalübertragung” – ist hier die Zahl der Knoten (also der möglichen Zustände) auf  $2^m$  begrenzt.
  • Diese erfreuliche Eigenschaft eines jeden Trellisdiagramms nutzt auch der  Viterbi–Algorithmus  zur effizienten Maximum–Likelihood–Decodierung von Faltungscodes.

Das folgende Beispiel soll zeigen, dass zwischen der Aneinanderreihung der Codesequenzen  $\underline{x}_i$  und den Pfaden durch das Trellisdiagramm eine  $1\text{:}1$–Zuordnung besteht.

  • Auch die Informationssequenz  $\underline{u}$  ist aus dem ausgewählten Trellispfad anhand der Farben der einzelnen Zweige ablesbar.
  • Ein roter Zweig steht für das Informationsbit  $u_i = 0$, ein blauer für  $u_i = 1$.


$\text{Beispiel 2:}$  Im  $\text{Beispiel 1}$  wurde für unseren Rate–$1/2$–Standardcodierer mit Gedächtnis  $m = 2$  sowie die Informationssequenz  $\underline{u} = (1, 1, 1, 0, 0, 0, 1, 0, 1, \ \text{...})$  die Codesequenz  $\underline{x}$  hergeleitet, die hier für  $i ≤ 9$  nochmals angegeben wird.

Trellisdiagramm einer Beispielssequenz

Darunter gezeichnet ist das Trellisdiagramm. Man erkennt:

  • Der ausgewählte Pfad durch das Trellis ergibt sich durch die Aneinanderreihung roter und blauer Pfeile, die für die möglichen Informationsbits  $u_i \in \{ 0, \ 1\}$  stehen. Diese Aussage gilt für jeden Rate–$1/n$–Faltungscode. Bei einem Code mit  $k > 1$  gäbe es  $2^k$  verschiedenfarbige Pfeile.
  • Bei einem Rate–$1/n$–Faltungscode sind die Pfeile mit den Codeworten  $\underline{x}_i = (x_i^{(1)}, \ \text{...} \ , \ x_i^{(n)})$  beschriftet, die sich aus dem Informationsbit  $u_i$  und den aktuellen Registerzuständen  $s_i$  ergeben. Für  $n = 2$  gibt es nur vier mögliche Codeworte, nämlich  $00, \ 01, \ 10$  und  $11$.
  • In vertikaler Richtung erkennt man aus dem Trellis die Registerzustände  $S_{\mu}$. Bei einem Rate–$k/n$–Faltungscode mit der Gedächtnisordnung  $m$  gibt es  $2^{k \hspace{0.05cm}\cdot \hspace{0.05cm}m}$  verschiedene Zustände. Im vorliegenden Beispiel  $(k = 1, \ m = 2)$  sind dies die Zustände  $S_0, \ S_1, \ S_2$ und $S_3$.


Definition der freien Distanz


Eine wichtige Kenngröße der linearen Blockcodes ist die  minimale Hamming–Distanz  zwischen zwei beliebigen Codeworten  $\underline{x}$  und  $\underline{x}\hspace{0.05cm}'$:

\[d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.03cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.03cm}')\hspace{0.05cm}.\]
  • Aufgrund der Linearität gehört zu jedem Blockcode auch das Nullwort  $\underline{0}$. Damit ist  $d_{\rm min}$  identisch mit dem minimalen  Hamming–Gewicht  $w_{\rm H}(\underline{x})$  eines Codewortes  $\underline{x} ≠ \underline{0}$.
  • Bei Faltungscodes erweist sich allerdings die Beschreibung der Distanzverhältnisse als wesentlich aufwändiger, da ein Faltungscode aus unendlich langen und unendlich vielen Codesequenzen besteht. Deshalb definieren wir hier anstelle der minimalen Hamming–Distanz:


$\text{Definition:}$ 

  • Die  freie Distanz  $d_{\rm F}$  eines Faltungscodes ist gleich der Anzahl der Bits, in dem sich zwei beliebige Codesequenzen  $\underline{x}$  und  $\underline{x}\hspace{0.03cm}'$  (mindestens) unterscheiden.
  • Anders ausgedrückt:   Die freie Distanz ist gleich der minimalen  Hamming–Distanz  zwischen zwei beliebigen Pfaden  durch das Trellis.


Da Faltungscodes ebenfalls linear sind, kann man auch hier als Bezugssequenz die unendlich lange Nullsequenz heranziehen:   $\underline{x}\hspace{0.03cm}' = \underline{0}$. Damit ist die freie Distanz  $d_{\rm F}$  gleich dem minimalen Hamming–Gewicht (Anzahl der Einsen) einer Codesequenz  $\underline{x} ≠ \underline{0}$.

$\text{Beispiel 3:}$  Wir betrachten die Nullsequenz  $\underline{0}$  (mit weiß gefüllten Kreisen markiert) sowie zwei andere Codesequenzen  $\underline{x}$  sowie  $\underline{x}\hspace{0.03cm}'$  (mit gelber bzw. dunkler Hinterlegung) in unserem Standard–Trellis und charakterisieren diese Sequenzen anhand der Zustandsfolgen:

\[\underline{0} =\left ( S_0 \rightarrow S_0 \rightarrow S_0\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}\text{...} \hspace{0.05cm}\right)= \left ( 00, 00, 00, 00, 00,\hspace{0.05cm} \text{...} \hspace{0.05cm}\right) \hspace{0.05cm},\] \[\underline{x} =\left ( S_0 \rightarrow S_1 \rightarrow S_2\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}\text{...} \hspace{0.05cm}\right)= \left ( 11, 10, 11, 00, 00,\hspace{0.05cm} \text{...} \hspace{0.05cm}\right) \hspace{0.05cm},\] \[\underline{x}\hspace{0.03cm}' = \left ( S_0 \rightarrow S_1 \rightarrow S_3\rightarrow S_2\rightarrow S_0\rightarrow \hspace{0.05cm}\text{...} \hspace{0.05cm}\right)= \left ( 11, 01, 01, 11, 00,\hspace{0.05cm} \text{...} \hspace{0.05cm}\right) \hspace{0.05cm}.\]

Zur Definition der freien Distanz

Man erkennt aus diesen Darstellungen:

  • Die freie Distanz  $d_{\rm F} = 5$  ist gleich dem Hamming–Gewicht  $w_{\rm H}(\underline{x})$. Keine andere Sequenz als die gelb hinterlegte unterscheidet sich von  $\underline{0}$  um weniger als fünf Bit. Beispielsweise ist  $w_{\rm H}(\underline{x}') = 6$.
  • In diesem Beispiel ergibt sich die freie Distanz  $d_{\rm F} = 5$  auch als die Hamming–Distanz zwischen den Sequenzen  $\underline{x}$  und  $\underline{x}\hspace{0.03cm}'$, die sich genau in fünf Bitpositionen unterscheiden.


Je größer die freie Distanz  $d_{\rm F}$  ist, desto besser ist das „asymptotische Verhalten” des Faltungscoders.


Optimale Faltungscodes der Rate  $1/2$

Vorneweg nur einige wenige Bemerkungen:

  • Die freie Distanz  $d_{\rm F}$  nimmt mit wachsendem Gedächtnis  $m$  zu, vorausgesetzt, dass man für die Übertragungsfunktionsmatrix  $\mathbf{G}(D)$  geeignete Polynome verwendet.
  • In der Tabelle sind für Rate–$1/2$–Faltungscodes die  $n = 2$  Polynome zusammen mit dem  $d_{\rm F}$–Wert angegeben.
  • Von größerer praktischer Bedeutung ist der Industrie–Standardcode  mit  $m = 6$   ⇒   $64$  Zustände und der freien Distanz  $d_{\rm F} = 10$  (in der Tabelle ist dieser rot hinterlegt).


Das folgende Beispiel zeigt, welche Auswirkungen es hat, wenn man ungünstige Polynome zugrundelegt.

$\text{Beispiel 4:}$  Im  $\text{Beispiel 3}$  wurde gezeigt, dass unser Standard–Faltungscoder  $(n = 2, \ k = 1, \ m = 2)$  die freie Distanz  $d_{\rm F} = 5$  aufweist. Dieser basiert auf der Übertragungsfunktionsmatrix  $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$, wie aus dem gezeigten Modell (ohne rote Streichung) hervorgeht.

Zustandsübergangsdiagramm  $\rm C$  für  $n = 2, \ k = 1, \ m = 2$

Verwendet man  $\mathbf{G}(D) = (1 + D, \ 1 + D^2)$   ⇒   rote Änderung, so ändert sich das Zustandsübergangsdiagramm gegenüber dem  Zustandsübergangsdiagramm $\rm A$  auf den ersten Blick nur wenig. Die Auswirkungen sind aber gravierend:

  • Die freie Distanz ist nun nicht mehr  $d_{\rm F} = 5$, sondern nur noch  $d_{\rm F} = 3$, wobei die Codesequenz  $\underline{x} = (11, \ 01, \ 00, \ 00, \ \text{...})$  mit nur drei Einsen zur Informationssequenz  $\underline{u} = \underline{1} = (1, \ 1, \ 1, \ 1, \ \text{...})$  gehört.
  • Das heißt:  Durch nur drei Übertragungsfehler an den Positionen 1, 2, und 4 verfälscht man die Einssequenz  $(\underline{1})$  in die Nullsequenz  $(\underline{0})$  und produziert so unendlich viele Decodierfehler im Zustand  $S_3$.
  • Einen Faltungscodierer mit diesen Eigenschaften bezeichnet man als „katastrophal”. Der Grund für dieses extrem ungünstige Verhalten ist, dass hier die beiden Polynome  $1 + D$  und  $1 + D^2$  nicht teilerfemd sind.


Terminierte Faltungscodes


Bei der theoretischen Beschreibung der Faltungscodes geht man stets von Informationssequenzen  $\underline{u}$  und Codesequenzen  $\underline{x}$  aus, die per Definition unendlich lang sind.

  • In praktischen Anwendungen – zum Beispiel  GSM  und  UMTS  – verwendet man dagegen stets eine Informationssequenz endlicher Länge $L$.
  • Bei einem Rate–$1/n$–Faltungscode hat dann die Codesequenz mindestens die Länge  $n \cdot L$.


Terminierter Faltungscode der Rate  $R = 128/260$

Die Grafik ohne die graue Hinterlegung rechts zeigt das Trellis unseres Standard–Rate–$1/2$–Faltungscodes bei binärer Eingangsfolge  $\underline{u}$  der endlichen Länge  $L = 128$. Damit hat die Codefolge  $\underline{x}$  die Länge  $2 \cdot L = 256$.

Aufgrund des undefinierten Endzustands ist eine vollständige Maximum–Likelihood–Decodierung der gesendeten Folge allerdings nicht möglich. Da man nicht weiß, welcher der Zustände  $S_0, \ \text{...} \ , \ S_3$  sich für  $i > L$  einstellen würden, wird die Fehlerwahrscheinlichkeit (etwas) größer sein als im Grenzfall  $L → ∞$.

Um dies zu verhindern, terminiert man den Faltungscode entsprechend der Hinterlegung in obiger Grafik:

  • Man fügt an die  $L = 128$  Informationsbits noch  $m = 2$  Nullen an   ⇒   $L' = 130$.
  • Damit ergibt sich beispielsweise für den farblich hervorgehobenen Pfad durch das Trellis:
\[\underline{x}' = (11\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 00 \hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.1cm},\hspace{0.05cm} 10\hspace{0.05cm},\hspace{0.05cm}00\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 11 \hspace{0.05cm} ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\underline{u}' = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.1cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm} ) \hspace{0.05cm}.\]
  • Das Trellis endet nun stets (also unabhängig von den Daten) im definierten Endzustand  $S_0$  und man erreicht so die bestmögliche Fehlerwahrscheinlichkeit entsprechend Maximum–Likelihood.
  • Die Verbesserung hinsichtlich der Fehlerwahrscheinlichkeit erkauft man sich allerdings auf Kosten einer kleineren Coderate.
  • Bei  $L \gg m$  ist dieser Verlust nur gering. Im betrachteten Beispiel ergibt sich anstelle von  $R = 0.5$  mit Terminierung die Coderate
$$R\hspace{0.05cm}' = 0.5 \cdot L/(L + m) \approx 0.492.$$

Punktierte Faltungscodes


$\text{Definition:}$ 

  • Wir gehen von einem Faltungscode der Rate  $R_0 = 1/n_0$  aus, den wir Muttercode  nennen.
  • Streicht man von dessen Codesequenz einige Bits nach einem vorgegebenen Muster, so spricht man von einem  punktierten Faltungscode  (englisch:   Punctured Convolutional Code ) mit der Coderate  $R > R_0$.


Die Punktierung geschieht mittels der Punktierungsmatrix  $\mathbf{P}$  mit folgenden Eigenschaften:

  • Die Zeilenzahl ist  $n_0$, die Spaltenzahl gleich der Punktierungsperiode  $p$, die durch die gewünschte Coderate bestimmt wird.
  • Die  $n_0 \cdot p$  Matrixelemente  $P_{ij}$  sind binär  $(0$  oder  $1)$. Bei  $P_{ij} = 1$  wird das entsprechende Codebit übernommen, bei  $P_{ij} = 0$  punktiert.
  • Die Rate des punktierten Codes ist gleich dem Quotienten aus der Punktierungsperiode  $p$  und der Anzahl  $N_1$  der Einsen in der  $\mathbf{P}$–Matrix.


Man findet günstig punktierte Faltungscodes üblicherweise nur mittels computergestützter Suche.

Dabei bezeichnet man einen punktierten Faltungscode dann als günstig, wenn er

  • die gleiche Gedächtnisordnung  $m$  aufweist wie der Muttercode $($auch die Gesamteinflusslänge ist in beiden Fällen gleich:   $\nu = m + 1)$,
  • eine möglichst große freie Distanz  $d_{\rm F}$  besitzt, die natürlich kleiner ist als die des Muttercodes.

$\text{Beispiel 5:}$  Ausgehend von unserem  Rate–1/2–Standardcode  mit den Parametern  $n_0 = 2$  und  $m = 2$  erhält man mit der Punktierungsmatrix

\[{\boldsymbol{\rm P} } = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p = 3\hspace{0.05cm}, \hspace{0.2cm}N_1 = 4\]

einen punktierten Faltungscode der Rate  $R = p/N_1 = 3/4$. Wir betrachten hierzu folgende Konstellation:

  • Informationssequenz: $\hspace{2.5cm} \underline{u} = (1, 0, 0, 1, 1, 0, \ \text{...}\hspace{0.03cm})$,
  • Codesequenz ohne Punktierung: $\hspace{0.7cm} \underline{x} = (11, 1 \color{grey}{0}, \color{gray}{1}1, 11, 0\color{gray}{1}, \color{gray}{0}1, \ \text{...}\hspace{0.03cm})$,
  • Codesequenz mit Punktierung: $\hspace{0.90cm} \underline{x}\hspace{0.05cm}' = (11, 1\_, \_1, 11, 0\_, \_1, \ \text{...}\hspace{0.03cm})$,
  • Empfangssequenz ohne Fehler: $\hspace{0.88cm} \underline{y} = (11, 1\_, \_1, 11, 0\_, \_1, \ \text{...}\hspace{0.03cm})$,
  • Modifizierte Empfangssequenz: $\hspace{0.8cm} \underline{y}\hspace{0.05cm}' = (11, 1\rm E, E1, 11, 0E, E1, \ \text{...}\hspace{0.03cm})$.


Jedes punktierte Bit in der Empfangssequenz  $\underline{y}$  (markiert durch einen Unterstrich) wird also durch ein  Erasure  $\rm E$  ersetzt – siehe  Binary Erasure Channel. Ein solches durch die Punktierung entstandene  Erasure  wird vom Decoder genauso behandelt wie eine Auslöschung durch den Kanal.

Natürlich erhöht sich durch die Punktierung die Fehlerwahrscheinlichkeit. Dies kann man bereits daran erkennen, dass die freie Distanz nach der Punktierung auf  $d_{\rm F} = 3$  sinkt. Demgegenüber besitzt der Muttercode die freie Distanz  $d_{\rm F} = 5$.


Eine Anwendung findet die Punktierung zum Beispiel bei den so genannten RCPC–Codes (Rate Compatible Punctered Convolutional Codes). Näheres hierzu in  Aufgabe 3.8.


Aufgaben zum Kapitel


Aufgabe 3.6: Zustandsübergangsdiagramm

Aufgabe 3.6Z: Übergangsdiagramm bei 3 Zuständen

Aufgabe 3.7: Vergleich zweier Faltungscodierer

Aufgabe 3.7Z: Welcher Code ist katastrophal?

Aufgabe 3.8: Rate Compatible Punctured Convolutional Codes