Aufgaben:Aufgabe 4.6: OVSF-Codes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(10 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
 
}}
 
}}
  
[[Datei:P_ID1975__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion eines OVSF–Codes]]
+
[[Datei:P_ID1975__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion <br>eines OVSF–Codes]]
 
Die Spreizcodes für UMTS sollen
 
Die Spreizcodes für UMTS sollen
 
*alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
 
*alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
*möglichst flexibel sein, um unterschiedliche $J \RightarrowSpreizfaktoren zu realisieren.
+
*möglichst flexibel sein, um unterschiedliche Spreizfaktoren&nbsp; $J$&nbsp; zu realisieren.
  
  
Ein Beispiel hierfür sind die sog. '''Codes mit variablem Spreizfaktor''' (englisch: ''Orthogonal Variable Spreading Factor'', OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes
+
Ein Beispiel hierfür sind die so genannten&nbsp; '''Codes mit variablem Spreizfaktor'''&nbsp; (englisch:&nbsp; ''Orthogonal Variable Spreading Factor'',&nbsp; '''OVSF'''), die Spreizcodes der Längen von&nbsp; $J = 4$&nbsp; bis&nbsp; $J = 512$&nbsp; bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code&nbsp; $\mathcal{C}$&nbsp; zwei neue Codes
*$(+C +C)$,
+
*$(+\mathcal{C} \  +\hspace{-0.05cm}\mathcal{C})$,
*$(+C –C)$.
+
*$(+\mathcal{C}\  -\hspace{-0.05cm}\mathcal{C})$.
  
  
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen
+
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel&nbsp; $J = 4$.  
 +
 
 +
Nummeriert man die Spreizfolgen von&nbsp; $0$&nbsp; bis&nbsp; $J –1$&nbsp; durch, so ergeben sich hier die Spreizfolgen
 
:$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 
:$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 
:$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
 
:$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
Nach dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_{\nu}^{(0)} \rangle, ... ,\langle c_{\nu}^{(7)} \rangle$.
+
Nach dieser Nomenklatur gibt es für den Spreizfaktor&nbsp;  $J = 8$&nbsp; die Spreizfolgen&nbsp; $\langle c_{\nu}^{(0)} \rangle, \ \text{...} \  ,\langle c_{\nu}^{(7)} \rangle$.
 +
 
 +
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.
 +
*Im Beispiel könnten also vier Spreizcodes mit dem Spreizfaktor&nbsp; $J = 4$&nbsp; verwendet werden, oder
 +
*die drei gelb hinterlegten Codes – einmal mit&nbsp; $J = 2$&nbsp; und zweimal mit&nbsp; $J = 4$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabegehört zum Kapitel&nbsp; [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS]].
 +
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS#Spreizcodes_und_Verw.C3.BCrfelung_bei_UMTS|Spreizcodes und Verwürfelung bei UMTS]].
 +
  
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
 
  
  
''Hinweis:''
 
  
Die Aufgabe bezieht sich auf [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS#Spreizcodes_und_Verw.C3.BCrfelung_in_UMTS|Spreizcodes und Verwürfelung in UMTS]] von [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS
 
]].
 
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Konstruieren Sie das Baumdiagramm für $J = 8$. Welche OVSF–Codes ergeben sich daraus?
+
{Konstruieren Sie das Baumdiagramm für&nbsp; $J = 8$. Welche OVSF–Codes ergeben sich daraus?
 
|type="[]"}
 
|type="[]"}
+ $\langle c_{\mu}^{(1)} \rangle  = +1 +1 +1 +1 –1 –1 –1 –1$,
+
+ $\langle c_{\nu}^{(1)} \rangle  = +1 +1 +1 +1 –1 –1 –1 –1$,
- $\langle c_{\mu}^{(3)} \rangle  = +1 +1 –1 –1 +1 +1 –1 –1$,
+
- $\langle c_{\nu}^{(3)} \rangle  = +1 +1 –1 –1 +1 +1 –1 –1$,
+ $\langle c_{\mu}^{(5)} \rangle  = +1 –1 +1 –1 –1 +1 –1 +1$,
+
+ $\langle c_{\nu}^{(5)} \rangle  = +1 –1 +1 –1 –1 +1 –1 +1$,
+ $\langle c_{\mu}^{(7)} \rangle  = +1 –1 –1 +1 –1 +1 +1 –1$.
+
+ $\langle c_{\nu}^{(7)} \rangle  = +1 –1 –1 +1 –1 +1 +1 –1$.
  
{Wieviele UMTS–Teilnehmer können mit $J = 8$ maximal bedient werden?
+
{Wieviele UMTS–Teilnehmer können mit&nbsp; $J = 8$&nbsp; maximal bedient werden?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm max} \ = \ ${ 8 3% }
 
$K_{\rm max} \ = \ ${ 8 3% }
  
{Wieviele Teilnehmer können versorgt werden, wenn drei von ihnen einen Spreizcode mit $J = 4$ verwenden sollen?
+
{Wieviele Teilnehmer können versorgt werden, wenn drei von ihnen einen Spreizcode mit&nbsp; $J = 4$&nbsp; verwenden sollen?
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 5 3% }
 
$K \ = \ $ { 5 3% }
  
{Gehen Sie von einer Baumstruktur für $J = 32$ aus. Ist folgende Zuweisung machbar: Zweimal $J = 4$, einmal $J = 8$, zweimal $J = 16$, achtmal $J = 32$?
+
{Gehen Sie von einer Baumstruktur für&nbsp; $J = 32$&nbsp; aus. Ist die folgende Zuweisung machbar: <br>Zweimal&nbsp; $J = 4$, einmal&nbsp; $J = 8$, zweimal&nbsp; $J = 16$,&nbsp; achtmal $J = 32$&nbsp;?
|type="[]"}
+
|type="()"}
+ ja.
+
+ Ja.
- nein.
+
- Nein.
  
 
</quiz>
 
</quiz>
Zeile 57: Zeile 70:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
[[Datei:P_ID1979__Bei_A_4_6a.png|right|frame|OVSF–Baumstruktur für&nbsp; $J = 8$]]
'''(2)'''&nbsp;
+
'''(1)'''&nbsp; Die Grafik zeigt die OVSF–Baumstruktur für&nbsp; $J = 8$&nbsp; Nutzer.
'''(3)'''&nbsp;
+
*Daraus ist ersichtlich, dass die <u>Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite.
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
 
'''(7)'''&nbsp;
+
'''(2)'''&nbsp; Wird jedem Nutzer ein Spreizcode mit&nbsp; $J = 8$&nbsp; zugewiesen, so können&nbsp; $\underline{K_{\rm max} = 8}$&nbsp; Teilnehmer versorgt werden.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Wenn drei Teilnehmer mit&nbsp; $J = 4$&nbsp; versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit&nbsp; $J = 8$&nbsp; bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) &nbsp; &rArr; &nbsp; $\underline{K = 5}$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Wir bezeichnen mit
 +
*$K_{4} = 2$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 4$,
 +
*$K_{8} = 1$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 8$,
 +
*$K_{16} = 2$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 16$,
 +
*$K_{32} = 8$&nbsp; die Anzahl der Spreizfolgen mit&nbsp; $J = 32$.
 +
 
 +
 
 +
Dann muss folgende Bedingung erfüllt sein:
 +
:$$ K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
 +
*Wegen&nbsp; $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$&nbsp; ist die gewünschte Belegung gerade noch erlaubt &nbsp; &rArr; &nbsp; <u>Antwort JA</u>.
 +
*Die zweimalige Bereitstellung des Spreizgrads&nbsp; $J = 4$&nbsp; blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit&nbsp; $J = 8$, bleiben auf der&nbsp; $J = 8$–Ebene noch drei der acht Äste zu belegen, usw. und so fort.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Zeile 69: Zeile 101:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^4.3 Nachrichtentechnische Aspekte von UMTS
+
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^4.3 Nachrichtentechnische Aspekte
 
^]]
 
^]]

Aktuelle Version vom 20. August 2019, 13:36 Uhr

Baumstruktur zur Konstruktion
eines OVSF–Codes

Die Spreizcodes für UMTS sollen

  • alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
  • möglichst flexibel sein, um unterschiedliche Spreizfaktoren  $J$  zu realisieren.


Ein Beispiel hierfür sind die so genannten  Codes mit variablem Spreizfaktor  (englisch:  Orthogonal Variable Spreading FactorOVSF), die Spreizcodes der Längen von  $J = 4$  bis  $J = 512$  bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code  $\mathcal{C}$  zwei neue Codes

  • $(+\mathcal{C} \ +\hspace{-0.05cm}\mathcal{C})$,
  • $(+\mathcal{C}\ -\hspace{-0.05cm}\mathcal{C})$.


Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel  $J = 4$.

Nummeriert man die Spreizfolgen von  $0$  bis  $J –1$  durch, so ergeben sich hier die Spreizfolgen

$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

Nach dieser Nomenklatur gibt es für den Spreizfaktor  $J = 8$  die Spreizfolgen  $\langle c_{\nu}^{(0)} \rangle, \ \text{...} \ ,\langle c_{\nu}^{(7)} \rangle$.

Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.

  • Im Beispiel könnten also vier Spreizcodes mit dem Spreizfaktor  $J = 4$  verwendet werden, oder
  • die drei gelb hinterlegten Codes – einmal mit  $J = 2$  und zweimal mit  $J = 4$.




Hinweise:



Fragebogen

1

Konstruieren Sie das Baumdiagramm für  $J = 8$. Welche OVSF–Codes ergeben sich daraus?

$\langle c_{\nu}^{(1)} \rangle = +1 +1 +1 +1 –1 –1 –1 –1$,
$\langle c_{\nu}^{(3)} \rangle = +1 +1 –1 –1 +1 +1 –1 –1$,
$\langle c_{\nu}^{(5)} \rangle = +1 –1 +1 –1 –1 +1 –1 +1$,
$\langle c_{\nu}^{(7)} \rangle = +1 –1 –1 +1 –1 +1 +1 –1$.

2

Wieviele UMTS–Teilnehmer können mit  $J = 8$  maximal bedient werden?

$K_{\rm max} \ = \ $

3

Wieviele Teilnehmer können versorgt werden, wenn drei von ihnen einen Spreizcode mit  $J = 4$  verwenden sollen?

$K \ = \ $

4

Gehen Sie von einer Baumstruktur für  $J = 32$  aus. Ist die folgende Zuweisung machbar:
Zweimal  $J = 4$, einmal  $J = 8$, zweimal  $J = 16$,  achtmal $J = 32$ ?

Ja.
Nein.


Musterlösung

OVSF–Baumstruktur für  $J = 8$

(1)  Die Grafik zeigt die OVSF–Baumstruktur für  $J = 8$  Nutzer.

  • Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.


(2)  Wird jedem Nutzer ein Spreizcode mit  $J = 8$  zugewiesen, so können  $\underline{K_{\rm max} = 8}$  Teilnehmer versorgt werden.


(3)  Wenn drei Teilnehmer mit  $J = 4$  versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit  $J = 8$  bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik)   ⇒   $\underline{K = 5}$.


(4)  Wir bezeichnen mit

  • $K_{4} = 2$  die Anzahl der Spreizfolgen mit  $J = 4$,
  • $K_{8} = 1$  die Anzahl der Spreizfolgen mit  $J = 8$,
  • $K_{16} = 2$  die Anzahl der Spreizfolgen mit  $J = 16$,
  • $K_{32} = 8$  die Anzahl der Spreizfolgen mit  $J = 32$.


Dann muss folgende Bedingung erfüllt sein:

$$ K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Wegen  $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$  ist die gewünschte Belegung gerade noch erlaubt   ⇒   Antwort JA.
  • Die zweimalige Bereitstellung des Spreizgrads  $J = 4$  blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit  $J = 8$, bleiben auf der  $J = 8$–Ebene noch drei der acht Äste zu belegen, usw. und so fort.