Aufgaben:Aufgabe 3.10Z: ML–Decodierung von Faltungscodes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes}}
  
[[Datei:P_ID2678__KC_Z_3_10.png|right|frame|Betrachtetes Systemmodell]]
+
[[Datei:P_ID2678__KC_Z_3_10.png|right|frame|Gesamtsystemmodell <br>Coder &ndash; Kanal &ndash; Viterbi]]
 
Der Viterbi&ndash;Algorithmus stellt die bekannteste Realisierungsform für die Maximum&ndash;Likelihood&ndash;Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:
 
Der Viterbi&ndash;Algorithmus stellt die bekannteste Realisierungsform für die Maximum&ndash;Likelihood&ndash;Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:
* Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i &#8712; \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt: $x_i &#8712; \{&ndash;1, \, +1\}$.
+
* Die Informationssequenz&nbsp; $\underline{u}$&nbsp; wird durch einen Faltungscode in die Codesequenz&nbsp; $\underline{x}$&nbsp; umgesetzt. Es gelte&nbsp; $u_i &#8712; \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt &nbsp; &#8658; &nbsp; $x_i &#8712; \{&ndash;1, \, +1\}$.
* Der Kanal sei durch das [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| BSC&ndash;Modell]] gegeben &nbsp;&#8658;&nbsp; $y_i &#8712; \{&ndash;1, \, +1\}$ oder es wird der [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang| AWGN&ndash;Kanal]] vorausgesetzt &nbsp;&#8658;&nbsp; reellwertige $y_i$.
+
* Der Kanal sei durch das&nbsp; [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| BSC&ndash;Modell]]&nbsp; gegeben &nbsp; &#8658; &nbsp; $y_i &#8712; \{&ndash;1, \, +1\}$&nbsp; oder es wird der&nbsp; [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang| AWGN&ndash;Kanal]]&nbsp; vorausgesetzt &nbsp; &#8658; &nbsp; reellwertige Empfangswerte&nbsp; $y_i$.
* Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi&ndash;Algorithmus für die Codesequenz $\underline{z}$ entsprechend
+
* Bei gegebener Empfangssequenz&nbsp; $\underline{y}$&nbsp; entscheidet sich der Viterbi&ndash;Algorithmus für die Codesequenz&nbsp; $\underline{z}$&nbsp; gemäß
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
 
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
  
 +
*Dies entspricht dem&nbsp; [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| Maximum&ndash;a&ndash;posteriori]]&nbsp; (MAP)&ndash;Kriterium. Sind alle Informationssequenzen&nbsp; $\underline{u}$&nbsp; gleichwahrscheinlich, so geht dieses in das etwas einfachere&nbsp; [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| Maximum&ndash;Likelihood&ndash;Kriterium]]&nbsp; über:
 +
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
  
Dies entspricht dem [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| Maximum&ndash;a&ndash;posteriori]] (MAP)&ndash;Kriterium. Sind die Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| Maximum&ndash;Likelihood&ndash;Kriterium]] über:
+
*Als weiteres Ergebnis gibt der Viterbi&ndash;Algorithmus zusätzlich die Sequenz&nbsp; $\underline{v}$&nbsp; als Schätzung für die Informationssequenz&nbsp; $\underline{u}$&nbsp; aus.
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
 
  
Als weiteres Ergebnis gibt der Viterbi&ndash;Algorithmus zusätzlich die Sequenz $\underline{\upsilon}$ als Schätzung für die Informationssequenz $\underline{u}$ aus.
 
  
In dieser Aufgabe soll der Zusammenhang zwischen der [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung| Hamming&ndash;Distanz]] $d_{\rm H}(\underline{x}, \, \underline{y})$ sowie der [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_AWGN.E2.80.93Kanal| Euklidischen Distanz]]
+
In dieser Aufgabe soll der Zusammenhang zwischen der&nbsp; [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung| Hamming&ndash;Distanz]]&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$&nbsp; sowie der&nbsp; [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_AWGN.E2.80.93Kanal| Euklidischen Distanz]]
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
 
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
  
ermittelt werden. Anschließend ist das obige ML&ndash;Kriterium mit  
+
ermittelt werden. Anschließend ist das obige ML&ndash;Kriterium zu formulieren mit  
* der Hamming&ndash;Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$,
+
* der Hamming&ndash;Distanz&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$,
* der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und
+
* der Euklidischen Distanz&nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$, und
* dem [[Kanalcodierung/Decodierung_von_Faltungscodes#Zusammenhang_zwischen_Hamming.E2.80.93Distanz_und_Korrelation| Korrelationswert]] $&#9001; x \cdot y &#9002;$ zu formulieren.
+
* dem&nbsp; [[Kanalcodierung/Decodierung_von_Faltungscodes#Zusammenhang_zwischen_Hamming.E2.80.93Distanz_und_Korrelation| Korrelationswert]]&nbsp; $&#9001; x \cdot y &#9002;$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe bezieht sich auf die [[Kanalcodierung/Decodierung_von_Faltungscodes#Viterbi.E2.80.93Algorithmus.2C_basierend_auf_Korrelation_und_Metriken|Theorieseite 6]] des Kapitels .
+
* Die Aufgabe bezieht sich auf das Kapitel&nbsp; [[Kanalcodierung/Decodierung_von_Faltungscodes| Decodierung von Faltungscodes]].
* Zur Vereinfachung wird auf Tilden und Apostroph verzichtet.
+
* Bezug genommen wird insbesondere auf  die Seite&nbsp; [[Kanalcodierung/Decodierung_von_Faltungscodes#Viterbi.E2.80.93Algorithmus.2C_basierend_auf_Korrelation_und_Metriken|Viterbi&ndash;Algorithmus &ndash; basierend auf Korrelation und Metriken]].
 +
* Zur Vereinfachung wird auf &bdquo;Tilde&rdquo; und &bdquo;Apostroph&rdquo; verzichtet.
 
* Weitere Informationen zu diesem Thema finden Sie auf folgenden Seiten dieses Buches:
 
* Weitere Informationen zu diesem Thema finden Sie auf folgenden Seiten dieses Buches:
 
** [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| MAP&ndash; und ML&ndash;Kriterium]],
 
** [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| MAP&ndash; und ML&ndash;Kriterium]],
 
** [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_BSC.E2.80.93Kanal| ML&ndash;Entscheidung beim BSC&ndash;Kanal]],
 
** [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_BSC.E2.80.93Kanal| ML&ndash;Entscheidung beim BSC&ndash;Kanal]],
 
** [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_AWGN.E2.80.93Kanal| ML&ndash;Entscheidung beim AWGN&ndash;Kanal]],
 
** [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_AWGN.E2.80.93Kanal| ML&ndash;Entscheidung beim AWGN&ndash;Kanal]],
** [[Kanalcodierung/Decodierung_linearer_Blockcodes#Blockschaltbild_und_Voraussetzungen| Decodierung linearer Blockcodes &ndash; Seite 1]].
+
** [[Kanalcodierung/Decodierung_linearer_Blockcodes#Blockschaltbild_und_Voraussetzungen| Decodierung linearer Blockcodes]].
  
  
Zeile 38: Zeile 45:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie hängen $d_{\rm H}(\underline{x}, \, \underline{y})$ und $d_{\rm E}(\underline{x}, \, \underline{y})$ beim BSC&ndash;Modell zusammen?
+
{Wie hängen&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y})$&nbsp; und&nbsp; $d_{\rm E}(\underline{x}, \, \underline{y})$&nbsp; beim BSC&ndash;Modell zusammen?
|type="[]"}
+
|type="()"}
- Es gilt $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$.
+
- Es gilt&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$.
- Es gilt $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})$.
+
- Es gilt&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})$.
+ Es gilt $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$.
+
+ Es gilt&nbsp; $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$.
  
{Welche der Gleichungen beschreiben die ML&ndash;Decodierung beim BSC&ndash;Modell? Die Minimierung/Maximierung bezieht sich jeweils auf alle $\underline{x} &#8712; C$.
+
{Welche der Gleichungen beschreiben die ML&ndash;Decodierung beim BSC&ndash;Modell? Die Minimierung/Maximierung bezieht sich jeweils auf alle&nbsp; $\underline{x} &#8712;\mathcal{ C}$.
 
|type="[]"}
 
|type="[]"}
+ $underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
+
+ $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,
  
{Multiple-Choice
+
{Welche Gleichung beschreibt die ML&ndash;Entscheidung beim BSC&ndash;Modell?
 
|type="()"}
 
|type="()"}
+ correct
+
- $\underline{z} = \arg \min &#9001; \underline{x} \cdot \underline{y} &#9002;$,
- false
+
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
  
{Multiple-Choice
+
{Welche Gleichungen gelten für die ML&ndash;Entscheidung beim AWGN&ndash;Modell?
 
|type="[]"}
 
|type="[]"}
+ correct
+
- $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
- false
+
+ $\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
'''(2)'''&nbsp;  
+
*Die zwei Binärfolgen seien $\underline{x}$ und $\underline{y}$ mit $x_i &#8712; \{-1, \, +1\}, \ y_i &#8712; \{-1, \, +1\}$. Die Folgenlänge sei jeweils $L$.
'''(3)'''&nbsp;  
+
*Die Hamming&ndash;Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ gibt die Anzahl der Bit an, in denen sich $\underline{x}$ und $\underline{y}$ unterscheiden, für die also $x_i \, - y_i = &plusmn;2$ &nbsp; &#8658; &nbsp; $ (x_i \, - y_i)^2 = 4$ gilt.
'''(4)'''&nbsp;  
+
*Gleiche Symbole $(x_i = y_i)$ tragen zur Hamming&ndash;Distanz nicht bei und ergeben $(x_i \, &ndash; y_i)^2 = 0$. Nach dem <u>Lösungsvorschlag 3</u> kann daher geschrieben werden:
'''(5)'''&nbsp;  
+
:$$ d_{\rm H}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; <u>Alle Lösungsvorschläge</u> sind richtig:
 +
*Beim BSC&ndash;Modell ist es allgemein üblich, zum gegebenen Empfangsvektor $\underline{y}$ das Codewort $\underline{x}$ mit der kleinsten Hamming&ndash;Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ auszuwählen:
 +
:$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm H}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
 +
*Entsprechend der Teilaufgabe '''(1)''' gilt aber auch:
 +
:$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4
 +
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})
 +
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})
 +
\hspace{0.05cm}.$$
 +
 
 +
*Der Faktor $1/4$ spielt für die Minimierung keine Rolle. Da $d_{\rm E}(\underline{x}, \, \underline{y}) &#8805; 0$ ist, ist es auch egal, ob die Minimierung hinsichtlich $d_{\rm E}(\underline{x}, \, \underline{y})$ oder $d_{\rm E}^2(\underline{x}, \, \underline{y})$ erfolgt.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
 +
*Das Quadrat der Euklidischen Distanz kann wie folgt ausgedrückt werden:
 +
:$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i
 +
\hspace{0.05cm}.$$
 +
 
 +
*Die beiden ersten Summanden sind jeweils gleich $L$ und müssen für die Minimierung nicht berücksichtigt werden.
 +
*Für den letzten Ausdruck in dieser Gleichung kann $&ndash;2 \cdot &#9001; \underline{x}, \, \underline{y} &#9002;$ geschrieben werden.
 +
*Aufgrund des negativen Vorzeichens wird aus der Minimierung eine Maximierung &nbsp; &#8658; &nbsp; <u>Antwort 2</u>.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>.:
 +
*Für den AWGN&ndash;Kanal kann im Gegensatz zum BSC keine Hamming&ndash;Distanz angegeben werden.
 +
*Ausgehend von der Gleichung
 +
:$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
 +
 
 +
:gelten für den ersten und letzten Summanden die gleichen Aussagen wie für das BSC&ndash;Modell &ndash; siehe Teilaufgabe (3).
 +
*Für den mittleren Summanden gilt mit $y_i = x_i + n_i$ und $x_i &#8712; \{&ndash;1, \, +1\}$:
 +
:$$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
 +
 
 +
*Der erste Summand ergibt wieder $L$, der zweite ist proportional zur Rauschleistung und der letzte Term verschwindet, da $\underline{x}$ und $\underline{n}$ unkorreliert sind.
 +
*Für die Minimerung von $d_{\rm E}(\underline{x}, \, \underline{y})$ muss also die Summe über $y_i^2$ nicht berücksichtigt werden, da kein Bezug zu den Codesequenzen $\underline{x}$ besteht.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 26. Juni 2019, 08:56 Uhr

Gesamtsystemmodell
Coder – Kanal – Viterbi

Der Viterbi–Algorithmus stellt die bekannteste Realisierungsform für die Maximum–Likelihood–Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:

  • Die Informationssequenz  $\underline{u}$  wird durch einen Faltungscode in die Codesequenz  $\underline{x}$  umgesetzt. Es gelte  $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt   ⇒   $x_i ∈ \{–1, \, +1\}$.
  • Der Kanal sei durch das  BSC–Modell  gegeben   ⇒   $y_i ∈ \{–1, \, +1\}$  oder es wird der  AWGN–Kanal  vorausgesetzt   ⇒   reellwertige Empfangswerte  $y_i$.
  • Bei gegebener Empfangssequenz  $\underline{y}$  entscheidet sich der Viterbi–Algorithmus für die Codesequenz  $\underline{z}$  gemäß
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
  • Als weiteres Ergebnis gibt der Viterbi–Algorithmus zusätzlich die Sequenz  $\underline{v}$  als Schätzung für die Informationssequenz  $\underline{u}$  aus.


In dieser Aufgabe soll der Zusammenhang zwischen der  Hamming–Distanz  $d_{\rm H}(\underline{x}, \, \underline{y})$  sowie der  Euklidischen Distanz

$$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$

ermittelt werden. Anschließend ist das obige ML–Kriterium zu formulieren mit

  • der Hamming–Distanz  $d_{\rm H}(\underline{x}, \, \underline{y})$,
  • der Euklidischen Distanz  $d_{\rm E}(\underline{x}, \, \underline{y})$, und
  • dem  Korrelationswert  $〈 x \cdot y 〉$.





Hinweise:



Fragebogen

1

Wie hängen  $d_{\rm H}(\underline{x}, \, \underline{y})$  und  $d_{\rm E}(\underline{x}, \, \underline{y})$  beim BSC–Modell zusammen?

Es gilt  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})$.
Es gilt  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})$.
Es gilt  $d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4$.

2

Welche der Gleichungen beschreiben die ML–Decodierung beim BSC–Modell? Die Minimierung/Maximierung bezieht sich jeweils auf alle  $\underline{x} ∈\mathcal{ C}$.

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})}$,

3

Welche Gleichung beschreibt die ML–Entscheidung beim BSC–Modell?

$\underline{z} = \arg \min 〈 \underline{x} \cdot \underline{y} 〉$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.

4

Welche Gleichungen gelten für die ML–Entscheidung beim AWGN–Modell?

$\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
$\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉$.


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 3:

  • Die zwei Binärfolgen seien $\underline{x}$ und $\underline{y}$ mit $x_i ∈ \{-1, \, +1\}, \ y_i ∈ \{-1, \, +1\}$. Die Folgenlänge sei jeweils $L$.
  • Die Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ gibt die Anzahl der Bit an, in denen sich $\underline{x}$ und $\underline{y}$ unterscheiden, für die also $x_i \, - y_i = ±2$   ⇒   $ (x_i \, - y_i)^2 = 4$ gilt.
  • Gleiche Symbole $(x_i = y_i)$ tragen zur Hamming–Distanz nicht bei und ergeben $(x_i \, – y_i)^2 = 0$. Nach dem Lösungsvorschlag 3 kann daher geschrieben werden:
$$ d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$


(2)  Alle Lösungsvorschläge sind richtig:

  • Beim BSC–Modell ist es allgemein üblich, zum gegebenen Empfangsvektor $\underline{y}$ das Codewort $\underline{x}$ mit der kleinsten Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ auszuwählen:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
  • Entsprechend der Teilaufgabe (1) gilt aber auch:
$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.05cm}.$$
  • Der Faktor $1/4$ spielt für die Minimierung keine Rolle. Da $d_{\rm E}(\underline{x}, \, \underline{y}) ≥ 0$ ist, ist es auch egal, ob die Minimierung hinsichtlich $d_{\rm E}(\underline{x}, \, \underline{y})$ oder $d_{\rm E}^2(\underline{x}, \, \underline{y})$ erfolgt.


(3)  Richtig ist der Lösungsvorschlag 2:

  • Das Quadrat der Euklidischen Distanz kann wie folgt ausgedrückt werden:
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i \hspace{0.05cm}.$$
  • Die beiden ersten Summanden sind jeweils gleich $L$ und müssen für die Minimierung nicht berücksichtigt werden.
  • Für den letzten Ausdruck in dieser Gleichung kann $–2 \cdot 〈 \underline{x}, \, \underline{y} 〉$ geschrieben werden.
  • Aufgrund des negativen Vorzeichens wird aus der Minimierung eine Maximierung   ⇒   Antwort 2.


(4)  Richtig sind die Lösungsvorschläge 2 und 3.:

  • Für den AWGN–Kanal kann im Gegensatz zum BSC keine Hamming–Distanz angegeben werden.
  • Ausgehend von der Gleichung
$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
gelten für den ersten und letzten Summanden die gleichen Aussagen wie für das BSC–Modell – siehe Teilaufgabe (3).
  • Für den mittleren Summanden gilt mit $y_i = x_i + n_i$ und $x_i ∈ \{–1, \, +1\}$:
$$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2} \hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
  • Der erste Summand ergibt wieder $L$, der zweite ist proportional zur Rauschleistung und der letzte Term verschwindet, da $\underline{x}$ und $\underline{n}$ unkorreliert sind.
  • Für die Minimerung von $d_{\rm E}(\underline{x}, \, \underline{y})$ muss also die Summe über $y_i^2$ nicht berücksichtigt werden, da kein Bezug zu den Codesequenzen $\underline{x}$ besteht.