Aufgaben:Aufgabe 1.4Z: Entropie der AMI-Codierung: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 1.4Z Entropie der AMI-Codierung nach Aufgabe 1.4Z: Entropie der AMI-Codierung) |
|||
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID2249__Inf_A_1_4.png|right|Binäres Quellensignal und ternäres Codersignal]] | + | [[Datei:P_ID2249__Inf_A_1_4.png|right|frame|Binäres Quellensignal (oben) und <br>ternäres Codersignal (unten)]] |
− | Wir gehen von ähnlichen Voraussetzungen wie in der [[Aufgaben:1.4_Entropienäherungen_für_den_AMI-Code|Aufgabe 1.4]] aus: Eine Binärquelle liefert die Quellensybolfolge $\langle q_\nu \rangle$ mit $q_\nu \in \{ {\rm L}, {\rm H} \}$, wobei es keine statistischen Bindungen zwischen den einzelnen Folgenelementen gibt. | + | Wir gehen von ähnlichen Voraussetzungen wie in der [[Aufgaben:1.4_Entropienäherungen_für_den_AMI-Code|Aufgabe 1.4]] aus: |
+ | |||
+ | Eine Binärquelle liefert die Quellensybolfolge $\langle q_\nu \rangle$ mit $q_\nu \in \{ {\rm L}, {\rm H} \}$, wobei es keine statistischen Bindungen zwischen den einzelnen Folgenelementen gibt. | ||
Für die Symbolwahrscheinlichkeiten gelte: | Für die Symbolwahrscheinlichkeiten gelte: | ||
− | * $p_{\rm L} =p_{\rm H} = 1/2$ (in den Teilaufgaben 1 und 2), | + | * $p_{\rm L} =p_{\rm H} = 1/2$ (in den Teilaufgaben 1 und 2), |
− | * $p_{\rm L} = 1/4, \, p_{\rm H} = 3/4$ (Teilaufgaben 3, 4 und 5), | + | * $p_{\rm L} = 1/4, \, p_{\rm H} = 3/4$ (Teilaufgaben 3, 4 und 5), |
− | * $p_{\rm L} = 3/4, \, p_{\rm H} = 1/4$ (Teilaufgabe 6). | + | * $p_{\rm L} = 3/4, \, p_{\rm H} = 1/4$ (Teilaufgabe 6). |
− | Das dargestellte Codersignal $c(t)$ und die zugehörige Symbolfolge $\langle c_\nu \rangle$ mit $c_\nu \in \{{\rm P}, {\rm N}, {\rm M} \}$ ergibt sich aus der AMI–Codierung ( | + | Das dargestellte Codersignal $c(t)$ und die zugehörige Symbolfolge $\langle c_\nu \rangle$ mit $c_\nu \in \{{\rm P}, {\rm N}, {\rm M} \}$ ergibt sich aus der AMI–Codierung („Alternate Mark Inversion”) nach folgender Vorschrift: |
− | * Das Binärsymbol $\rm L$ ⇒ | + | * Das Binärsymbol $\rm L$ ⇒ „Low” wird stets durch das Ternärsymbol $\rm N$ ⇒ „Null</i> dargestellt. |
− | * Das Binärsymbol $\rm H$ ⇒ | + | * Das Binärsymbol $\rm H$ ⇒ „High</i>” wird ebenfalls deterministisch, aber alternierend (daher der Name „Alternate Mark Inversion”) durch die Symbole $\rm P$ ⇒ „Plus</i>” und $\rm M$ ⇒ „Minus” codiert. |
− | In dieser Aufgabe sollen für die drei oben genannten Parametersätze der Entscheidungsgehalt $H_0$ sowie die resultierende Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$ bestimmt werden. Die relative Redundanz der Codefolge ergibt sich daraus entsprechend der Gleichung | + | In dieser Aufgabe sollen für die drei oben genannten Parametersätze der Entscheidungsgehalt $H_0$ sowie die resultierende Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$ bestimmt werden. Die relative Redundanz der Codefolge ergibt sich daraus entsprechend der Gleichung |
:$$r_{\rm C} = \frac{H_{\rm 0}-H_{\rm C}}{H_{\rm C}} | :$$r_{\rm C} = \frac{H_{\rm 0}-H_{\rm C}}{H_{\rm C}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis|Nachrichtenquellen mit Gedächtnis]]. | + | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis|Nachrichtenquellen mit Gedächtnis]]. |
− | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis#Die_Entropie_des_AMI.E2.80.93Codes|Die Entropie des AMI | + | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis#Die_Entropie_des_AMI.E2.80.93Codes|Die Entropie des AMI–Codes]]. |
− | + | ||
− | *Allgemein bestehen folgende Relationen zwischen dem Entscheidungsgehalt $H_0$, der Entropie $H$ (hier gleich $H_{\rm C}$ und den Entropienäherungen: | + | *Allgemein bestehen folgende Relationen zwischen dem Entscheidungsgehalt $H_0$, der Entropie $H$ $($hier gleich $H_{\rm C})$ und den Entropienäherungen: |
− | \hspace{0.05cm}.$ | + | :$$H \le \ \text{...} \ \le H_3 \le H_2 \le H_1 \le H_0 |
− | *In [[Aufgaben:1.4_Entropienäherungen_für_den_AMI-Code|Aufgabe 1.4]] wurden für gleichwahrscheinliche Symbole $\rm L$ und $\rm H$ die Entropie–Näherungen wie folgt berechnet (jeweils in „bit/Symbol”): | + | \hspace{0.05cm}.$$ |
− | \hspace{0.05cm}.$ | + | *In [[Aufgaben:1.4_Entropienäherungen_für_den_AMI-Code|Aufgabe 1.4]] wurden für gleichwahrscheinliche Symbole $\rm L$ und $\rm H$ die Entropie–Näherungen wie folgt berechnet (jeweils in „bit/Symbol”): |
+ | :$$H_1 = 1.500\hspace{0.05cm},\hspace{0.2cm} H_2 = 1.375\hspace{0.05cm},\hspace{0.2cm}H_3 = 1.292 | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
Zeile 36: | Zeile 49: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Die Quellensymbole seien gleichwahrscheinlich. Wie groß ist die Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$? | + | {Die Quellensymbole seien gleichwahrscheinlich $(p_{\rm L} = p_{\rm H}= 1/2)$. Wie groß ist die Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$? |
|type="{}"} | |type="{}"} | ||
− | + | $H_{\rm C} \ = \ $ { 1 3% } $\ \rm bit/Ternärsymbol$ | |
{Wie groß ist die relative Redundanz der Codesymbolfolge? | {Wie groß ist die relative Redundanz der Codesymbolfolge? | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $r_{\rm C} \ = \ $ { 36.9 3% } $\ \rm \%$ |
− | {Für die Binärquelle gelte nun $p_{\rm L} = 1/4$ und $p_{\rm H} = 3/4$. Welcher Wert ergibt sich nun für die Entropie der Codesymbolfolge? | + | {Für die Binärquelle gelte nun $p_{\rm L} = 1/4$ und $p_{\rm H} = 3/4$. Welcher Wert ergibt sich nun für die Entropie der Codesymbolfolge? |
|type="{}"} | |type="{}"} | ||
− | + | $H_{\rm C} \ = \ $ { 0.811 3% } $\ \rm bit/Ternärsymbol$ | |
{Wie groß ist nun die relative Redundanz der Codesymbolfolge? | {Wie groß ist nun die relative Redundanz der Codesymbolfolge? | ||
|type="{}"} | |type="{}"} | ||
− | + | $r_{\rm C} \ = \ $ { 48.8 3% } $\ \rm \%$ | |
− | {Berechnen Sie die Näherung $H_{\rm 1}$ der Coderentropie für $p_{\rm L} = 1/4 | + | {Berechnen Sie die Näherung $H_{\rm 1}$ der Coderentropie für $p_{\rm L} = 1/4$ und $p_{\rm H} = 3/4$. |
|type="{}"} | |type="{}"} | ||
− | + | $H_{\rm 1} \ = \ $ { 1.56 3% } $\ \rm bit/Ternärsymbol$ | |
− | {Berechnen Sie die Näherung $H_{\rm 1}$ der Coderentropie für $p_{\rm L} = 3/4 | + | {Berechnen Sie die Näherung $H_{\rm 1}$ der Coderentropie für $p_{\rm L} = 3/4$ und $p_{\rm H} = 1/4$. |
|type="{}"} | |type="{}"} | ||
− | + | $H_{\rm 1} \ = \ $ { 1.06 3% } $\ \rm bit/Ternärsymbol$ | |
Zeile 71: | Zeile 84: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Da durch den AMI–Code weder neue Information hinzukommt noch Information verschwindet, ist die Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$ gleich der Quellenentropie $H_{\rm Q}$. Bei gleichwahrscheinlichen und statistisch voneinander unabhängigen Quellensymbolen gilt deshalb: | + | '''(1)''' Da durch den AMI–Code weder neue Information hinzukommt noch Information verschwindet, ist die Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$ gleich der Quellenentropie $H_{\rm Q}$. |
+ | *Bei gleichwahrscheinlichen und statistisch voneinander unabhängigen Quellensymbolen gilt deshalb: | ||
:$$H_{\rm Q} {= 1 \,{\rm bit/Bin\ddot{a}rsymbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C} \hspace{0.15cm} \underline {= 1 \,{\rm bit/Tern\ddot{a}rsymbol}} | :$$H_{\rm Q} {= 1 \,{\rm bit/Bin\ddot{a}rsymbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C} \hspace{0.15cm} \underline {= 1 \,{\rm bit/Tern\ddot{a}rsymbol}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(2)''' Der Entscheidungsgehalt einer ternären Quelle beträgt $H_0 = \log_2 \; (3) = 1.585\; \rm bit/Symbol$. Damit ergibt sich für die relative Redundanz | + | |
+ | |||
+ | '''(2)''' Der Entscheidungsgehalt einer ternären Quelle beträgt $H_0 = \log_2 \; (3) = 1.585\; \rm bit/Symbol$. | ||
+ | * Damit ergibt sich für die relative Redundanz | ||
:$$r_{\rm C} =1 -{H_{\rm C}/H_{\rm 0}}=1-1/{\rm log}_2\hspace{0.05cm}(3) | :$$r_{\rm C} =1 -{H_{\rm C}/H_{\rm 0}}=1-1/{\rm log}_2\hspace{0.05cm}(3) | ||
\hspace{0.15cm} \underline {= 36.9 \,\%} | \hspace{0.15cm} \underline {= 36.9 \,\%} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(3)''' Es gilt weiter $H_{\rm C} = H_{\rm Q}$. Wegen den ungleichen Symbolwahrscheinlichkeiten ist aber nun $H_{\rm Q}$ kleiner: | + | |
+ | |||
+ | '''(3)''' Es gilt weiter $H_{\rm C} = H_{\rm Q}$. Wegen den ungleichen Symbolwahrscheinlichkeiten ist aber nun $H_{\rm Q}$ kleiner: | ||
:$$H_{\rm Q} = \frac{1}{4} \cdot {\rm log}_2\hspace{0.05cm} (4) + \frac{3}{4} \cdot | :$$H_{\rm Q} = \frac{1}{4} \cdot {\rm log}_2\hspace{0.05cm} (4) + \frac{3}{4} \cdot | ||
{\rm log}_2\hspace{0.1cm} (4/3) | {\rm log}_2\hspace{0.1cm} (4/3) | ||
Zeile 87: | Zeile 106: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(4)''' In Analogie zur Teilaufgabe (2) gilt nun $r_{\rm C} = 1 - 0.811/1.585 | + | |
+ | |||
+ | '''(4)''' In Analogie zur Teilaufgabe '''(2)''' gilt nun $r_{\rm C} = 1 - 0.811/1.585 | ||
\hspace{0.15cm} \underline {= 48.8 \,\%} | \hspace{0.15cm} \underline {= 48.8 \,\%} | ||
\hspace{0.05cm}.$ | \hspace{0.05cm}.$ | ||
− | Man kann dieses Ergebnis verallgemeinern. Es gilt nämlich : | + | *Man kann dieses Ergebnis verallgemeinern. Es gilt nämlich: |
:$$(1-0.488) = (1- 0.189) \cdot (1- 0.369)\hspace{0.3cm} | :$$(1-0.488) = (1- 0.189) \cdot (1- 0.369)\hspace{0.3cm} | ||
\Rightarrow\hspace{0.3cm} (1-r_{\rm Codefolge}) = (1-r_{\rm Quelle}) \cdot (1- r_{\rm AMI-Code}) | \Rightarrow\hspace{0.3cm} (1-r_{\rm Codefolge}) = (1-r_{\rm Quelle}) \cdot (1- r_{\rm AMI-Code}) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(5)''' Da jedes $\rm L$ auf $\rm N$ abgebildet wird und $\rm H$ alternierend auf $\rm M$ und $\rm P$, gilt | + | |
+ | |||
+ | '''(5)''' Da jedes $\rm L$ auf $\rm N$ abgebildet wird und $\rm H$ alternierend auf $\rm M$ und $\rm P$, gilt | ||
:$$p_{\rm N} = p_{\rm L} = 1/4\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 3/8\hspace{0.3cm} | :$$p_{\rm N} = p_{\rm L} = 1/4\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 3/8\hspace{0.3cm} | ||
\Rightarrow\hspace{0.3cm} H_1 = {1}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4) + | \Rightarrow\hspace{0.3cm} H_1 = {1}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4) + | ||
Zeile 101: | Zeile 124: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(6)''' Nun ergeben sich die Auftrittswahrscheinlichkeiten der Ternärsymbole zu $p_{\rm N} = 3/4$ sowie $p_{\rm P} = p_{\rm M} =1/8$. Somit gilt: | + | |
+ | '''(6)''' Nun ergeben sich die Auftrittswahrscheinlichkeiten der Ternärsymbole zu $p_{\rm N} = 3/4$ sowie $p_{\rm P} = p_{\rm M} =1/8$. Somit gilt: | ||
:$$H_1 = {3}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) + | :$$H_1 = {3}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) + | ||
2 \cdot {1}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8) \hspace{0.15cm} \underline {= 1.06 \,{\rm bit/Tern\ddot{a}rsymbol}} | 2 \cdot {1}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8) \hspace{0.15cm} \underline {= 1.06 \,{\rm bit/Tern\ddot{a}rsymbol}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | ||
− | *Für $p_{\rm L} = 1/4, \ p_{\rm H} = 3/4$ ergibt sich $H_1 = 1.56 \; \rm bit/Symbol$. | + | ''Interpretation:'' |
− | *Für $p_{\rm L} = 3/4, \ p_{\rm H} = 1/4$ ergibt sich dagegen mit $H_1 = 1.06 \; \rm bit/Symbol$ ein deutlich kleinerer Wert. | + | *Für $p_{\rm L} = 1/4, \ p_{\rm H} = 3/4$ ergibt sich $H_1 = 1.56 \; \rm bit/Symbol$. |
+ | *Für $p_{\rm L} = 3/4, \ p_{\rm H} = 1/4$ ergibt sich dagegen mit $H_1 = 1.06 \; \rm bit/Symbol$ ein deutlich kleinerer Wert. | ||
*Für beide Parameterkombinationen gilt aber gleichermaßen: | *Für beide Parameterkombinationen gilt aber gleichermaßen: | ||
:$$H_0 = 1.585 \,{\rm bit/Symbol}\hspace{0.05cm},\hspace{0.2cm}H_{\rm C} = | :$$H_0 = 1.585 \,{\rm bit/Symbol}\hspace{0.05cm},\hspace{0.2cm}H_{\rm C} = | ||
\lim_{k \rightarrow \infty } H_k = 0.811 \,{\rm bit/Symbol} | \lim_{k \rightarrow \infty } H_k = 0.811 \,{\rm bit/Symbol} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
+ | Daraus folgt: <br> | ||
+ | *Betrachtet man zwei Nachrichtenquellen $\rm Q1$ und $\rm Q2$ mit gleichem Symbolumfang $M$ ⇒ Entscheidungsgehalt $H_0 = \rm const.$, wobei bei der Quelle $\rm Q1$ die Entropienäherung erster Ordnung $(H_1)$ deutlich größer ist als bei der Quelle $\rm Q2$, so kann man daraus noch lange nicht schließen, dass die Entropie von $\rm Q1$ tatsächlich größer ist als die Entropie von $\rm Q2$. | ||
+ | *Vielmehr muss man für beide Quellen | ||
+ | :* genügend viele Entropienäherungen $H_1$, $H_2$, $H_3$, ... berechnen, und | ||
+ | :* daraus (grafisch oder analytisch) den Grenzwert von $H_k$ für $k \to \infty$ bestimmen. | ||
− | + | *Erst dann ist eine endgültige Aussage über die Entropieverhältnisse möglich. | |
− | * | ||
− | |||
− | |||
− | Erst dann ist eine endgültige Aussage über die Entropieverhältnisse möglich. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Aktuelle Version vom 19. Juni 2021, 16:05 Uhr
Wir gehen von ähnlichen Voraussetzungen wie in der Aufgabe 1.4 aus:
Eine Binärquelle liefert die Quellensybolfolge $\langle q_\nu \rangle$ mit $q_\nu \in \{ {\rm L}, {\rm H} \}$, wobei es keine statistischen Bindungen zwischen den einzelnen Folgenelementen gibt.
Für die Symbolwahrscheinlichkeiten gelte:
- $p_{\rm L} =p_{\rm H} = 1/2$ (in den Teilaufgaben 1 und 2),
- $p_{\rm L} = 1/4, \, p_{\rm H} = 3/4$ (Teilaufgaben 3, 4 und 5),
- $p_{\rm L} = 3/4, \, p_{\rm H} = 1/4$ (Teilaufgabe 6).
Das dargestellte Codersignal $c(t)$ und die zugehörige Symbolfolge $\langle c_\nu \rangle$ mit $c_\nu \in \{{\rm P}, {\rm N}, {\rm M} \}$ ergibt sich aus der AMI–Codierung („Alternate Mark Inversion”) nach folgender Vorschrift:
- Das Binärsymbol $\rm L$ ⇒ „Low” wird stets durch das Ternärsymbol $\rm N$ ⇒ „Null dargestellt.
- Das Binärsymbol $\rm H$ ⇒ „High” wird ebenfalls deterministisch, aber alternierend (daher der Name „Alternate Mark Inversion”) durch die Symbole $\rm P$ ⇒ „Plus” und $\rm M$ ⇒ „Minus” codiert.
In dieser Aufgabe sollen für die drei oben genannten Parametersätze der Entscheidungsgehalt $H_0$ sowie die resultierende Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$ bestimmt werden. Die relative Redundanz der Codefolge ergibt sich daraus entsprechend der Gleichung
- $$r_{\rm C} = \frac{H_{\rm 0}-H_{\rm C}}{H_{\rm C}} \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Nachrichtenquellen mit Gedächtnis.
- Bezug genommen wird insbesondere auf die Seite Die Entropie des AMI–Codes.
- Allgemein bestehen folgende Relationen zwischen dem Entscheidungsgehalt $H_0$, der Entropie $H$ $($hier gleich $H_{\rm C})$ und den Entropienäherungen:
- $$H \le \ \text{...} \ \le H_3 \le H_2 \le H_1 \le H_0 \hspace{0.05cm}.$$
- In Aufgabe 1.4 wurden für gleichwahrscheinliche Symbole $\rm L$ und $\rm H$ die Entropie–Näherungen wie folgt berechnet (jeweils in „bit/Symbol”):
- $$H_1 = 1.500\hspace{0.05cm},\hspace{0.2cm} H_2 = 1.375\hspace{0.05cm},\hspace{0.2cm}H_3 = 1.292 \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- Bei gleichwahrscheinlichen und statistisch voneinander unabhängigen Quellensymbolen gilt deshalb:
- $$H_{\rm Q} {= 1 \,{\rm bit/Bin\ddot{a}rsymbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C} \hspace{0.15cm} \underline {= 1 \,{\rm bit/Tern\ddot{a}rsymbol}} \hspace{0.05cm}.$$
(2) Der Entscheidungsgehalt einer ternären Quelle beträgt $H_0 = \log_2 \; (3) = 1.585\; \rm bit/Symbol$.
- Damit ergibt sich für die relative Redundanz
- $$r_{\rm C} =1 -{H_{\rm C}/H_{\rm 0}}=1-1/{\rm log}_2\hspace{0.05cm}(3) \hspace{0.15cm} \underline {= 36.9 \,\%} \hspace{0.05cm}.$$
(3) Es gilt weiter $H_{\rm C} = H_{\rm Q}$. Wegen den ungleichen Symbolwahrscheinlichkeiten ist aber nun $H_{\rm Q}$ kleiner:
- $$H_{\rm Q} = \frac{1}{4} \cdot {\rm log}_2\hspace{0.05cm} (4) + \frac{3}{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) {= 0.811 \,{\rm bit/Bin\ddot{a}rsymbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C} = H_{\rm Q} \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Tern\ddot{a}rsymbol}} \hspace{0.05cm}.$$
(4) In Analogie zur Teilaufgabe (2) gilt nun $r_{\rm C} = 1 - 0.811/1.585 \hspace{0.15cm} \underline {= 48.8 \,\%} \hspace{0.05cm}.$
- Man kann dieses Ergebnis verallgemeinern. Es gilt nämlich:
- $$(1-0.488) = (1- 0.189) \cdot (1- 0.369)\hspace{0.3cm} \Rightarrow\hspace{0.3cm} (1-r_{\rm Codefolge}) = (1-r_{\rm Quelle}) \cdot (1- r_{\rm AMI-Code}) \hspace{0.05cm}.$$
(5) Da jedes $\rm L$ auf $\rm N$ abgebildet wird und $\rm H$ alternierend auf $\rm M$ und $\rm P$, gilt
- $$p_{\rm N} = p_{\rm L} = 1/4\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 3/8\hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_1 = {1}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4) + 2 \cdot {3}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8/3) \hspace{0.15cm} \underline {= 1.56 \,{\rm bit/Tern\ddot{a}rsymbol}} \hspace{0.05cm}.$$
(6) Nun ergeben sich die Auftrittswahrscheinlichkeiten der Ternärsymbole zu $p_{\rm N} = 3/4$ sowie $p_{\rm P} = p_{\rm M} =1/8$. Somit gilt:
- $$H_1 = {3}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) + 2 \cdot {1}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8) \hspace{0.15cm} \underline {= 1.06 \,{\rm bit/Tern\ddot{a}rsymbol}} \hspace{0.05cm}.$$
Interpretation:
- Für $p_{\rm L} = 1/4, \ p_{\rm H} = 3/4$ ergibt sich $H_1 = 1.56 \; \rm bit/Symbol$.
- Für $p_{\rm L} = 3/4, \ p_{\rm H} = 1/4$ ergibt sich dagegen mit $H_1 = 1.06 \; \rm bit/Symbol$ ein deutlich kleinerer Wert.
- Für beide Parameterkombinationen gilt aber gleichermaßen:
- $$H_0 = 1.585 \,{\rm bit/Symbol}\hspace{0.05cm},\hspace{0.2cm}H_{\rm C} = \lim_{k \rightarrow \infty } H_k = 0.811 \,{\rm bit/Symbol} \hspace{0.05cm}.$$
Daraus folgt:
- Betrachtet man zwei Nachrichtenquellen $\rm Q1$ und $\rm Q2$ mit gleichem Symbolumfang $M$ ⇒ Entscheidungsgehalt $H_0 = \rm const.$, wobei bei der Quelle $\rm Q1$ die Entropienäherung erster Ordnung $(H_1)$ deutlich größer ist als bei der Quelle $\rm Q2$, so kann man daraus noch lange nicht schließen, dass die Entropie von $\rm Q1$ tatsächlich größer ist als die Entropie von $\rm Q2$.
- Vielmehr muss man für beide Quellen
- genügend viele Entropienäherungen $H_1$, $H_2$, $H_3$, ... berechnen, und
- daraus (grafisch oder analytisch) den Grenzwert von $H_k$ für $k \to \infty$ bestimmen.
- Erst dann ist eine endgültige Aussage über die Entropieverhältnisse möglich.