Aufgaben:Aufgabe 3.1Z: Einfluss der Nachrichtenphase bei PM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(4 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
 
Wir betrachten die Phasenmodulation verschiedener Schwingungen
 
Wir betrachten die Phasenmodulation verschiedener Schwingungen
 
:$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$
 
:$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$
Das Quellensignal ist hierbei normiert (Amplitude $1$) dargestellt, so dass das phasenmodulierte Signal mit dem Modulationsindex (bzw. Phasenhub) $η$ wie folgt beschrieben werden kann:
+
Das Quellensignal ist hierbei normiert  $($Amplitude  $1)$  dargestellt, so dass das phasenmodulierte Signal mit dem Modulationsindex (bzw. Phasenhub)  $η$  wie folgt beschrieben werden kann:
:$$s(t) = A_{\rm T} \cdot \cos \left(\omega_{\rm T} \cdot t + \eta \cdot q(t) \right)\hspace{0.05cm}.$$
+
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
*Das in der oberen Grafik dargestellte Signal $s_1(t)$ ist durch die Parameterwerte $ϕ_{\rm N} = -90^\circ$ und $η_1 = 2$ charakterisiert. Die Frequenz $f_{\rm N}$ dieses sinusförmigen Quellensignals soll ebenso wie die Trägerfrequenz $f_{\rm T}$ aus dem dargestellten Signalausschnitt der Dauer $200 \ \rm μs$ ermittelt werden.
+
*Das in der oberen Grafik dargestellte Signal  $s_1(t)$  ist durch die Parameterwerte  $ϕ_{\rm N} = -90^\circ$  und  $η_1 = 2$  charakterisiert.  
 +
*Die Frequenz  $f_{\rm N}$  dieses sinusförmigen Quellensignals soll ebenso wie die Trägerfrequenz  $f_{\rm T}$  aus dem dargestellten Signalausschnitt der Dauer  $200 \ \rm µ s$  ermittelt werden.
 +
 
 +
*Das Signal  $s_2(t)$  unterscheidet sich von  $s_1(t)$  möglicherweise durch eine andere Nachrichtenphase  $ϕ_{\rm N}$  und einen anderen Modulationsindex  $η$.  Alle anderen Systemparameter sind gegenüber  $s_1(t)$  unverändert.
 +
 
 +
 
 +
 
 +
 
 +
 
  
*Das Signal $s_2(t)$ unterscheidet sich von $s_1(t)$ möglicherweise durch eine andere Nachrichtenphase $ϕ_{\rm N}$ und einen anderen Modulationsindex $η$. Alle anderen Systemparameter sind gegenüber $s_1(t)$ unverändert.
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
+
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Phasenmodulation_(PM)#Signalverl.C3.A4ufe_bei_Phasenmodulation|Signalverläufe bei Phasenmodulation]].
+
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Phasenmodulation_(PM)#Signalverl.C3.A4ufe_bei_Phasenmodulation|Signalverläufe bei Phasenmodulation]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  
Zeile 23: Zeile 30:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Ermitteln Sie die Frequenz $f_{\rm N}$ des Nachrichtensignals.
+
{Ermitteln Sie die Frequenz &nbsp;$f_{\rm N}$&nbsp; des Nachrichtensignals.
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm N} \ = \ $ { 5 3%  } $\ \rm kHz$  
 
$f_{\rm N} \ = \ $ { 5 3%  } $\ \rm kHz$  
  
{Wie groß ist die Trägerfrequenz $f_{\rm T}$?
+
{Wie groß ist die Trägerfrequenz &nbsp;$f_{\rm T}$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm T} \ = \ $ { 50 3% } $\ \rm kHz$
 
$f_{\rm T} \ = \ $ { 50 3% } $\ \rm kHz$
  
{Wie groß ist die maximale Phasenabweichung $ϕ_{\rm max}$ zwischen $z(t)$ und $s(t)$?
+
{Wie groß ist die maximale Phasenabweichung &nbsp;$ϕ_{\rm max}$&nbsp; zwischen &nbsp;$z(t)$&nbsp; und &nbsp;$s(t)$?
 
|type="{}"}
 
|type="{}"}
 
$ϕ_{\rm max} \ = \ $ { 0.318 3% } $\ \rm rad$  
 
$ϕ_{\rm max} \ = \ $ { 0.318 3% } $\ \rm rad$  
Zeile 37: Zeile 44:
 
{Zu welcher maximalen Zeitverschiebung der Nulldurchgänge führt diese Phase?
 
{Zu welcher maximalen Zeitverschiebung der Nulldurchgänge führt diese Phase?
 
|type="{}"}
 
|type="{}"}
$Δt_{\rm max} \ = \ $ { 6.37 3% } $\ \rm μs$
+
$Δt_{\rm max} \ = \ $ { 6.37 3% } $\ \rm &micro; s$
  
{Bestimmen Sie den Modulationsindex $η_2$ für das Signal $s_2(t).
+
{Bestimmen Sie den Modulationsindex &nbsp;$η_2$&nbsp; für das Signal &nbsp;$s_2(t)$.
 
|type="{}"}
 
|type="{}"}
 
$η_2 \ = \ $ { 2 3% }  
 
$η_2 \ = \ $ { 2 3% }  
  
{Welche Phasenlage $ϕ_{\rm N2}$ hat das für $s_2(t)$ zugrunde liegende Quellensignal $q(t)$?
+
{Welche Phasenlage &nbsp;$ϕ_{\rm N2}$&nbsp; hat das für &nbsp;$s_2(t)$&nbsp; zugrunde liegende Quellensignal &nbsp;$q(t)$?
 
|type="{}"}
 
|type="{}"}
 
$ϕ_{\rm N2} \ = \ $ { -139--131 } $\ \rm Grad$  
 
$ϕ_{\rm N2} \ = \ $ { -139--131 } $\ \rm Grad$  
Zeile 52: Zeile 59:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Man erkennt aus der Skizze, dass der dargestellte Signalausschnitt der Dauer $200 \ \rm μs$ genau der Periodendauer des sinusförmigen Quellensignals entsprechen muss. Daraus folgt $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm  kHz}$.  
+
'''(1)'''&nbsp; Man erkennt aus der Skizze, dass der dargestellte Signalausschnitt der Dauer&nbsp; $200 \ \rm &micro; s$&nbsp; genau der Periodendauer des sinusförmigen Quellensignals entsprechen muss.&nbsp; Daraus folgt&nbsp; $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm  kHz}$.  
*Zu den Zeitpunkten $t = 0$, $t = 100 \ \rm  μs$ und $t = 200 \ \rm  μs$ sind die Signale $z(t)$ und $s(t)$ phasensynchron.  
+
*Zu den Zeitpunkten&nbsp; $t = 0$,&nbsp; $t = 100 \ \rm  &micro; s$&nbsp; und&nbsp; $t = 200 \ \rm  &micro; s$&nbsp; sind die Signale&nbsp; $z(t)$&nbsp; und&nbsp; $s(t)$&nbsp; phasensynchron.  
*In der ersten Halbwelle von $q(t)$ kommen die Nulldurchgänge von $s(t)$ etwas früher als die des Trägersignals $z(t)$ &nbsp; &rArr; &nbsp;  positive Phase.  
+
*In der ersten Halbwelle von&nbsp; $q(t)$&nbsp; kommen die Nulldurchgänge von&nbsp; $s(t)$&nbsp; etwas früher als die des Trägersignals&nbsp; $z(t)$ &nbsp; &rArr; &nbsp;  positive Phase.  
*Dagegen ist im Bereich von $t = 100 \ \rm  μs$ bis $t = 200 \ \rm  μs$ die Phase $ϕ(t) < 0$.
+
*Dagegen ist im Bereich von&nbsp; $t = 100 \ \rm  &micro; s$&nbsp; bis&nbsp; $t = 200 \ \rm  &micro; s$&nbsp; die Phase&nbsp; $ϕ(t) < 0$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Es gilt&nbsp; $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm  kHz}$,
 +
*da im dargestellten&nbsp; $z(t)$&ndash;Signalausschnitt der Dauer&nbsp; $200 \ \rm  &micro; s$&nbsp; genau&nbsp; $10$&nbsp; Perioden abgezählt werden können.
 +
 
 +
 
  
 +
'''(3)'''&nbsp; Die maximale relative Phasenabweichung beträgt&nbsp; $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{  ≈ 0.318}$.
  
'''(2)'''&nbsp; Es gilt $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm  kHz}$, da im dargestellten $z(t)$&ndash;Signalausschnitt der Dauer $200 \ \rm  μs$ genau $10$ Perioden abgezählt werden können.
 
  
  
'''(3)'''&nbsp; Die maximale relative Phasenabweichung beträgt $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ 0.318}$.
+
'''(4)'''&nbsp; Da die Periodendauer des Trägers&nbsp; $T_0 = 20 \ \rm  &micro; s$&nbsp; ist, erhält man&nbsp; $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm  &micro; s}$.
  
  
'''(4)'''&nbsp; Da die Periodendauer des Trägers $T_0 = 20 \ \rm  μs$ ist, erhält man $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm  μs}$.
 
  
 +
'''(5)'''&nbsp; Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei&nbsp; $s_2(t)$&nbsp; genau so groß wie bei&nbsp; $s_1(t)$.&nbsp;
 +
*Daraus kann auf&nbsp; $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$&nbsp; geschlossen werden.
  
'''(5)'''&nbsp; Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei $s_2(t)$ genau so groß wie bei $s_1(t)$. Daraus kann auf $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$ geschlossen werden.
 
  
  
'''(6)'''&nbsp; Das Signal $s_2(t)$ ist gegenüber $s_1(t)$ um $25  \ \rm  μs$ nach rechts verschoben. Deshalb muss auch für die Quellensignale gelten:
+
'''(6)'''&nbsp; Das Signal&nbsp; $s_2(t)$&nbsp; ist gegenüber&nbsp; $s_1(t)$&nbsp; um&nbsp; $25  \ \rm  &micro; s$&nbsp; nach rechts verschoben.&nbsp; Deshalb muss auch für die Quellensignale gelten:
:$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos(2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) ) = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
+
:$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
Dies entspricht der Phasenlage $ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.
+
*Dies entspricht der Phasenlage &nbsp;$ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 24. März 2020, 17:02 Uhr

Zwei PM–Signalverläufe

Wir betrachten die Phasenmodulation verschiedener Schwingungen

$$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$

Das Quellensignal ist hierbei normiert  $($Amplitude  $1)$  dargestellt, so dass das phasenmodulierte Signal mit dem Modulationsindex (bzw. Phasenhub)  $η$  wie folgt beschrieben werden kann:

$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + \eta \cdot q(t) \big]\hspace{0.05cm}.$$
  • Das in der oberen Grafik dargestellte Signal  $s_1(t)$  ist durch die Parameterwerte  $ϕ_{\rm N} = -90^\circ$  und  $η_1 = 2$  charakterisiert.
  • Die Frequenz  $f_{\rm N}$  dieses sinusförmigen Quellensignals soll ebenso wie die Trägerfrequenz  $f_{\rm T}$  aus dem dargestellten Signalausschnitt der Dauer  $200 \ \rm µ s$  ermittelt werden.
  • Das Signal  $s_2(t)$  unterscheidet sich von  $s_1(t)$  möglicherweise durch eine andere Nachrichtenphase  $ϕ_{\rm N}$  und einen anderen Modulationsindex  $η$.  Alle anderen Systemparameter sind gegenüber  $s_1(t)$  unverändert.





Hinweise:


Fragebogen

1

Ermitteln Sie die Frequenz  $f_{\rm N}$  des Nachrichtensignals.

$f_{\rm N} \ = \ $

$\ \rm kHz$

2

Wie groß ist die Trägerfrequenz  $f_{\rm T}$?

$f_{\rm T} \ = \ $

$\ \rm kHz$

3

Wie groß ist die maximale Phasenabweichung  $ϕ_{\rm max}$  zwischen  $z(t)$  und  $s(t)$?

$ϕ_{\rm max} \ = \ $

$\ \rm rad$

4

Zu welcher maximalen Zeitverschiebung der Nulldurchgänge führt diese Phase?

$Δt_{\rm max} \ = \ $

$\ \rm µ s$

5

Bestimmen Sie den Modulationsindex  $η_2$  für das Signal  $s_2(t)$.

$η_2 \ = \ $

6

Welche Phasenlage  $ϕ_{\rm N2}$  hat das für  $s_2(t)$  zugrunde liegende Quellensignal  $q(t)$?

$ϕ_{\rm N2} \ = \ $

$\ \rm Grad$


Musterlösung

(1)  Man erkennt aus der Skizze, dass der dargestellte Signalausschnitt der Dauer  $200 \ \rm µ s$  genau der Periodendauer des sinusförmigen Quellensignals entsprechen muss.  Daraus folgt  $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm kHz}$.

  • Zu den Zeitpunkten  $t = 0$,  $t = 100 \ \rm µ s$  und  $t = 200 \ \rm µ s$  sind die Signale  $z(t)$  und  $s(t)$  phasensynchron.
  • In der ersten Halbwelle von  $q(t)$  kommen die Nulldurchgänge von  $s(t)$  etwas früher als die des Trägersignals  $z(t)$   ⇒   positive Phase.
  • Dagegen ist im Bereich von  $t = 100 \ \rm µ s$  bis  $t = 200 \ \rm µ s$  die Phase  $ϕ(t) < 0$.


(2)  Es gilt  $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm kHz}$,

  • da im dargestellten  $z(t)$–Signalausschnitt der Dauer  $200 \ \rm µ s$  genau  $10$  Perioden abgezählt werden können.


(3)  Die maximale relative Phasenabweichung beträgt  $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ ≈ 0.318}$.


(4)  Da die Periodendauer des Trägers  $T_0 = 20 \ \rm µ s$  ist, erhält man  $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm µ s}$.


(5)  Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei  $s_2(t)$  genau so groß wie bei  $s_1(t)$. 

  • Daraus kann auf  $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$  geschlossen werden.


(6)  Das Signal  $s_2(t)$  ist gegenüber  $s_1(t)$  um  $25 \ \rm µ s$  nach rechts verschoben.  Deshalb muss auch für die Quellensignale gelten:

$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) \big ] = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
  • Dies entspricht der Phasenlage  $ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.