Applets:Attenuation of Copper Cables: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(21 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{LntAppletLink|kabeldaempfung}}
+
{{LntAppletLinkEn|attenuationCopperCables_en}}
  
 
==Applet Description==
 
==Applet Description==
 
<br>
 
<br>
 +
This applet calculates the attenuation function $a_{\rm K}(f)$ of conducted transmission media (with cable length $l$):
 +
*For coaxial cables one usually uses the equation $a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l$.
 +
*In contrast, two-wire lines are often displayed in the form $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$.
 +
*The conversion of the $(k_1, \ k_2, \ k_3)$ parameters to the $(\alpha_0, \ \alpha_1, \ \alpha_2)$ parameters for $B = 30 \ \rm MHz$ is realized as well as the other way around.
 +
 +
 +
Aside from the attenuation function $a_{\rm K}(f)$  the applet can display:
 +
*the associated magnitude frequency response $\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20},$
 +
*the equalizer frequency response $\left | H_{\rm E}(f)\right | = \left | H_{\rm CRO}(f)  /  H_{\rm K}(f)\right | $, that leads to a nyquist total frequency response $ H_{\rm CRO}(f) $,
 +
*the corresponding magnitude square frequency response $\left | H_{\rm E}(f)\right |^2 $.
 +
 +
 +
The integral over $\left | H_{\rm E}(f)\right |^2 $ is a measure of the noise exaggeration of the selected Nyquist total frequency response and thus also for the expected error probability.From this, the ''total efficiency'' &nbsp;$\eta_\text{K+E}$ for channel (ger.:'''K'''anal) and equalizer (ger.:'''E'''ntzerrer) is calculated, which is output in the applet in $\rm dB$.
 +
 +
 +
Through optimization of the roll-off-factor $r$ of the cosine roll-off frequency response $ H_{\rm CRO}(f) $ one gets the ''Channel efficiency'' &nbsp;$ \eta_\text{K}$. This therefore indicates the deterioration of the overall system due to the attenuation function $ a _ {\ rm K} (f) $ of the transmission medium.
  
 
==Theoretical Background==
 
==Theoretical Background==
Zeile 9: Zeile 25:
 
Following relationship exists between the magnitude frequency response and the attenuation function:
 
Following relationship exists between the magnitude frequency response and the attenuation function:
 
:$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
 
:$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
*The index &bdquo;K&rdquo; makes it clear, that the considered LTI system is a cable(Ger: Kabel).
+
*The index &bdquo;K&rdquo; makes it clear, that the considered LTI system is a cable (German : '''K'''abel).
 
*For the first calculation rule, the damping function $a_\text{K}(f)$ must be used in $\rm dB$ (decibel).
 
*For the first calculation rule, the damping function $a_\text{K}(f)$ must be used in $\rm dB$ (decibel).
*For the first calculation rule, the damping function $a_\text{K, Np}(f)$ must be used in $\rm Np$ (Neper).
+
*For the second calculation rule, the damping function $a_\text{K, Np}(f)$ must be used in $\rm Np$ (Neper).
 
* The following conversions apply:  $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ or $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
 
* The following conversions apply:  $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ or $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
 
* This applet exclusively uses dB values.
 
* This applet exclusively uses dB values.
Zeile 19: Zeile 35:
 
:$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
 
:$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
 
*It is important to note the difference between $a_{\rm K}(f)$ in $\rm dB$ and the &bdquo;alpha&rdquo; coefficient with other pseudo&ndash;units.
 
*It is important to note the difference between $a_{\rm K}(f)$ in $\rm dB$ and the &bdquo;alpha&rdquo; coefficient with other pseudo&ndash;units.
*The attenuation function $a_{\rm K}(f)$ is directly proportional to the cable length $l$; $a_{\rm K}(f)/l$ is referred to as the &bdquo;attenuation factor&rdquo; or &bdquo;kilometric attenuation&rdquo;.  
+
*The attenuation function $a_{\rm K}(f)$ is directly proportional to the cable length $l$; $\alpha_{\rm K}(f)= a_{\rm K}(f)/l$ is referred to as the &bdquo;attenuation factor&rdquo; or &bdquo;kilometric attenuation&rdquo;.  
 
*The frequency-independent component $α_0$ of the attenuation factor takes into account the Ohmic losses.  
 
*The frequency-independent component $α_0$ of the attenuation factor takes into account the Ohmic losses.  
 
*The frequency proportional portion $α_1 · f$ of the attenuation factor is due to the derivation losses (&bdquo;crosswise loss&rdquo;) .  
 
*The frequency proportional portion $α_1 · f$ of the attenuation factor is due to the derivation losses (&bdquo;crosswise loss&rdquo;) .  
*the dominant portion $α_2$ goes back to [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels|Skineffekt]], which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.  
+
*The dominant portion $α_2$ goes back to [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels|Skin effect]], which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.  
  
  
Zeile 28: Zeile 44:
 
:$$\alpha_0  = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 
:$$\alpha_0  = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
  
The same applies to the ''coaxial coaxial cable''' &nbsp; &rArr;&nbsp; short '''Coax (1.2/4.4 mm)''':  
+
The same applies to the ''small coaxial cable'' &nbsp; &rArr;&nbsp; short '''Coax (1.2/4.4 mm)''':  
 
:$$\alpha_0  = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 
:$$\alpha_0  = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 
  \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 
  \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
Zeile 34: Zeile 50:
  
  
These values ​​can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> .  They are valid for a temperature of 20 ° C (293 K) and frequencies greater than 200 kHz.  
+
These values ​​can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> .  They are valid for a temperature of 20° C (293 K) and frequencies greater than 200 kHz.  
  
  
Zeile 50: Zeile 66:
  
 
From these numerical values one recognizes:  
 
From these numerical values one recognizes:  
*The attenuation factor $α(f)$ and the attenuation function $a_{\rm K}(f) = α(f) · l$ depend significantly on the pipe diameter. The cables laid since 1994 with $d = 0.35 \ \rm (mm)$ and $d = 0.5$ mm have a 10% greater attenuation factor than the older lines with  $d = 0.4$ or $d= 0.6$.  
+
*The attenuation factor $α(f)$ and the attenuation function $a_{\rm K}(f) = α(f) · l$ depend significantly on the pipe diameter. The cables laid since 1994 with $d = 0.35 \ \rm mm$ and $d = 0.5\ \rm mm$ have a 10% greater attenuation factor than the older lines with  $d = 0.4\ \rm mm$ or $d= 0.6\ \rm mm$.  
*However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range $l_{\rm max}$ of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate generators have to be used.  
+
*However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range $l_{\rm max}$ of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate regenerators have to be used.  
*The current transmission methods for copper lines prove only a relatively narrow frequency band, for example $120\ \rm  kHz$ with [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]]  and  ca. $1100 \ \rm kHz$ with [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL|DSL]]. For $f = 1 \ \rm MHz$ the attenuation factor of a 0.4 mm cable is around $20 \ \rm dB/km$, so that even with a cable length of $l = 4 \ \rm km$ the Attenuation does not exceed $80 \ \rm dB$.  
+
*The current transmission methods for copper lines prove only a relatively narrow frequency band, for example $120\ \rm  kHz$ with [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]]  and  $\approx 1100 \ \rm kHz$ with [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL|DSL]]. For $f = 1 \ \rm MHz$ the attenuation factor of a 0.4 mm cable is around $20 \ \rm dB/km$, so that even with a cable length of $l = 4 \ \rm km$ the attenuation does not exceed $80 \ \rm dB$.  
  
  
===Conversion Between $k$ and $\alpha$ parameters===
+
===Conversion between $k$ and $\alpha$ parameters===
 
The $k$&ndash;parameters of the attenuation factor  &nbsp; &rArr; &nbsp;  $\alpha_{\rm I} (f)$ can be converted into corresponding $\alpha$&ndash;parameters &nbsp; &rArr; &nbsp;  $\alpha_{\rm II} (f)$:  
 
The $k$&ndash;parameters of the attenuation factor  &nbsp; &rArr; &nbsp;  $\alpha_{\rm I} (f)$ can be converted into corresponding $\alpha$&ndash;parameters &nbsp; &rArr; &nbsp;  $\alpha_{\rm II} (f)$:  
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
+
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm with} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
 
:$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}.$$
 
:$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}.$$
  
Zeile 64: Zeile 80:
 
It is obvious that $α_0 = k_1$. The parameters $α_1$ and $α_2$ are dependent on the underlying bandwidth $B$ and are:
 
It is obvious that $α_0 = k_1$. The parameters $α_1$ and $α_2$ are dependent on the underlying bandwidth $B$ and are:
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot  {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot  {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
 +
 +
In the opposite direction the conversion rule for the exponent is:
 +
 +
:$$k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Auxiliary variable:  }A = \frac{2} {3} \cdot  \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$
 +
 +
With this result you can specify $ k_2 $ with each of the above equations.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
Zeile 69: Zeile 91:
 
*For $k_3 = 1$ (frequency proportional attenuation factor) we get &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
 
*For $k_3 = 1$ (frequency proportional attenuation factor) we get &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
 
*For $k_3 = 0.5$  (Skin effect) we get the coefficients: &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
 
*For $k_3 = 0.5$  (Skin effect) we get the coefficients: &nbsp; $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
*For $k_3 < 0.5$ we get a negative $\alpha_1$. Conversion is only possible for $0.5 \le k_3 \le 1$.}}
+
*For $k_3 < 0.5$ we get a negative $\alpha_1$. Conversion is only possible for $0.5 \le k_3 \le 1$.
 
+
*For $0.5 \le k_3 \le$ we get the coefficients $\alpha_1 > 0$ and $\alpha_2 > 0$, which are also dependent on $B/f_0$.
 
+
*From $\alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz$ folgt $k_3 = 0.63$ und $k_2 = 2.9 \ \rm dB/km$.}}
'''Umrechnung in Gegenrichtung'''
 
 
 
'''Fehlt noch'''
 
  
 
===Channel Influence on the Binary Nyquistent Equalization=== 
 
===Channel Influence on the Binary Nyquistent Equalization=== 
[[Datei:UMTS_Bild_1.png|right|frame|Simplified block diagram of the optimal Nyquistent equalizer|class=fit]]
+
[[Datei:Applet_Kabeldaempfung_1_version_englisch.png|right|frame|Simplified block diagram of the optimal Nyquistent equalizer|class=fit]]
Going by the block diagram: Between the Dirac source and the decider are the frequency responses for the transmitter &nbsp;&rArr;&nbsp; $H_{\rm S}(f)$, Channel &nbsp;&rArr;&nbsp; $H_{\rm K}(f)$ and receiver &nbsp; &rArr;&nbsp; $H_{\rm E}(f)$.
+
Going by the block diagram: Between the Dirac source and the (threshold) decider are the frequency responses for the transmitter (German: $\rm S$ender) &nbsp;&rArr;&nbsp; $H_{\rm S}(f)$, channel  (German: $\rm K$anal) &nbsp;&rArr;&nbsp; $H_{\rm K}(f)$ and receiver (German: $\rm E$mpfänger) &nbsp; &rArr;&nbsp; $H_{\rm E}(f)$.
  
 
In this applet
 
In this applet
*we neglect the influence of the transmitted pulse form &nbsp; &rArr; &nbsp; $H_{\rm S}(f) \equiv 1$ &nbsp; &rArr; &nbsp; dirac shaped transmission signal $s(t)$,
+
*we neglect the influence of the transmitted pulse form &nbsp; &rArr; &nbsp; $H_{\rm S}(f) \equiv 1$ &nbsp; &rArr; &nbsp; dirac shaped transmission signal $s(t)$, and
*presuppose a binary Nyquist system with cosine&ndash;roll-off around the Nyquistf requency $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ :   
+
*presuppose a binary Nyquist system with cosine&ndash;roll&ndash;off around the Nyquist frequency $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ :   
:$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$  
+
:$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$
  
This means: The [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|first Nyquist criterion]] is met&nbsp; &rArr; &nbsp; <br>Timely successive impulses do not disturb each other  &nbsp; ⇒  &nbsp; there are no [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Intersymbol Interferences]].
+
[[Datei:Applet_Kabeldaempfung_2_version2.png|right|frame|Frequency Response with cosine&ndash;roll&ndash;off|class=fit]]  
  
In the case of white noise, the transmission quality is thus determined solely by the noise power in front of the receiver:
+
This means: The [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|first Nyquist criterion]] is met<br> &rArr; &nbsp; Timely successive impulses do not disturb each other<br>⇒  &nbsp; there are no [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Intersymbol Interferences]].
  
:$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
+
In the case of white Gaussian noise, the transmission quality is thus determined solely by the noise power in front of the receiver:
 +
 
 +
:$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{with}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
  
 
The lowest possible noise performance results with an ideal channel &nbsp; &rArr; &nbsp; $H_{\rm K}(f) \equiv 1$ and a rectangular $H_{\rm CRO}(f) \equiv 1$ in $|f| \le f_{\rm Nyq}$:
 
The lowest possible noise performance results with an ideal channel &nbsp; &rArr; &nbsp; $H_{\rm K}(f) \equiv 1$ and a rectangular $H_{\rm CRO}(f) \equiv 1$ in $|f| \le f_{\rm Nyq}$:
  
:$$P_\text{N, min} =  P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .$$
+
:$$P_\text{N, min} =  P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ] = N_0 \cdot f_{\rm Nyq} .$$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definitions:}$&nbsp;   
 
$\text{Definitions:}$&nbsp;   
*As a quality criterion for a given system we use the '''total efficiency''':
+
*As a quality criterion for a given system we use the '''total efficiency''' with respect to the channel $\rm (K)$ and the receiver $\rm (E)$:
  
:$$\eta_\text{K+R} =  \frac{P_{\rm N} \ \big [\text{Given system: Channel }H_{\rm K}(f), \ \text{Roll-off factor  }r \big ]}{P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \le 1.$$
+
:$$\eta_\text{K+E} =  \frac{P_{\rm N} \ \big [\text{Optimal system: Channel }H_{\rm K}(f) \equiv 1,\ \text{Roll-off factor  } r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{Given system: Channel  }H_{\rm K}(f), \ \text{Roll-off factor  }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$
  
This system size is specified in the applet for both parameter sets in logarithm form: &nbsp; $10 \cdot \lg \ \eta_\text{K+R} \le 0 \ \rm dB$.
+
This quality criterion is specified in the applet for both parameter sets in logarithm form: &nbsp; $10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB$.
  
*Through variation and optimization of the Roll-off factor $r$ we get the '''Channel efficiency''':
+
*Through variation and optimization of the receiver &nbsp; &rArr; &nbsp; roll-off factor $r$ we get the '''Channel efficiency''':
  
:$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+R} .$$}}
+
:$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+E} .$$}}
  
  
[[Datei:Applet_Kabeldämpfung_3_version2.png|right|frame|Frequency response with Cosine–Roll-off|class=fit]]
+
[[Datei:Applet_Kabeldaempfung_3_version2.png|right|frame|Square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
The graph shows the square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $ mit $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f)  /  \left \vert H_{\rm K}(f)\right \vert$ for the following boundary conditions:
+
The graph shows the square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $ with $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f)  /  \left \vert H_{\rm K}(f)\right \vert$ for the following boundary conditions:
 
*Attenuation function of the channel: &nbsp; $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,  
 
*Attenuation function of the channel: &nbsp; $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,  
*Nyquist frequency: : &nbsp; $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off factor $r = 0.5$
+
*Nyquist frequency: &nbsp; $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off factor $r = 0.5$
  
  
 
This results in the following consequences:
 
This results in the following consequences:
*In the area up to $f_{1} = 10 \ {\rm MHz: }$ $H_{\rm CRO}(f)  = 1$ &nbsp; &rArr; &nbsp; $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (see yellow deposit).
+
*In the area up to $f_{1} = 10 \ \text{MHz: }$ $H_{\rm CRO}(f)  = 1$ &nbsp; &rArr; &nbsp; $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (see yellow deposit).
 
* The flank of $H_{\rm CRO}(f)$ is only effective from $f_{1}$ to $f_{2} = 30 \ {\rm MHz}$  and $\left \vert H_{\rm E}(f)\right \vert ^2$ decreases more and more.
 
* The flank of $H_{\rm CRO}(f)$ is only effective from $f_{1}$ to $f_{2} = 30 \ {\rm MHz}$  and $\left \vert H_{\rm E}(f)\right \vert ^2$ decreases more and more.
 
*The maximum of  $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ at $f_{\rm max} \approx 11.5 \ {\rm MHz}$  is twice the value of $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
 
*The maximum of  $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ at $f_{\rm max} \approx 11.5 \ {\rm MHz}$  is twice the value of $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
Zeile 124: Zeile 145:
 
==Exercises==
 
==Exercises==
  
[[Datei:Exercises_binomial_fertig.png|right]]
+
[[Datei:Applet_Kabeldaempfung_6_version1.png|right]]
*First choose an exercise number.
+
*First choose an exercise number $1$ ... $11$.
 
*An exercise description is displayed.  
 
*An exercise description is displayed.  
 
*Parameter values are adjusted to the respective exercises.
 
*Parameter values are adjusted to the respective exercises.
 
*Click &bdquo;Show solution&rdquo; to display the solution.  
 
*Click &bdquo;Show solution&rdquo; to display the solution.  
*Exercise description and solution are in english.
+
*Exercise description and solution are in English.
  
  
Zeile 137: Zeile 158:
  
  
In the following desctiption:
+
In the following desctiption '''Blue''' means the left parameter set (blue in the applet), and '''Red''' means the right parameter set (red in the applet). For parameters that are marked with an apostrophe the unit is not displayed. For example we write ${\alpha_2}' =2$  &nbsp; for &nbsp; $\alpha_2 =2\,  {\rm dB} / ({\rm km \cdot \sqrt{MHz} })$.
* '''Blue''' means &nbsp; Distribution 1 (blau in the applet),
 
* '''Red''' means &nbsp; &nbsp; Distributeion 2 (red in the applet).
 
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 148: Zeile 166:
  
 
$\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately with }\sqrt{f}\text{ and the magnitude frequency response decreases similarly to an exponential function};$
 
$\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately with }\sqrt{f}\text{ and the magnitude frequency response decreases similarly to an exponential function};$
 
 
 
$\hspace{1.15cm}\text{Coax (1.2/4.4 mm):    }a_{\rm K}(f =  f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$
 
$\hspace{1.15cm}\text{Coax (1.2/4.4 mm):    }a_{\rm K}(f =  f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$
  
 
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm):    }a_{\rm K}(f =  f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$
 
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm):    }a_{\rm K}(f =  f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)'''&nbsp; Set '''Blue''' to $\text{Coax (1.2/4.4 mm)}$ and $l_{\rm Blue} = 3\ \rm km$. How is $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ affected by $\alpha_0$,  $\alpha_1$ und  $\alpha_2$?}}
+
'''(2)'''&nbsp; Set '''Blue''' to $\text{Coax (2.6/9.5 mm)}$ and $l_{\rm Blue} = 5\ \rm km$. How is $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ affected by $\alpha_0$,  $\alpha_1$ und  $\alpha_2$?}}
  
  
 
$\Rightarrow\hspace{0.3cm}\alpha_2\text{ is dominant due to the skin effect. The contributions of } \alpha_0\text{  (ca. 0.1 dB) and }\alpha_1 \text{  (ca. 0.6 dB) are comparatively small.}$
 
$\Rightarrow\hspace{0.3cm}\alpha_2\text{ is dominant due to the skin effect. The contributions of } \alpha_0\text{  (ca. 0.1 dB) and }\alpha_1 \text{  (ca. 0.6 dB) are comparatively small.}$
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 168: Zeile 182:
  
 
$\Rightarrow\hspace{0.3cm}\text{Red curve:    }a_{\rm K}(f =  f_\star) = 87.5 {\ \rm dB} \text{. The condition above is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f =  f_\star) = 61.3 {\ \rm dB}.$
 
$\Rightarrow\hspace{0.3cm}\text{Red curve:    }a_{\rm K}(f =  f_\star) = 87.5 {\ \rm dB} \text{. The condition above is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f =  f_\star) = 61.3 {\ \rm dB}.$
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 178: Zeile 191:
  
 
$\hspace{1.15cm}\text{With }k_3 \to 0.5, \text{ the attenuation function is more and more determined by the skin effect, same as in the coaxial cable.}$
 
$\hspace{1.15cm}\text{With }k_3 \to 0.5, \text{ the attenuation function is more and more determined by the skin effect, same as in the coaxial cable.}$
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Set '''Red''' to $\text{Two&ndash;wired Line (0.5 mm)}$ and '''Blue''' to $\text{Conversion of Red}$. For the length use $l_{\rm Rot} = l_{\rm Blau} = 1\ \rm km$.  
+
'''(5)'''&nbsp; Set '''Red''' to $\text{Two&ndash;wired Line (0.5 mm)}$ and '''Blue''' to $\text{Conversion of Red}$. For the length use $l_{\rm Red} = l_{\rm Blue} = 1\ \rm km$.  
 
:Analyse and interpret the displayed functions $a_{\rm K}(f)$ and  $\vert H_{\rm K}(f) \vert$.}}
 
:Analyse and interpret the displayed functions $a_{\rm K}(f)$ and  $\vert H_{\rm K}(f) \vert$.}}
  
Zeile 188: Zeile 199:
 
$\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.$
 
$\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.$
  
 +
$\hspace{1.15cm}\text{The resulting parameters from the conversion are }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 196: Zeile 208:
  
 
$\hspace{1.15cm}\text{For a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than for a coaxial cable.}$
 
$\hspace{1.15cm}\text{For a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than for a coaxial cable.}$
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 206: Zeile 217:
  
 
$\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\  {\rm dB}\text{ (Red)}.$
 
$\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\  {\rm dB}\text{ (Red)}.$
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 212: Zeile 222:
  
  
$\Rightarrow\hspace{0.3cm}\text{We need to achieve  }10 \cdot \lg \frac{P_{\rm red}}{P_{\rm blue}} = 2 \ {\rm dB} \ \ \Rightarrow \ \ \frac{P_{\rm red}}{P_{\rm blue}} = 10^{0.2} = 1.585.$
+
$\Rightarrow\hspace{0.3cm}\text{We need to achieve  }10 \cdot \lg {P_{\rm Red}}/{P_{\rm Blue}} = 2 \ {\rm dB} \ \ \Rightarrow \ \ {P_{\rm Red}}/{P_{\rm Blue}} = 10^{0.2} = 1.585.$
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
'''(9)'''&nbsp; Set '''Blue''' to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ and '''Red''' to &bdquo;Inactive&rdquo;. Additionally set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.  
 
'''(9)'''&nbsp; Set '''Blue''' to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ and '''Red''' to &bdquo;Inactive&rdquo;. Additionally set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.  
:How does $\vert H_{\rm E}(f) \vert$ look like? Calculate the total efficiency $\eta_\text{K+E}$ and the channel efficiency$\eta_\text{K}$}}.
+
:How does $\vert H_{\rm E}(f) \vert$ look like? Calculate the total efficiency $\eta_\text{K+E}$ and the channel efficiency$\eta_\text{K}$.}}
  
  
 
$\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert  = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For } f > 25 {\ \rm MHz: }\vert H_{\rm E}(f) \vert  = 0.\text{ In between, the effect of the CRO edge can be observed.}$
 
$\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert  = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For } f > 25 {\ \rm MHz: }\vert H_{\rm E}(f) \vert  = 0.\text{ In between, the effect of the CRO edge can be observed.}$
  
$\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.5 \text{ is already set }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$
+
$\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.7 \text{ is already set }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$
 
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(10)'''&nbsp; Set '''Blue''' to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ and '''Red''' to &bdquo;Inactive&rdquo;. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.5$.  
+
'''(10)'''&nbsp; Set '''Blue''' to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ and '''Red''' to &bdquo;Inactive&rdquo;. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.  
:How big is $\vert H_{\rm E}(f = 0) \vert$? What is the maximum value of $\vert H_{\rm E}(f) \vert$? Calculate the channel efficiency $\eta_\text{K}$}}.
+
:How big is $\vert H_{\rm E}(f = 0) \vert$? What is the maximum value of $\vert H_{\rm E}(f) \vert$? Calculate the channel efficiency $\eta_\text{K}$.}}
  
  
Zeile 233: Zeile 241:
  
 
$\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$
 
$\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 244: Zeile 251:
 
$\hspace{0.95cm}\text{At 10 km length  } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) \vert = 352000  \approx \vert H_{\rm E}(f =0)\vert$.
 
$\hspace{0.95cm}\text{At 10 km length  } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) \vert = 352000  \approx \vert H_{\rm E}(f =0)\vert$.
  
 +
==Applet Manual==
 +
[[Datei:Applet_Kabeldaempfung_5_version2.png|left|600px]]
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Preselection for blue parameter set
 +
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Input of the $\alpha$ parameters via sliders
 +
 +
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Preselection for red parameter set
 +
 +
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Input of the $k$ parameters via sliders
 +
 +
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Input of the parameters $f_{\rm Nyq}$ and $r$
 +
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Selection for the graphic display
 +
 +
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Display $a_\text{K}(f)$, $|H_\text{K}(f)|$, $|H_\text{E}(f)|$, ...
 +
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Scaling factor $H_0$ for $|H_\text{E}(f)|$, $|H_\text{E}(f)|^2$
 +
 +
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Selection of the frequency $f_\star$ for numeric values
 +
 +
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numeric values for blue parameter set
 +
 +
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Numeric values for red parameter set
 +
 +
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Output system efficiency $\eta_\text{K+E}$ in dB
 +
 +
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Store & Recall of settings
 +
 +
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Exercise section
 +
 +
&nbsp; &nbsp; '''(O)''' &nbsp; &nbsp; Variation of the graphic display:$\hspace{0.5cm}$&bdquo;$+$&rdquo; (Zoom in),
 +
 +
$\hspace{0.5cm}$ &bdquo;$-$&rdquo; (Zoom out)
 +
 +
$\hspace{0.5cm}$ &bdquo;$\rm o$&rdquo; (Reset)
 +
 +
$\hspace{0.5cm}$ &bdquo;$\leftarrow$&rdquo; (Move left),  etc.
 +
 +
'''Other options for graphic display''':
 +
*Hold shift and scroll: Zoom in on/out of coordinate system,
 +
*Hold shift and left click: Move the coordinate system.
  
 +
==About the Authors==
 +
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 +
*Die erste Version wurde 2009 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Sebastian_Seitz_.28Diplomarbeit_LB_2009.29|Sebastian Seitz]] im Rahmen seiner Diplomarbeit erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_Übertragungstechnik#Dr.-Ing._Bernhard_G.C3.B6bel_.28bei_L.C3.9CT_von_2004-2010.29|Bernhard Göbel]]).
 +
*2018 wurde das Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]]  (Bachelorarbeit, Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]] )  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
  
==References==
+
==Once again:&nbsp; Open Applet in new Tab==
  
{{LntAppletLink|kabeldaempfung}}
+
{{LntAppletLinkEn|attenuationCopperCables_en}}

Aktuelle Version vom 26. Oktober 2023, 10:43 Uhr

Open Applet in new Tab

Applet Description


This applet calculates the attenuation function $a_{\rm K}(f)$ of conducted transmission media (with cable length $l$):

  • For coaxial cables one usually uses the equation $a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l$.
  • In contrast, two-wire lines are often displayed in the form $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$.
  • The conversion of the $(k_1, \ k_2, \ k_3)$ parameters to the $(\alpha_0, \ \alpha_1, \ \alpha_2)$ parameters for $B = 30 \ \rm MHz$ is realized as well as the other way around.


Aside from the attenuation function $a_{\rm K}(f)$ the applet can display:

  • the associated magnitude frequency response $\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20},$
  • the equalizer frequency response $\left | H_{\rm E}(f)\right | = \left | H_{\rm CRO}(f) / H_{\rm K}(f)\right | $, that leads to a nyquist total frequency response $ H_{\rm CRO}(f) $,
  • the corresponding magnitude square frequency response $\left | H_{\rm E}(f)\right |^2 $.


The integral over $\left | H_{\rm E}(f)\right |^2 $ is a measure of the noise exaggeration of the selected Nyquist total frequency response and thus also for the expected error probability.From this, the total efficiency  $\eta_\text{K+E}$ for channel (ger.:Kanal) and equalizer (ger.:Entzerrer) is calculated, which is output in the applet in $\rm dB$.


Through optimization of the roll-off-factor $r$ of the cosine roll-off frequency response $ H_{\rm CRO}(f) $ one gets the Channel efficiency  $ \eta_\text{K}$. This therefore indicates the deterioration of the overall system due to the attenuation function $ a _ {\ rm K} (f) $ of the transmission medium.

Theoretical Background


Magnitude Frequency Response and Attenuation Function

Following relationship exists between the magnitude frequency response and the attenuation function:

$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
  • The index „K” makes it clear, that the considered LTI system is a cable (German : Kabel).
  • For the first calculation rule, the damping function $a_\text{K}(f)$ must be used in $\rm dB$ (decibel).
  • For the second calculation rule, the damping function $a_\text{K, Np}(f)$ must be used in $\rm Np$ (Neper).
  • The following conversions apply: $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ or $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
  • This applet exclusively uses dB values.

Attenuation Function of a Coaxial Cable

According to [Wel77][1] the Attenuation Function of a Coaxial Cable of length $l$ is given as follows:

$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
  • It is important to note the difference between $a_{\rm K}(f)$ in $\rm dB$ and the „alpha” coefficient with other pseudo–units.
  • The attenuation function $a_{\rm K}(f)$ is directly proportional to the cable length $l$; $\alpha_{\rm K}(f)= a_{\rm K}(f)/l$ is referred to as the „attenuation factor” or „kilometric attenuation”.
  • The frequency-independent component $α_0$ of the attenuation factor takes into account the Ohmic losses.
  • The frequency proportional portion $α_1 · f$ of the attenuation factor is due to the derivation losses („crosswise loss”) .
  • The dominant portion $α_2$ goes back to Skin effect, which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.


The constants for the standard coaxial cable with a 2.6 mm inner diameter and a 9.5 mm outer diameter   ⇒  short Coax (2.6/9.5 mm) are:

$$\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$

The same applies to the small coaxial cable   ⇒  short Coax (1.2/4.4 mm):

$$\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$


These values ​​can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77][1] . They are valid for a temperature of 20° C (293 K) and frequencies greater than 200 kHz.


Attenuation Function of a Two–wired Line

According to [PW95][2] the attenuation function of a Two–wired Line of length $l$ is given as follows:

$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$

This function is not directly interpretable, but is a phenomenological description.

[PW95][2]also provides the constants determined by measurement results:

  • $d = 0.35 \ {\rm mm}$:   $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
  • $d = 0.40 \ {\rm mm}$:   $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
  • $d = 0.50 \ {\rm mm}$:   $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$,
  • $d = 0.60 \ {\rm mm}$:   $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$.


From these numerical values one recognizes:

  • The attenuation factor $α(f)$ and the attenuation function $a_{\rm K}(f) = α(f) · l$ depend significantly on the pipe diameter. The cables laid since 1994 with $d = 0.35 \ \rm mm$ and $d = 0.5\ \rm mm$ have a 10% greater attenuation factor than the older lines with $d = 0.4\ \rm mm$ or $d= 0.6\ \rm mm$.
  • However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range $l_{\rm max}$ of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate regenerators have to be used.
  • The current transmission methods for copper lines prove only a relatively narrow frequency band, for example $120\ \rm kHz$ with ISDN and $\approx 1100 \ \rm kHz$ with DSL. For $f = 1 \ \rm MHz$ the attenuation factor of a 0.4 mm cable is around $20 \ \rm dB/km$, so that even with a cable length of $l = 4 \ \rm km$ the attenuation does not exceed $80 \ \rm dB$.


Conversion between $k$ and $\alpha$ parameters

The $k$–parameters of the attenuation factor   ⇒   $\alpha_{\rm I} (f)$ can be converted into corresponding $\alpha$–parameters   ⇒   $\alpha_{\rm II} (f)$:

$$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm with} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.$$

As a criterion of this conversion, we assume that the quadratic deviation of these two functions is minimal within a bandwidth $B$:

$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$

It is obvious that $α_0 = k_1$. The parameters $α_1$ and $α_2$ are dependent on the underlying bandwidth $B$ and are:

$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$

In the opposite direction the conversion rule for the exponent is:

$$k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Auxiliary variable: }A = \frac{2} {3} \cdot \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.$$

With this result you can specify $ k_2 $ with each of the above equations.

$\text{Example 1:}$ 

  • For $k_3 = 1$ (frequency proportional attenuation factor) we get   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
  • For $k_3 = 0.5$ (Skin effect) we get the coefficients:   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
  • For $k_3 < 0.5$ we get a negative $\alpha_1$. Conversion is only possible for $0.5 \le k_3 \le 1$.
  • For $0.5 \le k_3 \le$ we get the coefficients $\alpha_1 > 0$ and $\alpha_2 > 0$, which are also dependent on $B/f_0$.
  • From $\alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz$ folgt $k_3 = 0.63$ und $k_2 = 2.9 \ \rm dB/km$.

Channel Influence on the Binary Nyquistent Equalization

Simplified block diagram of the optimal Nyquistent equalizer

Going by the block diagram: Between the Dirac source and the (threshold) decider are the frequency responses for the transmitter (German: $\rm S$ender)  ⇒  $H_{\rm S}(f)$, channel (German: $\rm K$anal)  ⇒  $H_{\rm K}(f)$ and receiver (German: $\rm E$mpfänger)   ⇒  $H_{\rm E}(f)$.

In this applet

  • we neglect the influence of the transmitted pulse form   ⇒   $H_{\rm S}(f) \equiv 1$   ⇒   dirac shaped transmission signal $s(t)$, and
  • presuppose a binary Nyquist system with cosine–roll–off around the Nyquist frequency $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ :
$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$
Frequency Response with cosine–roll–off

This means: The first Nyquist criterion is met
⇒   Timely successive impulses do not disturb each other
⇒   there are no Intersymbol Interferences.

In the case of white Gaussian noise, the transmission quality is thus determined solely by the noise power in front of the receiver:

$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{with}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$

The lowest possible noise performance results with an ideal channel   ⇒   $H_{\rm K}(f) \equiv 1$ and a rectangular $H_{\rm CRO}(f) \equiv 1$ in $|f| \le f_{\rm Nyq}$:

$$P_\text{N, min} = P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ] = N_0 \cdot f_{\rm Nyq} .$$

$\text{Definitions:}$ 

  • As a quality criterion for a given system we use the total efficiency with respect to the channel $\rm (K)$ and the receiver $\rm (E)$:
$$\eta_\text{K+E} = \frac{P_{\rm N} \ \big [\text{Optimal system: Channel }H_{\rm K}(f) \equiv 1,\ \text{Roll-off factor } r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{Given system: Channel }H_{\rm K}(f), \ \text{Roll-off factor }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$

This quality criterion is specified in the applet for both parameter sets in logarithm form:   $10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB$.

  • Through variation and optimization of the receiver   ⇒   roll-off factor $r$ we get the Channel efficiency:
$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+E} .$$


Square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $

$\text{Example 2:}$  The graph shows the square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $ with $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f) / \left \vert H_{\rm K}(f)\right \vert$ for the following boundary conditions:

  • Attenuation function of the channel:   $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,
  • Nyquist frequency:   $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off factor $r = 0.5$


This results in the following consequences:

  • In the area up to $f_{1} = 10 \ \text{MHz: }$ $H_{\rm CRO}(f) = 1$   ⇒   $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (see yellow deposit).
  • The flank of $H_{\rm CRO}(f)$ is only effective from $f_{1}$ to $f_{2} = 30 \ {\rm MHz}$ and $\left \vert H_{\rm E}(f)\right \vert ^2$ decreases more and more.
  • The maximum of $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ at $f_{\rm max} \approx 11.5 \ {\rm MHz}$ is twice the value of $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
  • The integral over $\left \vert H_{\rm E}(f)\right \vert ^2$ is a measure of the effective noise power. In the current example this is $4.6$ times bigger than the minimal noise power (for $a_{\rm K}(f) = 0 \ {\rm dB}$ and $r=1$)   ⇒   $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$

Exercises

Applet Kabeldaempfung 6 version1.png
  • First choose an exercise number $1$ ... $11$.
  • An exercise description is displayed.
  • Parameter values are adjusted to the respective exercises.
  • Click „Show solution” to display the solution.
  • Exercise description and solution are in English.


Number „0” is a „Reset” button:

  • Sets parameters to initial values (like after loading the page).
  • Displays a „Reset text” to further describe the applet.


In the following desctiption Blue means the left parameter set (blue in the applet), and Red means the right parameter set (red in the applet). For parameters that are marked with an apostrophe the unit is not displayed. For example we write ${\alpha_2}' =2$   for   $\alpha_2 =2\, {\rm dB} / ({\rm km \cdot \sqrt{MHz} })$.

(1)  First set Blue to $\text{Coax (1.2/4.4 mm)}$ and then to $\text{Coax (2.6/9.5 mm)}$. The cable length is $l_{\rm Blue}= 5\ \rm km$.

Interpret $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$, in particular the functional values $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ and $\vert H_{\rm K}(f = 0) \vert$.


$\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately with }\sqrt{f}\text{ and the magnitude frequency response decreases similarly to an exponential function};$ $\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$

$\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$

(2)  Set Blue to $\text{Coax (2.6/9.5 mm)}$ and $l_{\rm Blue} = 5\ \rm km$. How is $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ affected by $\alpha_0$, $\alpha_1$ und $\alpha_2$?


$\Rightarrow\hspace{0.3cm}\alpha_2\text{ is dominant due to the skin effect. The contributions of } \alpha_0\text{ (ca. 0.1 dB) and }\alpha_1 \text{ (ca. 0.6 dB) are comparatively small.}$

(3)  Additionally, set Red to $\text{Two–wired Line (0.5 mm)}$ and $l_{\rm Red} = 1\ \rm km$. What is the resulting value for $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?

Up to what length $l_{\rm Red}$ does the red attenuation function stay under the blue one?


$\Rightarrow\hspace{0.3cm}\text{Red curve: }a_{\rm K}(f = f_\star) = 87.5 {\ \rm dB} \text{. The condition above is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = 61.3 {\ \rm dB}.$

(4)  Set Red to ${k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km$ and vary the Parameter $0.5 \le k_3 \le 1$.

How do the parameters affect $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$?


$\Rightarrow\hspace{0.3cm}\text{With }k_2\text {being constant, }a_{\rm K}(f)\text{ increases with bigger values of }k_3\text{ and }\vert H_{\rm K}(f) \vert \text{ decreases faster and faster. With }k_3 =1: a_{\rm K}(f)\text{ rises linearly.}$

$\hspace{1.15cm}\text{With }k_3 \to 0.5, \text{ the attenuation function is more and more determined by the skin effect, same as in the coaxial cable.}$

(5)  Set Red to $\text{Two–wired Line (0.5 mm)}$ and Blue to $\text{Conversion of Red}$. For the length use $l_{\rm Red} = l_{\rm Blue} = 1\ \rm km$.

Analyse and interpret the displayed functions $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$.


$\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.$

$\hspace{1.15cm}\text{The resulting parameters from the conversion are }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.$

(6)  We assume the settings of (5). Which parts of the attenuation function are due to ohmic loss, lateral losses and skin effect?


$\Rightarrow\hspace{0.3cm}\text{Solution based on '''Blue''': }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0\text{: }83.7\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0 \text{ and } \alpha_1\text{: }60.9\ {\rm dB}.$

$\hspace{1.15cm}\text{For a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than for a coaxial cable.}$

(7)  Set Blue to ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ and Red to ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km$. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.5$.

How big are the total efficiency $\eta_\text{K+E}$ and the channel efficiency $\eta_\text{K}$?


$\Rightarrow\hspace{0.3cm}10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideal system) and }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: DC signal attenuation only)}$.

$\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.$

(8)  The same settings apply as in (7). Under what transmission power $P_{\rm red}$ with respect to $P_{\rm blue}$ do both systems achieve the same error probability?


$\Rightarrow\hspace{0.3cm}\text{We need to achieve }10 \cdot \lg {P_{\rm Red}}/{P_{\rm Blue}} = 2 \ {\rm dB} \ \ \Rightarrow \ \ {P_{\rm Red}}/{P_{\rm Blue}} = 10^{0.2} = 1.585.$

(9)  Set Blue to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ and Red to „Inactive”. Additionally set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.

How does $\vert H_{\rm E}(f) \vert$ look like? Calculate the total efficiency $\eta_\text{K+E}$ and the channel efficiency$\eta_\text{K}$.


$\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For } f > 25 {\ \rm MHz: }\vert H_{\rm E}(f) \vert = 0.\text{ In between, the effect of the CRO edge can be observed.}$

$\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.7 \text{ is already set }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$

(10)  Set Blue to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ and Red to „Inactive”. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.

How big is $\vert H_{\rm E}(f = 0) \vert$? What is the maximum value of $\vert H_{\rm E}(f) \vert$? Calculate the channel efficiency $\eta_\text{K}$.


$\Rightarrow\hspace{0.3cm}\vert H_{\rm E}(f = 0) \vert = \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ and the maximum value } \vert H_{\rm E}(f) \vert \text{ is approximately }37500\text{ for }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},$

$\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$

(11) The same settings apply as in (10) and $r= 0.17$. Vary the cable length up to $l_{\rm blue} = 10 \ \rm km$.

How much do the maximum value of $\vert H_{\rm E}(f) \vert$, the channel efficiency $\eta_\text{K}$ and the optimal rolloff factor $r_{\rm opt}$ change?


$\Rightarrow\hspace{0.3cm}\text{The maximum value of } \vert H_{\rm E}(f) \vert \text{ increases and }10 \cdot \lg \ \eta_\text{K} \text{ decreases more and more.}$

$\hspace{0.95cm}\text{At 10 km length } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) \vert = 352000 \approx \vert H_{\rm E}(f =0)\vert$.

Applet Manual

Applet Kabeldaempfung 5 version2.png

    (A)     Preselection for blue parameter set

    (B)     Input of the $\alpha$ parameters via sliders

    (C)     Preselection for red parameter set

    (D)     Input of the $k$ parameters via sliders

    (E)     Input of the parameters $f_{\rm Nyq}$ and $r$

    (F)     Selection for the graphic display

    (G)     Display $a_\text{K}(f)$, $|H_\text{K}(f)|$, $|H_\text{E}(f)|$, ...

    (H)     Scaling factor $H_0$ for $|H_\text{E}(f)|$, $|H_\text{E}(f)|^2$

    (I)     Selection of the frequency $f_\star$ for numeric values

    (J)     Numeric values for blue parameter set

    (K)     Numeric values for red parameter set

    (L)     Output system efficiency $\eta_\text{K+E}$ in dB

    (M)     Store & Recall of settings

    (N)     Exercise section

    (O)     Variation of the graphic display:$\hspace{0.5cm}$„$+$” (Zoom in), $\hspace{0.5cm}$ „$-$” (Zoom out) $\hspace{0.5cm}$ „$\rm o$” (Reset) $\hspace{0.5cm}$ „$\leftarrow$” (Move left), etc.

Other options for graphic display:

  • Hold shift and scroll: Zoom in on/out of coordinate system,
  • Hold shift and left click: Move the coordinate system.

About the Authors

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

Once again:  Open Applet in new Tab

Open Applet in new Tab

  1. 1,0 1,1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
  2. 2,0 2,1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.