Applets:Physikalisches Signal & Äquivalentes TP-Signal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „{{LntAppletLink|verzerrungen}} ==Programmbeschreibung== <br> Dieses Applet veranschaulicht die Auswirkungen von linearen Verzerrungen (Dämpfungsverzerrungen…“)
 
 
(36 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{LntAppletLink|verzerrungen}}  
+
{{LntAppletLink|physAnLPSignal_en}} &nbsp; &nbsp; &nbsp; &nbsp; [https://en.lntwww.de/Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal '''English Applet with English WIKI description''']
 
+
 
==Programmbeschreibung==
 
==Programmbeschreibung==
 
<br>
 
<br>
Dieses Applet veranschaulicht die Auswirkungen von linearen Verzerrungen (Dämpfungsverzerrungen und Phasenverzerrungen) anhand
+
Dieses Applet zeigt den Zusammenhang zwischen dem physikalischen Bandpass&ndash;Signal $x(t)$ und dem dazugehörigen äquivalenten Tiefpass&ndash;Signal $x_{\rm TP}(t)$. Ausgegangen wird stets von einem Bandpass&ndash;Signal $x(t)$ mit frequenzdiskretem Spektrum $X(f)$:
[[Datei:Modell_version2.png|right|frame|Bedeutung der verwendeten Signale]]
+
:$$x(t) = x_{\rm T}(t) + x_{\rm O}(t) + x_{\rm U}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right)+ A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right). $$
*des Eingangssignals $x(t)$ &nbsp; &rArr; &nbsp; Leistung $P_x$:
+
Das physikalische Signal $x(t)$ setzt sich also aus drei [[Signaldarstellung/Harmonische_Schwingung|harmonischen Schwingungen]] zusammen, einer Konstellation, die sich zum Beispiel bei der [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#AM-Signale_und_-Spektren_bei_harmonischem_Eingangssignal|Zweiseitenband-Amplitudenmodulation]] des Nachrichtensignals $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ mit dem Trägersignal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$ ergibt. Die Nomenklatur ist ebenfalls an diesen Fall angepasst:
:$$x(t) = x_{\rm U}(t) + x_{\rm T}(t) + x_{\rm O}(t) = A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right)+A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right), $$
+
* $x_{\rm O}(t)$ bezeichnet das &bdquo;Obere Seitenband&rdquo; mit der Amplitude $A_{\rm O}= A_{\rm N}/2$, der Frequenz $f_{\rm O} = f_{\rm T} + f_{\rm N}$ und der Phase $\varphi_{\rm O} = \varphi_{\rm T} + \varphi_{\rm N}$.
*des Ausgangssignals $y(t)$ &nbsp; &rArr; &nbsp; Leistung $P_y$:
+
*Entsprechend gilt für das &bdquo;Untere Seitenband&rdquo; $x_{\rm U}(t)$ mit $f_{\rm U} = f_{\rm T} - f_{\rm N}$, $A_{\rm U}= A_{\rm O}$ und $\varphi_{\rm U} = -\varphi_{\rm O}$.
:$$y(t) = \alpha_1 \cdot x_1(t-\tau_1) \alpha_2  \cdot x_2(t-\tau_2),$$
 
*des Matching&ndash;Ausgangssignals $z(t)$ &nbsp; &rArr; &nbsp; Leistung $P_z$:
 
:$$z(t) = k_{\rm M} \cdot  y(t-\tau_{\rm M}+ \alpha_2  \cdot  x_2(t-\tau_2),$$
 
*des Differenzsignals &nbsp; $\varepsilon(t) = z(t) - x(t)$ &nbsp; &rArr; &nbsp; Leistung $P_\varepsilon$.  
 
  
  
Als nächster Block im obigen Modell folgt das &bdquo;Matching&rdquo;:  Dabei wird das Ausgangssignal $y(t)$ mit für alle Frequenzen einheitlichen Größen  $k_{\rm M}$ und $\tau_{\rm M}$ in Amplitude bzw. Phase angepasst. Dies ist also keine frequenzabhängige Entzerrung. Anhand des Signals $z(t)$ kann unterschieden werden
+
Das dazugehörige äquivalente Tiefpass&ndash;Signal lautet mit $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$, &nbsp; $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$ &nbsp;und &nbsp;$f_{\rm T}\hspace{0.01cm}' =  0$:
*zwischen einer Dämpfungsverzerrung und einer frequenzunabhängigen Dämpfung, sowie
 
*zwischen einer Phasenverzerrung und einer für alle Frequenzen gleichen Laufzeit.
 
  
 +
:$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm}
 +
A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$
  
Als Maß für die Stärke der linearen Verzerrungen wird die Verzerrungsleistung (englisch: ''Distortion Power'') $P_{\rm D}$ verwendet. Für diese gilt:
+
[[Datei:Ortskurve_1.png|right|frame|Äquivalentes TP&ndash;Signal zur Zeit $t=0$ bei cosinusförmigem Träger &nbsp; &rArr; &nbsp; $\varphi_{\rm T} = 0$]]
:$$P_{\rm D} = \min_{k_{\rm M},  \ \tau_{\rm M}} P_\varepsilon.$$
+
Im Programm dargestellt wird $x_{\rm TP}(t)$ als vektorielle Summe dreier Drehzeiger als violetter Punkt (siehe beispielhafte Grafik für den Startzeitpunkt $t=0$ und cosinusförmigem Träger):
  
[[Applets:Linear_Distortions_of_Periodic_Signals|'''Englische Beschreibung''']]
+
*Der (rote) Zeiger des Trägers $x_\text{TP, T}(t)$ mit der Länge $A_{\rm T}$ und der Nullphasenlage $\varphi_{\rm T} = 0$ liegt in der komplexen Ebene fest. Es gilt also für alle Zeiten $t$: &nbsp; $x_{\rm TP}(t)= A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} }$.
  
 +
*Der (blaue) Zeiger des Oberen Seitenbandes $x_\text{TP, O}(t)$ mit der Länge $A_{\rm O}$ und der Nullphasenlage $\varphi_{\rm O}$ dreht mit der Winkelgeschwindigkeit $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'$ in mathematisch positiver Richtung (eine Umdrehung in der Zeit $1/f_{\rm O}\hspace{0.01cm}')$.
  
==Theoretischer Hintergrund==
+
*Der (grüne) Zeiger des Unteren Seitenbandes $x_{\rm U+}(t)$ mit der Länge $A_{\rm U}$ und der Nullphasenlage $\varphi_{\rm U}$ dreht mit der Winkelgeschwindigkeit $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'$, wegen $f_{\rm U}\hspace{0.01cm}'<0$ im Uhrzeigersinn (mathematisch negative Richtung).
<br>
 
[[Datei:Zeigerdiagramm_1a.png|right|frame|Bandpass&ndash;Spektrum $X(f)$ |class=fit]]
 
Wir betrachten hier '''Bandpass-Signale''' $x(t)$ mit der Eigenschaft, dass deren Spektren $X(f)$ nicht im Bereich um die Frequenz $f = 0$ liegen, sondern um eine Trägerfrequenz $f_{\rm T}$. Meist kann auch davon ausgegangen werden, dass die Bandbreite $B \ll f_{\rm T}$ ist.
 
  
Die Grafik zeigt ein solches Bandpass&ndash;Spektrum $X(f)$. Unter der Annahme, dass das zugehörige $x(t)$ ein physikalisches Signal und damit reell ist, ergibt sich für die Spektralfunktion $X(f)$ eine Achsensymmetrie bezüglich der Frequenz $f = 0$.
+
*Mit $f_{\rm U}\hspace{0.01cm}' = -f_{\rm O}\hspace{0.01cm}'$ drehen der blaue und der grüne Zeiger gleich schnell, aber in unterschiedlichen Richtungen. Gilt zudem $A_{\rm O} = A_{\rm U}$ und $\varphi_{\rm U} = -\varphi_{\rm O}$, so bewegt sich $x_{\rm TP}(t)$ auf einer Geraden mit einer Neigung von $\varphi_{\rm T}$.
  
Neben dem physikalischen Signal $x(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X(f)$ verwendet man zur Beschreibung von Bandpass-Signalen gleichermaßen:
 
*das analytische Signal $x_+(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_+(f)$, wie im nächsten Unterabschnitt beschrieben,
 
*das äquivalente Tiefpass&ndash;Signal $x_{\rm TP}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_{\rm TP}(f)$, siehe Applet [[Physikalisches Signal & Äquivalentes Tiefpass&ndash;Signal]].
 
  
===Analytisches Signal &ndash; Spektralfunktion===
+
''Hinweis:'' &nbsp; Die Grafik gilt für $\varphi_{\rm O} = +30^\circ$. Daraus folgt für den Startzeitpunkt $t=0$ der Winkel des blauen Zeigers (OSB) gegenüber dem Koordinatensystem: &nbsp; $\phi_{\rm O} = -\varphi_{\rm O} = -30^\circ$. Ebenso folgt aus der Nullphasennlage $\varphi_{\rm U} = -30^\circ$ des unteren Seitenbandes (USB, grüner Zeiger) für den in der komplexen Ebene zu berücksichtigenden Phasenwinkel: &nbsp; $\phi_{\rm U} = +30^\circ$.
 
 
Das zum physikalischen Signal $x(t)$ gehörige '''analytische Signal''' $x_+(t)$ ist diejenige Zeitfunktion, deren Spektrum folgende Eigenschaft erfüllt:
 
[[Datei:Zeigerdiagramm_1b_version2.png|right|frame|Konstruktion der Spektralfunktion $X_+(f)$ |class=fit]]
 
$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 
X(f) \; \hspace{0.2cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} < 0.} }\right.$$
 
  
Die so genannte ''Signumfunktion'' ist dabei für positive Werte von $f$ gleich $+1$ und für negative $f$–Werte gleich $-1$.
 
*Der (beidseitige) Grenzwert liefert $\sign(0) = 0$.
 
*Der Index „+” soll deutlich machen, dass $X_+(f)$ nur Anteile bei positiven Frequenzen besitzt.
 
  
 +
Den zeitlichen Verlauf von $x_{\rm TP}(t)$ bezeichnen wir im Folgenden auch als '''Ortskurve'''. Der Zusammenhang zwischen $x_{\rm TP}(t)$ und dem physikalischen Bandpass&ndash;Signal $x(t)$ wird im Abschnitt [[???]] angegeben. Der Zusammenhang zwischen $x_{\rm TP}(t)$ und dem dazugehörigen analytischen Signal $x_+(t)$ lautet:
  
Aus der Grafik erkennt man die Berechnungsvorschrift für $X_+(f)$: Das tatsächliche BP–Spektrum $X(f)$ wird
+
:$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t},$$
*bei den positiven Frequenzen verdoppelt, und
+
:$$x_{\rm +}(t) = x_{\rm TP}(t)\cdot {\rm e}^{+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$
*bei den negativen Frequenzen zu Null gesetzt.
 
  
Aufgrund der Unsymmetrie von $X_+(f)$ bezüglich der Frequenz $f = 0$ kann man bereits jetzt schon sagen, dass die Zeitfunktion $x_+(t)$ bis auf einen trivialen Sonderfall $x_+(t)= 0 \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ X_+(f)= 0$ stets komplex ist.
+
''Hinweis:'' &nbsp; Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.  
<br clear=all>
 
===Analytisches Signal &ndash; Zeitverlauf===
 
An dieser Stelle ist es erforderlich, kurz auf eine weitere Spektraltransformation einzugehen.
 
  
{{BlaueBox|TEXT= 
 
$\text{Definition:}$&nbsp;
 
Für die '''Hilberttransformierte''' $ {\rm H}\left\{x(t)\right\}$ einer Zeitfunktion $x(t)$ gilt:
 
 
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
 
\hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t -
 
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
 
  
Dieses bestimmte Integral ist nicht auf einfache, herkömmliche Art lösbar, sondern muss mit Hilfe des [https://de.wikipedia.org/wiki/Cauchyscher_Hauptwert Cauchy–Hauptwertsatzes] ausgewertet werden.
 
  
Entsprechend gilt im Frequenzbereich:
 
:$$Y(f) =  {\rm -j \cdot sign}(f) \cdot X(f) \hspace{0.05cm} .$$}}
 
  
 +
==Theoretischer Hintergrund==
 +
<br>
 +
===Beschreibungsmöglichkeiten von Bandpass-Signalen===
 +
[[Datei:Zeigerdiagramm_1a.png|right|frame|Bandpass&ndash;Spektrum $X(f)$ |class=fit]]
 +
Wir betrachten hier '''Bandpass-Signale''' $x(t)$ mit der Eigenschaft, dass deren Spektren $X(f)$ nicht im Bereich um die Frequenz $f = 0$ liegen, sondern um eine Trägerfrequenz $f_{\rm T}$. Meist kann auch davon ausgegangen werden, dass die Bandbreite $B \ll f_{\rm T}$ ist.
  
Das obige Ergebnis lässt sich mit dieser Definition wie folgt zusammenfassen:
+
Die Grafik zeigt ein solches Bandpass&ndash;Spektrum $X(f)$. Unter der Annahme, dass das zugehörige $x(t)$ ein physikalisches Signal und damit reell ist, ergibt sich für die Spektralfunktion $X(f)$ eine Symmetrie bezüglich der Frequenz $f = 0$. Ist $x(t)$ eine gerade Funktion &nbsp; &rArr; &nbsp; $x(-t)=x(+t)$, so ist auch $X(f)$ reell und gerade.
*Man erhält aus dem physikalischen BP–Signal $x(t)$ das analytische Signal $x_+(t)$, indem man zu $x(t)$ einen Imaginärteil gemäß der Hilberttransformierten hinzufügt:
 
 
:$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
 
  
*$\text{H}\{x(t)\}$ verschwindet nur für den Fall  $x(t) = \rm const.$ &nbsp; &rArr; &nbsp; Gleichsignal.  Bei allen anderen Signalformen ist somit das analytische Signal $x_+(t)$ komplex.
 
  
 +
Neben dem physikalischen Signal $x(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X(f)$ verwendet man zur Beschreibung von Bandpass-Signalen gleichermaßen:
 +
*das analytische Signal $x_+(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_+(f)$, siehe Applet [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]],
 +
*das äquivalente Tiefpass&ndash;Signal $x_{\rm TP}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_{\rm TP}(f)$,  wie im nächsten Unterabschnitt beschrieben.
 +
<br><br>
 +
===Spektralfunktionen des analytischen und des äquivalenten TP&ndash;Signals===
  
*Aus dem analytischen Signal $x_+(t)$ kann das physikalische Bandpass–Signal in einfacher Weise durch Realteilbildung ermittelt werden:
+
Das zum physikalischen Signal $x(t)$ gehörige '''analytische Signal''' $x_+(t)$ ist diejenige Zeitfunktion, deren Spektrum folgende Eigenschaft erfüllt:
:$$x(t) = {\rm Re}\left\{x_+(t)\right\} .$$
+
[[Datei:Ortskurve_2.png|right|frame|Spektralfunktionen $X_+(f)$ und $X_{\rm TP}(f)$ |class=fit]]
 +
:$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 +
X(f) \; \hspace{0.2cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} < 0.} }\right.$$
  
{{GraueBox|TEXT= 
+
Die so genannte ''Signumfunktion'' ist dabei für positive Werte von $f$ gleich $+1$ und für negative $f$–Werte gleich $-1$.
$\text{Beispiel 1:}$&nbsp; Das Prinzip der Hilbert–Transformation wird durch die nachfolgende Grafik nochmals verdeutlicht:
+
*Der (beidseitige) Grenzwert liefert $\sign(0) = 0$.
*Nach der linken Darstellung $\rm(A)$ kommt man vom physikalischen Signal $x(t)$ zum analytischen Signal $x_+(t)$, indem man einen Imaginärteil ${\rm j} \cdot y(t)$ hinzufügt.  
+
*Der Index „+” soll deutlich machen, dass $X_+(f)$ nur Anteile bei positiven Frequenzen besitzt.
*Hierbei ist $y(t) = {\rm H}\left\{x(t)\right\}$ eine reelle Zeitfunktion, die sich im Spektralbereich durch die Multiplikation des Spektrums $X(f)$ mit $\rm {- j} \cdot \sign(f)$ angeben lässt.
 
  
[[Datei:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|Zur Verdeutlichung der Hilbert–Transformierten]]
 
  
Die rechte Darstellung $\rm(B)$ ist äquivalent zu $\rm(A)$. Nun gilt $x_+(t) = x(t) + z(t)$ mit der rein imaginären Funktion $z(t)$. Ein Vergleich der beiden Bilder zeigt, dass tatsächlich $z(t) = {\rm j} \cdot y(t)$ ist.}}
+
Aus der Grafik erkennt man die Berechnungsvorschrift für $X_+(f)$: Das tatsächliche BP–Spektrum $X(f)$ wird
<br><br>
+
*bei den positiven Frequenzen verdoppelt, und
===Darstellung der harmonischen Schwingung als analytisches Signal===
+
*bei den negativen Frequenzen zu Null gesetzt.
  
Die Spektralfunktion $X(f)$ einer harmonischen Schwingung $x(t) = A \cdot \text{cos}(2\pi f_Tt - \varphi)$ besteht bekanntlich aus zwei Diracfunktionen bei den Frequenzen
 
* $+f_{\rm T}$ mit dem komplexen Gewicht $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
 
* $-f_{\rm T}$ mit dem komplexen Gewicht $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.
 
  
 +
Aufgrund der Unsymmetrie von $X_+(f)$ bezüglich der Frequenz $f = 0$ kann man bereits jetzt schon sagen, dass die Zeitfunktion $x_+(t)$ bis auf einen trivialen Sonderfall $x_+(t)= 0 \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ \ X_+(f)= 0$ stets komplex ist.
  
Somit lautet das Spektrum des analytischen Signals (also ohne die Diracfunktion bei der Frequenz $f =-f_{\rm T}$, aber Verdoppelung bei $f =+f_{\rm T}$):
 
  
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
+
Zum Spektrum $X_{\rm TP}(f)$ des äquivalenten TP&ndash;Signals kommt man, indem man $X_+(f)$ um die Trägerfrequenz $f_{\rm T}$ nach links verschiebt:
T}) .$$
+
:$$X_{\rm TP}(f)= X_+(f+f_{\rm T}).$$
 
Die dazugehörige Zeitfunktion erhält man durch Anwendung des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]:
 
 
:$$x_+(t) = A \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
 
  
Diese Gleichung beschreibt einen mit konstanter Winkelgeschwindigkeit $\omega_{\rm T} = 2\pi f_{\rm T}$ drehenden Zeiger.
+
Im Zeitbereich entspricht diese Operation der Multiplkation von $x_{\rm +}(t)$ mit der komplexen Exponentialfunktion mit negativem Exponenten:
 +
:$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$
  
{{GraueBox|TEXT= 
+
Man erkennt, dass $x_{\rm TP}(t)$ im Allgemeinen komplexwertig ist. Ist aber $X_+(f)$ symmetrisch um die Trägerfrequenz $f_{\rm T}$, so ist $X_{\rm TP}(f)$ symmetrisch um die Frequenz $f=0$ und es ergibt sich dementsprechend eine reelle Zeitfunktion $x_{\rm TP}(t)$.
$\text{Beispiel 2:}$&nbsp; Aus Darstellungsgründen wird das Koordinatensystem entgegen der üblichen Darstellung um $90^\circ$ gedreht (Realteil nach oben, Imaginärteil nach links).
 
  
[[Datei:P_ID712__Sig_T_4_2_S3.png|center|frame|Zeigerdiagramm einer harmonischen Schwingung]]
+
===$x_{\rm TP}(t)$&ndash;Darstellung einer Summe aus drei harmonischen Schwingungen===
 
 
Anhand dieser Grafik sind folgende Aussagen möglich:
 
*Zum Startzeitpunkt $t = 0$ liegt der Zeiger der Länge $A$ (Signalamplitude) mit dem Winkel $-\varphi$ in der komplexen Ebene. Im gezeichneten Beispiel gilt $\varphi = 45^\circ$.
 
*Für Zeiten $t > 0$ dreht der Zeiger mit konstanter Winkelgeschwindigkeit (Kreisfrequenz) $\omega_{\rm T}$ in mathematisch positiver Richtung, das heißt entgegen dem Uhrzeigersinn.
 
*Die Spitze des Zeigers liegt somit stets auf einem Kreis mit Radius $A$ und benötigt für eine Umdrehung genau die Zeit $T_0$, also die Periodendauer der harmonischen Schwingung $x(t)$.
 
*Die Projektion des analytischen Signals $x_+(t)$ auf die reelle Achse, durch rote Punkte markiert, liefert die Augenblickswerte von $x(t)$.}}
 
<br><br>
 
===$x_+(t)$&ndash;Darstellung einer Summe aus drei harmonischen Schwingungen===
 
  
In unserem Applet setzen wir stets  einen Zeigerverbund aus drei Drehzeigern voraus. Das physikalische Signal lautet:  
+
In unserem Applet setzen wir stets  einen Zeigerverbund aus drei Drehzeigern voraus. Das physikalische Signal lautet:
 
:$$x(t) = x_{\rm U}(t) + x_{\rm T}(t) + x_{\rm O}(t) = A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right)+A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right). $$
 
:$$x(t) = x_{\rm U}(t) + x_{\rm T}(t) + x_{\rm O}(t) = A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right)+A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right). $$
 
* Jede der drei harmonischen Schwingungen harmonischen Schwingungen $x_{\rm T}(t)$, $x_{\rm U}(t)$ und $x_{\rm O}(t)$ wird durch eine Amplitude $(A)$, eine Frequenz $(f)$ und einen Phasenwert $(\varphi)$ charakterisiert.
 
* Jede der drei harmonischen Schwingungen harmonischen Schwingungen $x_{\rm T}(t)$, $x_{\rm U}(t)$ und $x_{\rm O}(t)$ wird durch eine Amplitude $(A)$, eine Frequenz $(f)$ und einen Phasenwert $(\varphi)$ charakterisiert.
*Die Indizes sind an das Modulationsverfahren [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Zweiseitenband&ndash;Amplitudenmodulation]] angelehnt. &bdquo;T&rdquo; steht für &bdquo;Träger&rdquo;, &bdquo;U&rdquo; für &bdquo;Unteres Seitenband&rdquo; und &bdquo;O&rdquo; für &bdquo;Oberes Seitenband&rdquo;. Entsprechend gilt stets $f_{\rm U} < f_{\rm T}$ und $f_{\rm O} > f_{\rm T}$. Für die Ampltuden und Phasen gibt es keine Einschränkungen.
+
*Die Indizes sind an das Modulationsverfahren [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Zweiseitenband&ndash;Amplitudenmodulation]] angelehnt. &bdquo;T&rdquo; steht für &bdquo;Träger&rdquo;, &bdquo;U&rdquo; für &bdquo;Unteres Seitenband&rdquo; und &bdquo;O&rdquo; für &bdquo;Oberes Seitenband&rdquo;. Entsprechend gilt stets $f_{\rm U} < f_{\rm T}$ und $f_{\rm O} > f_{\rm T}$. Für die Amplituden und Phasen gibt es keine Einschränkungen.
 
 
 
 
[[Datei:Zeigerdiagramm_1c.png|center|frame|??? $X_+(f)$ |class=fit]]
 
Im Kapitel [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation|Aperiodische Signale - Impulse]]  wurden meist stillschweigend tiefpassartige Signale vorausgesetzt, das heißt solche Signale, deren Spektralfunktionen im Bereich um die Frequenz $f = 0$ liegen. Insbesondere bei optischer Übertragung und bei Funkübertragungssystemen – aber nicht nur hier – liegen die Sendesignale jedoch im Bereich um eine Trägerfrequenz $f_{\rm T}$. Solche Signale bezeichnet man als '''Bandpass-Signale'''.
 
 
 
Unter '''Verzerrungen''' (englisch: ''Distortions'') versteht man allgemein die unerwünschte deterministische Veränderungen eines Nachrichtensignals durch ein Übertragungssystem. Sie sind bei vielen Nachrichtensystemen neben den stochastischen Störungen (Rauschen, Nebensprechen, etc.)  eine entscheidende Begrenzung für die Übertragungsqualität und die Übertragungsrate.
 
 
 
Ebenso wie man die &bdquo;Stärke&rdquo; von Rauschen durch
 
*die Rauschleistung (englisch: ''Noise Power'') $P_{\rm N}$ und
 
*das Signal&ndash;zu&ndash;Rauschleistungsverhältnis  (englisch: ''Signal&ndash;to&ndash;Noise Ratio'', SNR)  $\rho_{\rm N}$
 
 
 
 
 
bewertet, verwendet man zur Quantifizierung der Verzerrungen
 
 
 
*die Verzerrungsleistung (englisch: ''Distortion  Power'') $P_{\rm D}$ und
 
*das Signal&ndash;zu&ndash;Verzerrungsleistungsverhältnis  (englisch: ''Signal&ndash;to&ndash;Distortion Ratio'', SDR) 
 
:$$\rho_{\rm D}=\frac{\rm Signalleistung}{\rm Verzerrungsleistung} = \frac{P_x}{P_{\rm D} }.$$
 
 
 
 
=== Lineare und nichtlineare Verzerrungen ===
 
<br>
 
Man unterscheidet zwischen linearen und nichtlinearen Verzerrungen:
 
*'''Nichtlineare Verzerrungen''' gibt es, wenn zu allen Zeiten $t$ zwischen dem Signalwert $x = x(t)$ am Eingang und dem Ausgangssignalwert $y = y(t)$ der nichtlineare Zusammenhang $y = g(x) \ne {\rm const.}  \cdot x$ besteht, wobei $y = g(x)$ die nichtlineare Kennlinie des Systems bezeichnet. Legt man an den Eingang ein Cosinussignal der Freuenz $f_0$ an, so beinhaltet das Ausgangssignal neben  $f_0$ auch Vielfache hiervon &nbsp; &rArr; &nbsp; so genannte ''Oberwellen''. Durch nichtlineare Verzerrungen entstehen also neue Frequenzen.
 
 
 
[[Datei:LZI_T_2_2_S3_vers2.png|center|frame|Zur Verdeutlichung  nichtlinearer Verzerrungen |class=fit]]
 
 
 
[[Datei:P_ID899__LZI_T_2_3_S1_neu.png|right |frame| Beschreibung eines linearen Systems|class=fit]]
 
*'''Lineare Verzerrungen''' entstehen dann, wenn der Übertragungskanal durch einen Frequenzgang $H(f) \ne \rm const.$ charakterisiert wird. Dann werden unterschiedliche Frequenzen unterschiedlich gedämpft und unterschiedlich verzögert. Charakteristisch hierfür ist, dass zwar Frequenzen verschwinden können (zum Beispiel durch einen Tiefpass, einen Hochpass oder einen Bandpass), dass aber keine neuen Frequenzen entstehen.
 
 
 
  
In diesem Applet werden nur lineare Verzerrungen betrachtet.
 
  
 +
Das dazugehörige äquivalente Tiefpass&ndash;Signal lautet mit $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$, &nbsp; $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$ &nbsp;und &nbsp;$f_{\rm T}\hspace{0.01cm}' =  0$:
  
=== Beschreibungsformen für den  Frequenzgang ===
+
:$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm}
<br>
+
A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$
Der im Allgemeinen komplexe Frequenzgang kann auch wie folgt dargestellt werden:
 
:$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot
 
\hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j}
 
\hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$
 
 
 
Daraus ergeben sich folgende Beschreibungsgrößen:
 
*Der Betrag $|H(f)|$ wird als '''Amplitudengang''' und in logarithmierter Form als '''Dämpfungsverlauf''' bezeichnet:
 
:$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper
 
\hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in
 
\hspace{0.1cm}Dezibel \hspace{0.1cm}(dB) }.$$
 
*Der '''Phasengang''' $b(f)$ gibt den negativen frequenzabhängigen Winkel von $H(f)$ in der komplexen Ebene an, bezogen auf die reelle Achse:
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in
 
\hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$
 
  
=== Tiefpass <i>N</i>&ndash;ter Ordnung  ===
+
{{GraueBox|TEXT=
<br>
+
$\text{Beispiel 1:}$&nbsp;
[[Datei:Tiefpass_version2.png|right|frame|Dämpfungsverlauf und Phasenverlauf eines Tiefpasses <i>N</i>&ndash;ter Ordnung]]
+
Die hier angegebene Konstellation ergibt sich zum Beispiel bei der [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#AM-Signale_und_-Spektren_bei_harmonischem_Eingangssignal|Zweiseitenband-Amplitudenmodulation]] des Nachrichtensignals $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ mit dem Trägersignal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$. Hierauf wird in der Versuchsdurchführung häufiger eingegangen.
Der Frequenzgang eines realisierbaren Tiefpasses <i>N</i>&ndash;Ordnung lautet:
 
:$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
Ein einfacher RC&ndash;Tiefpass hat diesen Verlauf mit $N=1$. Damit erhält man
 
*den Dämpfungsverlauf:
 
:$$a(f) =N/2 \cdot \ln  [1+( f/f_0)^2] \hspace{0.05cm},$$
 
*den Phasenverlauf:
 
:$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
 
*den Dämpfungsfaktor für die Frequenz $f=f_i$:
 
:$$\alpha_i =|H(f = f_i)| =  [1+( f/f_0)^2]^{-N/2}$$ 
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
*die Phasenlaufzeit für die Frequenz $f=f_i$:
 
:$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$
 
  
 +
[[Datei:Ortskurve_5.png|center|frame|Spektum $X_{\rm TP}(f)$ des äquivalenten TP&ndash;Signals für verschiedene Phasenkonstellationen |class=fit]]
  
 +
Bei dieser Betrachtungsweise gibt es einige Einschränkungen bezüglich der Programmparameter:
 +
* Für die Frequenzen gelte stets  $f\hspace{0.05cm}'_{\rm O} =  f_{\rm N}$ und $f\hspace{0.05cm}'_{\rm U} =  -f_{\rm N}$.
 +
*Ohne Verzerrungen sind die Amplitude der Seitenbänder $A_{\rm O}= A_{\rm U}= A_{\rm N}/2$.
 +
*Die jeweiligen Phasenverhältnisse können der Grafik entnommen werden.
  
=== Hochpass <i>N</i>&ndash;ter Ordnung  ===
+
}}
<br>
 
[[Datei:Hochpass_version2.png|right|frame|Dämpfungsverlauf und Phasenverlauf eines Hochpasses <i>N</i>&ndash;ter Ordnung]]
 
Der Frequenzgang eines realisierbaren Hochpasses <i>N</i>&ndash;Ordnung lautet:
 
:$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
Ein einfacher LC&ndash;Tiefpass hat diesen Verlauf mit $N=1$. Damit erhält man
 
*den Dämpfungsverlauf:
 
:$$a(f) =N/2 \cdot \ln  [1+( f_0/f)^2] \hspace{0.05cm},$$
 
*den Phasenverlauf:
 
:$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
 
*den Dämpfungsfaktor für die Frequenz $f=f_i$:
 
:$$\alpha_i =|H(f = f_i)| =  [1+( f_0/f)^2]^{-N/2}$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
*die Phasenlaufzeit für die Frequenz $f=f_i$:
 
:$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2 \pi f_i}$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2 \pi  f_i (t- \tau_i))\hspace{0.05cm}.$$
 
  
  
[[Datei:Verzerrungen_HP_TP_1_englisch.png|right|frame|Phasenfunktion $b(f)$ von Tiefpass und Hochpass]]
 
{{GraueBox|TEXT= 
 
$\text{Beispiel:}$&nbsp;
 
Die Grafik zeigt jeweils für die Grenzfrequenz $f_0 = 1\ \rm kHz$ und die Ordnung $N=1$ die Phasenfunktion $b(f)$
 
* eines Tiefpasses (englisch: ''low&ndash;pass'') als grüne Kurve, und
 
* eines Hochpasses (englisch: ''high&ndash;pass'') als violette  Kurve.
 
  
  
Das Eingangssignal sei jeweils sinusförmig mit der Frequenz $f_{\rm S} = 1.25\ {\rm kHz}$, wobei dieses Signal erst zum Zeitpunkt $t=0$ eingeschaltet wird:
+
===Darstellung des äquivalenten TP&ndash;Signals nach Betrag und Phase===
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0  \\ \sin(2\pi \cdot f_{\rm S}  \cdot t ) \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r} }  \\  {\rm{f\ddot{u}r} }    \\ \end{array}\begin{array} \ t < 0, \\  t>0. \\ \end{array}$$
 
  
In der linken (blau umrandeten) Grafik ist dieses Signal $x(t)$ dargestellt. Der Zeitpunkt $t = T_0 = 0.8\ {\rm ms}$ der ersten Nullstelle ist durch eine gestrichelte Linie markiert. Die beiden anderen Grafiken zeigen die Ausgangssignale $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$ von Tiefpass und Hochpass, wobei in beiden Fällen die Amplitudenänderungen ausgeglichen wurden.
+
Das im Allgemeinen komplexwertige äquivalenten TP&ndash;Signal
 +
:$$x_{\rm TP}(t) = a(t) \cdot {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t) }$$
 +
kann entsprechend der hier angegebenen Gleichung in eine Betragsfunktion $a(t)$ und eine Phasenfunktion $\phi(t)$ aufgespalten werden, wobei gilt:
 +
:$$a(t) = \vert x_{\rm TP}(t)\vert = \sqrt{ {\rm Re}^2\big [x_{\rm TP}(t)\big ] + {\rm Im}^2\big [x_{\rm TP}(t)\big ] }\hspace{0.05cm},$$
 +
:$$\phi(t) = \text{arc }x_{\rm TP}(t) = \arctan \frac{{\rm Im}\big [x_{\rm TP}(t)\big ]}{{\rm Re}\big [x_{\rm TP}(t)\big ]}.$$
  
[[Datei:Verzerrungen_HP_TP_2_version2.png|center|frame|Eingangssignal $x(t)$ sowie Ausgangssignale  $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$]]
+
Der Grund dafür, dass man ein Bandpass&ndash;Signal $x(t)$ meist durch das äquivalente TP&ndash;Signal $x_{\rm TP}(t)$ beschreibt ist, dass die Funktionen $a(t)$ und $\phi(t)$ in beiden Darstellungen interpretierbar sind:
 +
*Der Betrag $a(t)$ des äquivalentes TP&ndash;Signals $x_{\rm TP}(t)$ gibt die (zeitabhängige) Hüllkurve von $x(t)$ an.
 +
*Die Phase $\phi(t)$ von $x_{\rm TP}(t)$ kennzeichnet die Lage der Nulldurchgänge von $x(t)$, wobei gilt:
 +
:&ndash; &nbsp; Bei $\phi(t)>0$ ist der Nulldurchgang früher als seine Solllage &nbsp; &rArr; &nbsp; das Signal ist hier vorlaufend.
 +
:&ndash; &nbsp;Bei $\phi(t)<0$ ist der Nulldurchgang später als seine Solllage &nbsp; &rArr; &nbsp; das Signal ist hier nachlaufend.
  
*Die erste Nullstelle des Signals $y_{\rm TP}(t)$ nach dem Tiefpass kommt um $\tau_{\rm TP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ später als die erste Nullstelle von $x(t)$ &nbsp; &rArr; &nbsp; markiert mit grünem Pfeil, wobei $b_{\rm TP}(f/f_{\rm S} )= 0.9 \ {\rm rad}$ berücksichtigt wurde.
+
{{GraueBox|TEXT=
* Dagegen ist die Laufzeit des Hochpasses negativ:  $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx 0.085 \ {\rm ms}$ und die erste Nullstelle von $y_{\rm HP}(t)$ kommt deshalb vor der weißen Markierung.
+
$\text{Beispiel 2:}$&nbsp;
*Nach diesem Einschwingvorgang kommen in beiden Fällen die Nulldurchgänge wieder im Raster der Periodendauer  $T_0 = 0.8 \ {\rm ms}.$
+
Die Grafik soll diesen Zusammenhang verdeutlichen, wobei $A_{\rm U} > A_{\rm O}$ vorausgesetzt ist &nbsp; &rArr; &nbsp; der grüne Zeiger (für das untere Seitenband) ist länger als der blaue Zeiger (oberes Seitenband). Es handelt sich um eine Momentaufnahme zum Zeitpunkt $t_0$:
  
 +
[[Datei:Ortskurve_3_neu.png|center|frame|Bandpass&ndash;Spektrum $X(f)$ |class=fit]]
  
''Anmerkung:'' Die gezeigten Signalverläufe wurden mit dem intereaktiven Applet [[Applets:Kausale_Systeme_-_Laplacetransformation|Kausale Systeme &ndash; Laplacetransformation]] erstellt. }}
+
*Bei diesen Systemparametern liegt die Spitze des Zeigerverbundes $x_{\rm TP}(t)$ &ndash; also die geometrisch Summe aus rotem, blauem und grünem Zeiger &ndash; auf einer Ellipse.
 +
* In der linken Grafik schwarz eingezeichnet ist der Betrag $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ und in brauner Farbe angedeutet ist der Phasenwert $\phi(t_0) = \text{arc }x_{\rm TP}(t_0) > 0.$
 +
*In der rechten Grafik gibt der Betrag $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ des äquivalenten TP&ndash;Signals die Hüllkurve des physikalischen Signals $x(t)$ an.
 +
* Bei $\phi(t) \equiv 0$ würden alle Nulldurchgänge von $x(t)$ in äquidistenten Abständen auftreten. Wegen $\phi(t_0)  > 0$ ist zum Zeitpunkt $t_0$ das Signal vorlaufend, das heißt: Die Nulldurchgänge kommen früher, als es das Raster vorgibt. }}
  
=== Dämpfungsverzerrungen und  Phasenverzerrungen  ===
 
<br>
 
[[Datei:P_ID900__LZI_T_2_3_S2_neu.png|frame| Voraussetzung für einen nichtverzerrenden Kanal|right|class=fit]]
 
Die nebenstehende Grafik zeigt
 
*den geraden Dämpfungsverlauf $a(f)$ &nbsp; &rArr; &nbsp; $a(-f) = a(f)$, und
 
*den ungeraden Phasenverlauf $b(f)$ &nbsp; &rArr; &nbsp; $b(-f) = -b(- f)$
 
 
eines verzerrungsfreien Systems. Man erkennt:
 
*Bei einem verzerrungsfreien Systems muss in einem Bereich von $f_{\rm U}$ bis $f_{\rm O}$ um die Trägerfrequenz $f_{\rm T}$, in dem das Signal $x(t)$ Anteile besitzt, die  Dämpfungsfunktion $a(f)$ konstant sein.
 
*Aus dem angegebenen konstanten Dämpfungswert $6 \ \rm dB$ folgt für den Amplitudengang $|H(f)| = 0.5$ &nbsp; &rArr; &nbsp; die Signalwerte aller Frequenzen werden somit durch das System halbiert &nbsp; &rArr; &nbsp; keine Dämpfungsverzerrungen.
 
*Zusätzlich muss bei einem solchen Systems der Phasenverlauf $b(f)$ zwischen $f_{\rm U}$ und $f_{\rm O}$ linear mit der Frequenz ansteigen. Dies hat zur Folge, dass alle Frequenzanteile um die gleiche Phasenlaufzeit $τ$ verzögert werden &nbsp; &rArr; &nbsp;  keine Phasenverzerrungen.
 
*Die Verzögerung $τ$ liegt durch die Steigung von $b(f)$ fest. Mit $b(f) = 0$ würde sich ein laufzeitfreies System ergeben  &nbsp; &rArr; &nbsp; $τ = 0$.
 
 
 
Die folgende Zusammenfassung berücksichtigt, dass in diesem Applet das Einganssignal stets die Summe zweier harmonischer Schwingungen  ist:
 
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$
 
Damit wird der Kanaleinfluss durch die Dämpfungsfaktoren $\alpha_1$ und $\alpha_2$ sowie die Phasenlaufzeiten  $\tau_1$ und $\tau_2$ vollständig beschrieben:
 
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2).$$
 
 
{{BlaueBox|TEXT= 
 
$\text{Fazit:}$&nbsp;
 
*Ein Signal $y(t)$ ist gegenüber dem Eingang $x(t)$ nur dann unverzerrt, wenn $\alpha_1 = \alpha_2= \alpha$ &nbsp;<u> und </u>&nbsp; $\tau_1 = \tau_2= \tau$ gilt &nbsp; &rArr; &nbsp; $y(t) = \alpha \cdot  x(t-\tau)$.
 
* Dämpfungsverzerrungen ergeben sich, falls  $\alpha_1 \ne \alpha_2$ ist . Ist $\alpha_1 \ne \alpha_2$ und $\tau_1 = \tau_2$, so liegen ausschließlich Dämpfungsverzerrungen vor.
 
* Phasenverzerrungen gibt es für  $\tau_1 \ne \tau_2$. Ist $\tau_1 \ne \tau_2$ und $\alpha_1 = \alpha_2$, so liegen ausschließlich Phasenverzerrungen vor. }}
 
  
 
==Versuchsdurchführung==
 
==Versuchsdurchführung==
[[Datei:Exercises_verzerrungen.png|right]]
+
[[Datei:Zeigerdiagramm_aufgabe_2.png|right]]
 
*Wählen Sie zunächst die Aufgabennummer.
 
*Wählen Sie zunächst die Aufgabennummer.
 
*Eine Aufgabenbeschreibung wird angezeigt.
 
*Eine Aufgabenbeschreibung wird angezeigt.
 
*Parameterwerte sind angepasst.
 
*Parameterwerte sind angepasst.
*Lösung nach Drücken von &bdquo;Hide solition&rdquo;.
+
*Lösung nach Drücken von &bdquo;Hide solition&rdquo;.
 
 
 
 
Die Nummer &bdquo;0&rdquo; entspricht einem &bdquo;Reset&rdquo;:
 
*Gleiche Einstellung wie beim Programmstart.
 
*Ausgabe eines &bdquo;Reset&ndash;Textes&rdquo; mit weiteren Erläuterungen zum Applet.
 
 
 
 
 
 
{{BlaueBox|TEXT= 
 
'''(1)''' &nbsp; Für das Eingangssignal $x(t)$ gelte $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ$.
 
:Wie groß ist die Periodendauer $T_0$? Welche Leistung $P_x$ weist dieses Signal auf? Wo kann man diesen Wert im Programm ablesen? }}
 
 
 
 
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ größter gemeinsamer Teiler }(0.5  \ {\rm kHz}, \ 1.5  \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ =  2.0 \ {\rm ms}};$
 
 
 
$\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, wenn }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0$.
 
 
 
{{BlaueBox|TEXT= 
 
'''(2)''' &nbsp; Variieren Sie bei sonst gleicher Einstellung wie unter '''(1)''' die Phase $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ$. Wie ändern sich $T_0$ und $P_x$?}}
 
 
 
 
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x =  0.5 \ {\rm V^2}}$.
 
 
 
{{BlaueBox|TEXT= 
 
'''(3)''' &nbsp; Variieren Sie bei sonst gleicher Einstellung wie unter '''(1)''' die Frequenz $f_2$ im Bereich $0 \le f_2 \le 5\ {\rm kHz}$. Wie ändert sich die Signalleistung $P_x$?}}
 
 
 
 
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen, falls }f_2 \ne 0\text{ und } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x =  0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ ändert sich, falls }f_2\text{ kein Vielfaches von }f_1$.
 
 
 
$\hspace{1.85cm}\text{Falls }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}\text{Allgemeine Formel noch überprüfen}$
 
 
 
$\hspace{1.85cm}\text{Falls }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1 \cdot \cos(\varphi_1) + A_2 \cdot \cos(\varphi_2)]^2/2 + [A_1\sin \cdot (\varphi_1) + A_2 \cdot \sin(\varphi_2)]^2/2 \text{.  Mit } \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x =  0.74 \ {\rm V^2}}\text{.} $
 
 
 
{{BlaueBox|TEXT= 
 
'''(4)''' &nbsp; Ausgehend vom bisherigen Eingangssignal $x(t)$ gelte für den Kanal: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$. Zudem sei  $k_{\rm M} = 1 \text{ und } \tau_{\rm M} = 0$ .
 
:Gibt es lineare Verzerrungen? Wie groß ist die Empfangsleistung $P_y$ und die Leistung $P_\varepsilon$ des Differenzsignals $\varepsilon(t) = z(t) - x(t)$?  }}
 
 
 
 
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ ist unverzerrt, nur gedämpft und verzögert.}$ 
 
 
 
$\hspace{1.85cm}\text{Empfangsleistung:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{.  } P_\varepsilon \text{ ist deutlich größer:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$
 
 
 
{{BlaueBox|TEXT= 
 
'''(5)''' &nbsp; Variieren Sie bei sonst gleicher Einstellung wie unter '''(4)''' die Matchingparameter $k_{\rm M} \text{ und } \tau_{\rm M}$. Wie groß ist die Verzerrungsleistung $P_{\rm D}$?}}
 
 
 
 
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ ist gleich der Leistung }P_\varepsilon  \text{ des Differenzsignals bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M} = 2 \text{ und } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$
 
 
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{weder Dämpfungs- noch Phasenverzerrungen.}$ 
 
 
 
{{BlaueBox|TEXT= 
 
'''(6)''' &nbsp; Für den Kanal gelte nun $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$. Wie groß sind nun die Verzerrungsleistung $P_{\rm D}$ und das Signal&ndash;zu&ndash;Verzerrungsverhäldnis $(\rm SDR)$ $\rho_{\rm D}$?}}
 
 
 
 
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ und } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.059 \ {\rm V^2}}$.
 
  
$\hspace{1.85cm}\text{Nur Dämpfungsverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$. 
 
  
{{BlaueBox|TEXT= 
+
Mit der Nummer &bdquo;0&rdquo; wird auf die gleichen Einstellung wie beim Programmstart zurückgesetzt und es wird ein Text mit weiteren Erläuterungen zum Applet ausgegeben.
'''(7)''' &nbsp; Für den Kanal gelte nun $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \  \tau_2  = 0.5\ {\rm ms}$. Wie groß sind nun $P_{\rm D}$ und $\rho_{\rm D}$?}}
 
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.82} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{  = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.072 \ {\rm V^2}}$.
 
  
$\hspace{1.85cm}\text{Nur Phasenverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.
+
Im Folgenden bezeichnet $\rm Grün$ das Untere Seitenband &nbsp; &rArr; &nbsp; $\big (A_{\rm U}, f_{\rm U}, \varphi_{\rm U}\big )$, &nbsp;
 +
$\rm Rot$ den Träger &nbsp; &rArr; &nbsp; $\big (A_{\rm T}, f_{\rm T}, \varphi_{\rm T}\big )$ und
 +
$\rm Blau$ das Obere Seitenband &nbsp; &rArr; &nbsp; $\big (A_{\rm O}, f_{\rm O}, \varphi_{\rm O}\big )$.
  
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
'''(8)''' &nbsp; Die Kanalparameter seien nun $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 0.5\ {\rm ms} }, \  \hspace{0.15cm}\underline{\tau_2  = 0.3\ {\rm ms} }$. Gibt es Dämpfungs&ndash; und/oder Phasenverzerrungen?
+
'''(1)''' &nbsp; Es gelte &nbsp; $\text{Rot:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, f_{\rm T} = 100 \ \text{kHz}\varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Grün:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \varphi_{\rm U} = -90^\circ$, &nbsp;  $\text{Blau:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V},  f_{\rm O} = 120 \ \text{kHz}, \varphi_{\rm O} = 90^\circ$.
:Wie kann man $y(t)$ annähern? ''Hinweis:'' $\cos(3x) = 4 \cdot \cos^3(x) - 3\cdot \cos(x).$}}
 
  
 +
:Betrachten und interpretieren Sie das äquivalente TP&ndash;Signal $x_{\rm TP}(t)$ und das physikalische Signal $x(t)$. Welche Periodendauer $T_0$ erkennt man?}}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Es gibt sowohlDämpfungs&ndash; als auch Phasenverzerrungen, weil }\alpha_1 \ne \alpha_2\text{ und }\tau_1 \ne \tau_2$.  
+
::&nbsp;Das äquivalente TP&ndash;Signal $x_{\rm TP}(t)$ nimmt ausgehend von $x_{\rm TP}(t=0)=1\ \text{V}$ auf der reellen Achse Werte zwischen $0.2\ \text{V}$ und $1.8\ \text{V}$ an &nbsp; &rArr; &nbsp; Phase $\phi(t) \equiv 0$.<br>&nbsp;Der Betrag $|x_{\rm TP}(t)|$ gibt die Hüllkurve $a(t)$ des physikalischen Signals $x(t)$ an. Es gilt mit $A_{\rm N} = 0.8\ \text{V}$ und $f_{\rm N} = 20\ \text{kHz}$: &nbsp; $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$.<br>&nbsp;Sowohl $x_{\rm TP}(t)$ als auch $x(t)$ sind periodisch mit der Periodendauer $T_0 = 1/f_{\rm N} = 50\ \rm &micro; s$.
  
$\hspace{1.85cm}\text{Es gilt }y(t) = y_1(t) + y_2(t)\ \Rightarrow \ y_1(t) = A_1 \cdot \alpha_1 \cdot \sin[2\pi f_1\  (t- 0.5\ \rm ms)] = -0.4 \ {\rm V} \cdot \cos(2\pi  f_1 t)$
+
{{BlaueBox|TEXT=
 +
'''(2)''' &nbsp; Wie ändern sich die Verhältnisse gegenüber '''(1)''' mit $f_{\rm U} = 99 \ \text{kHz}$ und $f_{\rm O} = 101 \ \text{kHz}$&nbsp;? Wie könnte $x(t)$ entstanden sein?}}
  
$\hspace{1.85cm}  y_2(t) = \alpha_2 \cdot x_2(t- \tau_2) \text{ mit }x_2(t) = A_2 \cdot \cos[2\pi f_2\ (t- 30^\circ)] \approx  A_2 \cdot \cos[2\pi f_2\  (t- 1/36 \ \rm ms)]$
+
::&nbsp;Für die Hüllkurve $a(t)$ des Signals $x(t)$ gilt weiterhin $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$, aber nun mit $f_{\rm N} = 1\ \text{kHz}$. Auch wenn es nicht zu erkennen ist:<br>&nbsp;$x_{\rm TP}(t)$ und $x(t)$ sind weiterhin periodisch: &nbsp; $T_0 = 1\ \rm ms$. Beispiel: Zweiseitenband&ndash;Amplitudenmodulation '''(ZSB&ndash;AM)''' eines Sinussignals mit Cosinus&ndash;Träger.
  
$\hspace{1.85cm}  \Rightarrow \ y_2(t) = 0.12 \ {\rm V} \cdot \cos[2\pi f_2\  (t- 0.328 \ {\rm ms})] \approx -0.12 \ { \rm V} \cdot \cos[2\pi f_2t] $.
+
{{BlaueBox|TEXT=
 +
'''(3)''' &nbsp; Welche Einstellungen müssen gegenüber '''(2)''' geändert werden, um zur ZSB&ndash;AM eines Cosinussignals mit Sinus&ndash;Träger zu gelangen. Was ändert sich gegenüber '''(2)'''?}}
  
$\hspace{1.85cm} \Rightarrow \ y(t) = y_1(t) + y_2(t) \approx -0.4 \ {\rm V} \cdot [\cos(2\pi \cdot f_1\cdot  t) + 1/3 \cdot \cos(2\pi \cdot 3 f_1 \cdot t) = -0.533 \ {\rm V} \cdot \cos^3(2\pi f_1  t)$.
+
::Die Trägerphase muss auf $\varphi_{\rm T} = 90^\circ$ geändert werden &nbsp; &rArr; &nbsp; Sinus&ndash;Träger. Ebenso muss $\varphi_{\rm O} =\varphi_{\rm U} =\varphi_{\rm T} = 90^\circ$ eingestellt werden &nbsp; &rArr; &nbsp; cosinusförmige Nachricht<br>&nbsp;Die Ortskurve liegt nun auf der imaginären Achse&nbsp; &rArr; &nbsp; $\phi(t) \equiv -90^\circ$. Zu Beginn gilt $x_{\rm TP}(t=0)= - {\rm j} \cdot 1.8 \ \text{V}$.
  
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
'''(9)''' &nbsp; Es gelten weiter die Parameter von '''(8)'''Wie groß ist die Verzerrungsleistung $P_{\rm D}$ and das Signal-zu-Verzerrungsleistungsverhältnis $\rho_{\rm D}$?}}
+
'''(4)''' &nbsp; Nun gelte &nbsp; $\text{Rot:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$, &nbsp; $\text{Grün:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \  \varphi_{\rm U} = 0^\circ$,  &nbsp;  $\text{Blau:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 0^\circ$.
  
 +
:Welche Eigenschaften weist dieses System &bdquo;ZSB&ndash;AM, wobei Nachrichtensignal und Träger jeweils cosinusförmig&rdquo; auf? Wie groß ist der Modulationsgrad $m$?}}
  
$\hspace{1.0cm}\text{Bestmögliche Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.96} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.65\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.156 \ {\rm V^2} },\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D}  = 0.500/0.15 \approx 3.3}$.
+
::&nbsp;Das äquivalente TP&ndash;Signal $x_{\rm TP}(t)$ nimmt ausgehend von $x_{\rm TP}(t=0)=1.8\ \text{V}$ auf der reellen Achse Werte zwischen $0.2\ \text{V}$ und $1.8\ \text{V}$ an &nbsp; &rArr; &nbsp; Phase $\phi(t) \equiv 0$.<br>&nbsp;Bis auf den Startzustand $x_{\rm TP}(t=0)$ gleiches Verhalten wie bei der Einstellung '''(1)'''. Der Modulationsgrad ist jeweils $m = 0.8$.  
  
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
'''(10)''' &nbsp;Nun gelte $A_2 = 0$ sowie $A_1 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \varphi_1 = 0^\circ$. Der Kanal sei ein <u>Tiefpass erster Ordnung</u>  $(f_0 = 1\ {\rm kHz})$.  
+
'''(5)''' &nbsp; Es gelten weiter die Parameter gemäß '''(4)''' mit Ausnahme von $A_{\rm T}= 0.6 \text{V}$. Wie groß ist nun der Modulationsgrad $m$? Welche Konsequenzen hat das?}}
:Gibt es Dämpfungs&ndash; und/oder Phasenverzerrungen? Wie groß sind die Kanalkoeffizienten $\alpha_1$ and $\tau_1$?}}
 
  
 +
::&nbsp;Es liegt nun eine ZSB&ndash;AM mit Modulationsgrad $m = 1.333$ vor. Bei $m > 1$ ist die einfachere [[Modulationsverfahren/Hüllkurvendemodulation|Hüllkurvendemodulation]]  nicht anwendbar, da nun die Phasenfunktion $\phi(t) \in \{ 0, \ \pm 180^\circ\}$ nicht mehr konstant ist und die Hüllkurve $a(t)$ nicht mehr mit dem Nachrichtensignal übereinstimmt. Vielmehr muss die aufwändigere  [[Modulationsverfahren/Synchrondemodulation|Synchrondemodulation]] verwendet werden. Bei Hüllkurvendemodulation käme es zu nichtlinearen Verzerrungen.
  
$\hspace{1.0cm}\text{Bei nur einer Frequenz gibt es weder Dämpfungs&ndash; noch Phasenverzerrungen.}$
+
{{BlaueBox|TEXT=
$\hspace{1.0cm}\text{Dämpfungsfaktor für }f_1=f_0\text{ und }N=1\text{:  }\alpha_1 =|H(f = f_1)| =  [1+( f_1/f_0)^2]^{-N/2} = 2^{-1/2}= 1/\sqrt{2}\hspace{0.15cm}\underline{=0.707},$
+
'''(6)''' &nbsp; Es gelten weiter die Parameter gemäß '''(4)''' bzw. '''(5)''' mit Ausnahme von $A_{\rm T}= 0$ an &nbsp; &rArr; &nbsp; $m \to \infty$. Welches Modulationsverfahren wird so beschrieben?}}
$\hspace{1.0cm}\text{Phasenlaufzeit für}f_1=f_0\text{ und }N=1\text{:  }\tau_1 = N \cdot \arctan( f_1/f_0)/(2 \pi f_1)=\arctan( 1)/(2 \pi f_1) =1/(8f_1) \hspace{0.15cm}\underline{=0.125 \ \rm ms}.$
 
  
{{BlaueBox|TEXT= 
+
::Es handelt sich um eine '''ZSB&ndash;AM ohne Träger''' und es ist eine eine Synchrondemodulation erforderlich. Das äquivalente TP&ndash;Signal $x_{\rm TP}(t)$ liegt zwar auf der reellen Achse, aber nicht nur in der rechten Halbebene. Damit gilt auch hier für die Phasenfunktion $\phi(t) \in \{ 0, \ \pm 180^\circ\}$, wodurch Hüllkurvendemodulation nicht anwendbar ist.
'''(11)''' &nbsp; Wie ändern sich die Kanalparameter durch einen <u>Tiefpass zweiter Ordnung</u> gegenüber einem Tiefpass erster Ordnung  $(f_0 = 1\ {\rm kHz})$?}}
 
  
 +
{{BlaueBox|TEXT=
 +
'''(7)''' &nbsp; Nun gelte &nbsp; $\text{Rot:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V},  f_{\rm T} = 100 \ \text{kHz},  \varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Grün:} \hspace{0.15cm} A_{\rm U} = 0, \ f_{\rm U} = 80 \ \text{kHz},  \varphi_{\rm U} = -90^\circ$,  &nbsp;  $\text{Blau:} \hspace{0.15cm} A_{\rm O} = 0.8\ \text{V},  f_{\rm O} = 120 \ \text{kHz},  \varphi_{\rm O} = 90^\circ$.
  
$\hspace{1.0cm}\text{Es gilt }\hspace{0.15cm}\alpha_1 = 0.707^2 = 0.5$ und $\tau_1 = 2 \cdot 0.125 = 0.25 \ {\rm ms}$. 
+
:Welches Konstellation wird hiermit beschrieben? Welche Eigenschaften dieses Verfahrens erkennt man aus der Grafik?}}
  
$\hspace{1.0cm}\text{Das Signal }y(t)\text{  ist nur halb so groß wie }x(t)\text{ und läuft diesem nach: Aus dem Cosinusverlauf wird die Sinusfunktion}$.  
+
::Es handelt es sich um eine [[Modulationsverfahren/Einseitenbandmodulation|Einseitenbandmodulation]] '''(ESB&ndash;AM)''', genauer gesagt um eine '''OSB&ndash;AM''': Der rote Träger liegt fest, der grüne Zeiger fehlt und der blaue Zeiger (OSB) dreht entgegen dem Uhrzeigersinn. Der Modulationsgrad ist $\mu = 0.8$ (bei ESB bezeichnen wir den Modulationsgrad mit $\mu$ anstelle von $m$). Das Trägersignal ist cosinusförmig und das Nachrichtensignal sinusförmig.<br>Die Ortskurve ist ein Kreis. $x_{\rm TP}(t)$ bewegt sich darauf in mathematisch positiver Richtung. Wegen $\phi(t) \ne \text{const.}$ ist auch hier die Hüllkurvendemodulation nicht anwendbar: &nbsp;Dies erkennt man daran, dass die Hüllkurve $a(t)$ nicht cosinusförmig ist. Vielmehr ist die untere Halbwelle spitzer als die obere &nbsp; &rArr; &nbsp; starke lineare Verzerrungen.
  
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
'''(12)''' &nbsp; Welche Unterschiede ergeben sich bei einem <u>Hochpass zweiter Ordnung</u> gegenüber einem Tiefpass zweiter Ordnung  $(f_0 = 1\ {\rm kHz})$. }}
+
'''(8)''' &nbsp; Es gelten weiter die Parameter gemäß '''(7)''' mit Ausnahme von $A_{\rm O}= 0$ und $A_{\rm U}= 0.8 \text{V}$. Welche Unterschiede ergeben sich gegenüber '''(7)'''?}}
  
 +
::Nun handelt es sich um eine '''USB&ndash;AM''': Der rote Träger liegt fest, der blaue Zeiger fehlt und der grüne Zeiger (USB) dreht im Uhrzeigersinn. Alle anderen Aussagen von '''(7)''' treffen auch hier zu.
  
$\hspace{1.0cm}\text{Wegen }f_1 = f_0\text{ ergibt sich der gleiche Dämpfungsfaktor }\alpha_1 = 0.5\text{ und  es gilt }\tau_1 = -0.25 \ {\rm ms}\text{ Das heißt:}$.
+
{{BlaueBox|TEXT=
 +
'''(9)''' &nbsp; Es gelten weiter die Parameter gemäß '''(7)''' mit Ausnahme von $A_{\rm O} = 0.2 \text{ V} \ne A_{\rm U} = 0.4 \text{ V} $. Welche Unterschiede ergeben sich gegenüber '''(7)'''?}}
  
$\hspace{1.0cm}\text{Das Signal }y(t)\text{ ist halb so groß wie }x(t)\text{ und läuft diesem vor: Aus dem Cosinusverlauf wird die Minus&ndash;Sinusfunktion}$.  
+
::Die Ortskurve $x_{\rm TP}(t)$ ist nun keine horizontale Gerade, sondern eine Ellipse mit dem Realteil zwischen $0.4 \text{ V}$ und $1.6 \text{ V}$ sowie dem Imaginärteil im Bereich $\pm 0.2  \text{ V}$. Wegen $\phi(t) \ne \text{const.}$ würde auch hier die Hüllkurvendemodulation zu nichtlinearen Verzerrungen führen<br>Die hier simulierte Konstellation beschreibt die Situation von  '''(4)''', nämlich eine ZSB&ndash;AM mit Modulationsgrad $m = 0.8$, wobei das obere Seitenband aufgrund der Kanaldämpfung auf $50\%$ reduziert wird.  
  
{{BlaueBox|TEXT= 
 
'''(13)''' &nbsp; Welche Unterschiede erkennen Sie am Signalverlauf $y(t)$ zwischen dem Tiefpass zweiter Ordnung und dem Hochpass zweiter Ordnung  $(f_0 = 1\ {\rm kHz})$, wenn Sie vom Eingangssignal gemäß'''(1)''' ausgehen und Sie die Frequenz $f_2$ kontinuierlich bis auf $10 \ \rm kHz$ erhöhen. }}
 
  
 
$\hspace{1.0cm}\text{Nach dem Tiefpass  wird der zweite Anteil mehr und mehr unterdrückt. Für }f_2 =  10 \ \rm kHz\text{ gilt: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).$ 
 
 
$\hspace{1.0cm}\text{Nach dem Hochpass überwiegt dagegen der zweite Anteil. Für }f_2 =  10 \ \rm kHz\text{ gilt: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ {\rm ms)} + x_2(t).$
 
  
 
==Zur Handhabung des Applets==
 
==Zur Handhabung des Applets==
[[Datei:Handhabung_verzerrungen.png|center]]
 
 
<br>
 
<br>
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parametereingabe für das Eingangssignal $x(t)$ per Slider: Amplituden, Frequenzen, Phasenwerte
+
[[Datei:Ortskurve_abzug3.png|right|frame|Bildschirmabzug der englischen Version]]
 +
* Die roten Parameter $(A_{\rm T}, \ f_{\rm T}, \ \varphi_{\rm T})$  und der rote Zeiger kennzeichnen den '''T'''räger.
 +
* Die grünen Parameter $(A_{\rm U}, \ f_{\rm U} < f_{\rm T}, \ \varphi_{\rm U})$  kennzeichnen das '''U'''ntere Seitenband.
 +
* Die blauen Parameter $(A_{\rm O}, \ f_{\rm O} > f_{\rm T}, \ \varphi_{\rm O})$ kennzeichnen das '''O'''bere Seitenband.
 +
* Der rote Zeiger dreht nicht.
 +
* Der grüne Zeiger dreht in mathematisch negativer Richtung (im Uhrzeigersinn).
 +
* Der blaue Zeiger dreht entgegen dem Uhrzeigersinn.
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Vorauswahl für die Kanalparameter: per Slider, Tiefpass oder Hochpass
 
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Eingabe der Kanalparameter per Slider: Dämpfungsfaktoren und Phasenlaufzeiten
+
<u>Bedeutung der Buchstaben in nebenstehender Grafik:</u>
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Eingabe der Kanalparameter für Hoch&ndash; und Tiefpass: Ordnung $n$, Grenzfrequenz $f_0$
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Grafikfeld für das äquivalente TP&ndash;Signal $x_{\rm TP}(t)$
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Eingabe der Matching&ndash;Parameter $k_{\rm M}$ und $\varphi_{\rm M}$
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Grafikfeld für das physikalische Signal $x(t)$
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Auswahl der darzustellenden Signale: $x(t)$,  $y(t)$, $z(t)$, $\varepsilon(t)$, $\varepsilon^2(t)$
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parametereingabe per Slider: &nbsp; Amplituden, Frequenzen, Phasenwerte
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Graphische Darstellung der Signale
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Bedienelemente: &nbsp; Start &ndash; Step &ndash; Pause/Continue &ndash; Reset
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Eingabe der Zeit $t_*$ für die Numerikausgabe
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Geschwindigkeit der Animation: &nbsp; &bdquo;Speed&rdquo; &nbsp; &rArr; &nbsp; Werte: 1, 2 oder 3
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Numerikausgabe der Signalwerte $x(t_*)$, $y(t_*)$, $z(t_*)$  und $\varepsilon(t_*)$
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; &bdquo;Trace&rdquo; &nbsp; &rArr; &nbsp; Ein oder Aus, Spur des äquivalenten TP&ndash;Signals &nbsp; $x_{\rm TP}(t)$
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numerikausgabe des Hauptergebnisses $P_\varepsilon$
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerikausgabe: &nbsp; Zeit $t$, Signalwerte &nbsp;${\rm Re}[x_{\rm TP}(t)]$ &nbsp;und&nbsp; ${\rm Im}[x_{\rm TP}(t)]$,
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Abspeichern und Zurückholen von Parametersätzen
+
$\text{}\hspace{4.2cm}$ &nbsp; Hüllkurve $a(t) = |x_{\rm TP}(t)|$ &nbsp;und&nbsp; Phase $\phi(t) = {\rm arc} \ x_{\rm TP}(t)$
  
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung: Aufgabenauswahl, Aufgabenstellung und Musterlösung
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Variationsmöglichkeiten für die grafische Darstellung
  
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Variationsmöglichkeiten für die grafische Darstellung
 
 
 
$\hspace{1.5cm}$Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
 
$\hspace{1.5cm}$Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
  
$\hspace{1.5cm}$Verschieben mit &bdquo;$\leftarrow$&rdquo; (Ausschnitt nach links, Ordinate nach rechts),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; und &bdquo;$\rightarrow$&rdquo;
+
$\hspace{1.5cm}$Verschieben mit &bdquo;$\leftarrow$&rdquo; (Ausschnitt nach links, Ordinate nach rechts),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; &bdquo;$\rightarrow$&rdquo;
  
$\hspace{1.5cm}$'''Andere Möglichkeiten''':
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung:&nbsp; Aufgabenauswahl und Aufgabenstellung
  
$\hspace{1.5cm}$Gedrückte Shifttaste und ScrollenZoomen im Koordinatensystem,
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung:&nbsp; Musterlösung
 +
 
 +
 
 +
In allen Applets oben rechts:&nbsp; &nbsp; Veränderbare grafische Oberflächengestaltung  &nbsp; &rArr;  &nbsp; '''Theme''':
 +
* Dark: &nbsp; schwarzer Hintergrund&nbsp; (wird von den Autoren empfohlen)
 +
*  Bright: &nbsp; weißer Hintergrund&nbsp; (empfohlen für Beamer und Ausdrucke)
 +
*  Deuteranopia: &nbsp; für Nutzer mit ausgeprägter Grün&ndash;Sehschwäche
 +
* Protanopia: &nbsp; für Nutzer mit ausgeprägter Rot&ndash;Sehschwäche
 +
<br clear=all>
  
$\hspace{1.5cm}$Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
 
  
 
==Über die Autoren==
 
==Über die Autoren==
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
+
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|Bettina Hirner]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
*2018 wurde dieses Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) neu gestaltet und erweitert.
+
*2018 wurde dieses Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]] im Rahmen ihrer Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]]) neu gestaltet und erweitert.
  
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
  
{{LntAppletLink|verzerrungen}}
+
{{LntAppletLink|physAnLPSignal_en}} &nbsp; &nbsp; &nbsp; &nbsp; [https://en.lntwww.de/Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal '''English Applet with English WIKI description''']
 
 
[[Category:Applets|^Verzerrungen^]]
 

Aktuelle Version vom 26. Oktober 2023, 10:45 Uhr

Applet in neuem Tab öffnen         English Applet with English WIKI description

Programmbeschreibung


Dieses Applet zeigt den Zusammenhang zwischen dem physikalischen Bandpass–Signal $x(t)$ und dem dazugehörigen äquivalenten Tiefpass–Signal $x_{\rm TP}(t)$. Ausgegangen wird stets von einem Bandpass–Signal $x(t)$ mit frequenzdiskretem Spektrum $X(f)$:

$$x(t) = x_{\rm T}(t) + x_{\rm O}(t) + x_{\rm U}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right)+ A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right). $$

Das physikalische Signal $x(t)$ setzt sich also aus drei harmonischen Schwingungen zusammen, einer Konstellation, die sich zum Beispiel bei der Zweiseitenband-Amplitudenmodulation des Nachrichtensignals $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ mit dem Trägersignal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$ ergibt. Die Nomenklatur ist ebenfalls an diesen Fall angepasst:

  • $x_{\rm O}(t)$ bezeichnet das „Obere Seitenband” mit der Amplitude $A_{\rm O}= A_{\rm N}/2$, der Frequenz $f_{\rm O} = f_{\rm T} + f_{\rm N}$ und der Phase $\varphi_{\rm O} = \varphi_{\rm T} + \varphi_{\rm N}$.
  • Entsprechend gilt für das „Untere Seitenband” $x_{\rm U}(t)$ mit $f_{\rm U} = f_{\rm T} - f_{\rm N}$, $A_{\rm U}= A_{\rm O}$ und $\varphi_{\rm U} = -\varphi_{\rm O}$.


Das dazugehörige äquivalente Tiefpass–Signal lautet mit $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$,   $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$  und  $f_{\rm T}\hspace{0.01cm}' = 0$:

$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm} A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$
Äquivalentes TP–Signal zur Zeit $t=0$ bei cosinusförmigem Träger   ⇒   $\varphi_{\rm T} = 0$

Im Programm dargestellt wird $x_{\rm TP}(t)$ als vektorielle Summe dreier Drehzeiger als violetter Punkt (siehe beispielhafte Grafik für den Startzeitpunkt $t=0$ und cosinusförmigem Träger):

  • Der (rote) Zeiger des Trägers $x_\text{TP, T}(t)$ mit der Länge $A_{\rm T}$ und der Nullphasenlage $\varphi_{\rm T} = 0$ liegt in der komplexen Ebene fest. Es gilt also für alle Zeiten $t$:   $x_{\rm TP}(t)= A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} }$.
  • Der (blaue) Zeiger des Oberen Seitenbandes $x_\text{TP, O}(t)$ mit der Länge $A_{\rm O}$ und der Nullphasenlage $\varphi_{\rm O}$ dreht mit der Winkelgeschwindigkeit $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'$ in mathematisch positiver Richtung (eine Umdrehung in der Zeit $1/f_{\rm O}\hspace{0.01cm}')$.
  • Der (grüne) Zeiger des Unteren Seitenbandes $x_{\rm U+}(t)$ mit der Länge $A_{\rm U}$ und der Nullphasenlage $\varphi_{\rm U}$ dreht mit der Winkelgeschwindigkeit $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'$, wegen $f_{\rm U}\hspace{0.01cm}'<0$ im Uhrzeigersinn (mathematisch negative Richtung).
  • Mit $f_{\rm U}\hspace{0.01cm}' = -f_{\rm O}\hspace{0.01cm}'$ drehen der blaue und der grüne Zeiger gleich schnell, aber in unterschiedlichen Richtungen. Gilt zudem $A_{\rm O} = A_{\rm U}$ und $\varphi_{\rm U} = -\varphi_{\rm O}$, so bewegt sich $x_{\rm TP}(t)$ auf einer Geraden mit einer Neigung von $\varphi_{\rm T}$.


Hinweis:   Die Grafik gilt für $\varphi_{\rm O} = +30^\circ$. Daraus folgt für den Startzeitpunkt $t=0$ der Winkel des blauen Zeigers (OSB) gegenüber dem Koordinatensystem:   $\phi_{\rm O} = -\varphi_{\rm O} = -30^\circ$. Ebenso folgt aus der Nullphasennlage $\varphi_{\rm U} = -30^\circ$ des unteren Seitenbandes (USB, grüner Zeiger) für den in der komplexen Ebene zu berücksichtigenden Phasenwinkel:   $\phi_{\rm U} = +30^\circ$.


Den zeitlichen Verlauf von $x_{\rm TP}(t)$ bezeichnen wir im Folgenden auch als Ortskurve. Der Zusammenhang zwischen $x_{\rm TP}(t)$ und dem physikalischen Bandpass–Signal $x(t)$ wird im Abschnitt ??? angegeben. Der Zusammenhang zwischen $x_{\rm TP}(t)$ und dem dazugehörigen analytischen Signal $x_+(t)$ lautet:

$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t},$$
$$x_{\rm +}(t) = x_{\rm TP}(t)\cdot {\rm e}^{+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$

Hinweis:   Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.



Theoretischer Hintergrund


Beschreibungsmöglichkeiten von Bandpass-Signalen

Bandpass–Spektrum $X(f)$

Wir betrachten hier Bandpass-Signale $x(t)$ mit der Eigenschaft, dass deren Spektren $X(f)$ nicht im Bereich um die Frequenz $f = 0$ liegen, sondern um eine Trägerfrequenz $f_{\rm T}$. Meist kann auch davon ausgegangen werden, dass die Bandbreite $B \ll f_{\rm T}$ ist.

Die Grafik zeigt ein solches Bandpass–Spektrum $X(f)$. Unter der Annahme, dass das zugehörige $x(t)$ ein physikalisches Signal und damit reell ist, ergibt sich für die Spektralfunktion $X(f)$ eine Symmetrie bezüglich der Frequenz $f = 0$. Ist $x(t)$ eine gerade Funktion   ⇒   $x(-t)=x(+t)$, so ist auch $X(f)$ reell und gerade.


Neben dem physikalischen Signal $x(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X(f)$ verwendet man zur Beschreibung von Bandpass-Signalen gleichermaßen:

  • das analytische Signal $x_+(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_+(f)$, siehe Applet Physikalisches Signal & Analytisches Signal,
  • das äquivalente Tiefpass–Signal $x_{\rm TP}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_{\rm TP}(f)$, wie im nächsten Unterabschnitt beschrieben.



Spektralfunktionen des analytischen und des äquivalenten TP–Signals

Das zum physikalischen Signal $x(t)$ gehörige analytische Signal $x_+(t)$ ist diejenige Zeitfunktion, deren Spektrum folgende Eigenschaft erfüllt:

Spektralfunktionen $X_+(f)$ und $X_{\rm TP}(f)$
$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot X(f) \; \hspace{0.2cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm f\ddot{u}r\hspace{0.2cm} {\it f} < 0.} }\right.$$

Die so genannte Signumfunktion ist dabei für positive Werte von $f$ gleich $+1$ und für negative $f$–Werte gleich $-1$.

  • Der (beidseitige) Grenzwert liefert $\sign(0) = 0$.
  • Der Index „+” soll deutlich machen, dass $X_+(f)$ nur Anteile bei positiven Frequenzen besitzt.


Aus der Grafik erkennt man die Berechnungsvorschrift für $X_+(f)$: Das tatsächliche BP–Spektrum $X(f)$ wird

  • bei den positiven Frequenzen verdoppelt, und
  • bei den negativen Frequenzen zu Null gesetzt.


Aufgrund der Unsymmetrie von $X_+(f)$ bezüglich der Frequenz $f = 0$ kann man bereits jetzt schon sagen, dass die Zeitfunktion $x_+(t)$ bis auf einen trivialen Sonderfall $x_+(t)= 0 \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ \ X_+(f)= 0$ stets komplex ist.


Zum Spektrum $X_{\rm TP}(f)$ des äquivalenten TP–Signals kommt man, indem man $X_+(f)$ um die Trägerfrequenz $f_{\rm T}$ nach links verschiebt:

$$X_{\rm TP}(f)= X_+(f+f_{\rm T}).$$

Im Zeitbereich entspricht diese Operation der Multiplkation von $x_{\rm +}(t)$ mit der komplexen Exponentialfunktion mit negativem Exponenten:

$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$

Man erkennt, dass $x_{\rm TP}(t)$ im Allgemeinen komplexwertig ist. Ist aber $X_+(f)$ symmetrisch um die Trägerfrequenz $f_{\rm T}$, so ist $X_{\rm TP}(f)$ symmetrisch um die Frequenz $f=0$ und es ergibt sich dementsprechend eine reelle Zeitfunktion $x_{\rm TP}(t)$.

$x_{\rm TP}(t)$–Darstellung einer Summe aus drei harmonischen Schwingungen

In unserem Applet setzen wir stets einen Zeigerverbund aus drei Drehzeigern voraus. Das physikalische Signal lautet:

$$x(t) = x_{\rm U}(t) + x_{\rm T}(t) + x_{\rm O}(t) = A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right)+A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right). $$
  • Jede der drei harmonischen Schwingungen harmonischen Schwingungen $x_{\rm T}(t)$, $x_{\rm U}(t)$ und $x_{\rm O}(t)$ wird durch eine Amplitude $(A)$, eine Frequenz $(f)$ und einen Phasenwert $(\varphi)$ charakterisiert.
  • Die Indizes sind an das Modulationsverfahren Zweiseitenband–Amplitudenmodulation angelehnt. „T” steht für „Träger”, „U” für „Unteres Seitenband” und „O” für „Oberes Seitenband”. Entsprechend gilt stets $f_{\rm U} < f_{\rm T}$ und $f_{\rm O} > f_{\rm T}$. Für die Amplituden und Phasen gibt es keine Einschränkungen.


Das dazugehörige äquivalente Tiefpass–Signal lautet mit $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$,   $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$  und  $f_{\rm T}\hspace{0.01cm}' = 0$:

$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm} A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$

$\text{Beispiel 1:}$  Die hier angegebene Konstellation ergibt sich zum Beispiel bei der Zweiseitenband-Amplitudenmodulation des Nachrichtensignals $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ mit dem Trägersignal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$. Hierauf wird in der Versuchsdurchführung häufiger eingegangen.

Spektum $X_{\rm TP}(f)$ des äquivalenten TP–Signals für verschiedene Phasenkonstellationen

Bei dieser Betrachtungsweise gibt es einige Einschränkungen bezüglich der Programmparameter:

  • Für die Frequenzen gelte stets $f\hspace{0.05cm}'_{\rm O} = f_{\rm N}$ und $f\hspace{0.05cm}'_{\rm U} = -f_{\rm N}$.
  • Ohne Verzerrungen sind die Amplitude der Seitenbänder $A_{\rm O}= A_{\rm U}= A_{\rm N}/2$.
  • Die jeweiligen Phasenverhältnisse können der Grafik entnommen werden.



Darstellung des äquivalenten TP–Signals nach Betrag und Phase

Das im Allgemeinen komplexwertige äquivalenten TP–Signal

$$x_{\rm TP}(t) = a(t) \cdot {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t) }$$

kann entsprechend der hier angegebenen Gleichung in eine Betragsfunktion $a(t)$ und eine Phasenfunktion $\phi(t)$ aufgespalten werden, wobei gilt:

$$a(t) = \vert x_{\rm TP}(t)\vert = \sqrt{ {\rm Re}^2\big [x_{\rm TP}(t)\big ] + {\rm Im}^2\big [x_{\rm TP}(t)\big ] }\hspace{0.05cm},$$
$$\phi(t) = \text{arc }x_{\rm TP}(t) = \arctan \frac{{\rm Im}\big [x_{\rm TP}(t)\big ]}{{\rm Re}\big [x_{\rm TP}(t)\big ]}.$$

Der Grund dafür, dass man ein Bandpass–Signal $x(t)$ meist durch das äquivalente TP–Signal $x_{\rm TP}(t)$ beschreibt ist, dass die Funktionen $a(t)$ und $\phi(t)$ in beiden Darstellungen interpretierbar sind:

  • Der Betrag $a(t)$ des äquivalentes TP–Signals $x_{\rm TP}(t)$ gibt die (zeitabhängige) Hüllkurve von $x(t)$ an.
  • Die Phase $\phi(t)$ von $x_{\rm TP}(t)$ kennzeichnet die Lage der Nulldurchgänge von $x(t)$, wobei gilt:
–   Bei $\phi(t)>0$ ist der Nulldurchgang früher als seine Solllage   ⇒   das Signal ist hier vorlaufend.
–  Bei $\phi(t)<0$ ist der Nulldurchgang später als seine Solllage   ⇒   das Signal ist hier nachlaufend.

$\text{Beispiel 2:}$  Die Grafik soll diesen Zusammenhang verdeutlichen, wobei $A_{\rm U} > A_{\rm O}$ vorausgesetzt ist   ⇒   der grüne Zeiger (für das untere Seitenband) ist länger als der blaue Zeiger (oberes Seitenband). Es handelt sich um eine Momentaufnahme zum Zeitpunkt $t_0$:

Bandpass–Spektrum $X(f)$
  • Bei diesen Systemparametern liegt die Spitze des Zeigerverbundes $x_{\rm TP}(t)$ – also die geometrisch Summe aus rotem, blauem und grünem Zeiger – auf einer Ellipse.
  • In der linken Grafik schwarz eingezeichnet ist der Betrag $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ und in brauner Farbe angedeutet ist der Phasenwert $\phi(t_0) = \text{arc }x_{\rm TP}(t_0) > 0.$
  • In der rechten Grafik gibt der Betrag $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ des äquivalenten TP–Signals die Hüllkurve des physikalischen Signals $x(t)$ an.
  • Bei $\phi(t) \equiv 0$ würden alle Nulldurchgänge von $x(t)$ in äquidistenten Abständen auftreten. Wegen $\phi(t_0) > 0$ ist zum Zeitpunkt $t_0$ das Signal vorlaufend, das heißt: Die Nulldurchgänge kommen früher, als es das Raster vorgibt.


Versuchsdurchführung

Zeigerdiagramm aufgabe 2.png
  • Wählen Sie zunächst die Aufgabennummer.
  • Eine Aufgabenbeschreibung wird angezeigt.
  • Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Hide solition”.


Mit der Nummer „0” wird auf die gleichen Einstellung wie beim Programmstart zurückgesetzt und es wird ein Text mit weiteren Erläuterungen zum Applet ausgegeben.


Im Folgenden bezeichnet $\rm Grün$ das Untere Seitenband   ⇒   $\big (A_{\rm U}, f_{\rm U}, \varphi_{\rm U}\big )$,   $\rm Rot$ den Träger   ⇒   $\big (A_{\rm T}, f_{\rm T}, \varphi_{\rm T}\big )$ und $\rm Blau$ das Obere Seitenband   ⇒   $\big (A_{\rm O}, f_{\rm O}, \varphi_{\rm O}\big )$.

(1)   Es gelte   $\text{Rot:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, f_{\rm T} = 100 \ \text{kHz}, \varphi_{\rm T} = 0^\circ$,   $\text{Grün:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \varphi_{\rm U} = -90^\circ$,   $\text{Blau:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, f_{\rm O} = 120 \ \text{kHz}, \varphi_{\rm O} = 90^\circ$.

Betrachten und interpretieren Sie das äquivalente TP–Signal $x_{\rm TP}(t)$ und das physikalische Signal $x(t)$. Welche Periodendauer $T_0$ erkennt man?
 Das äquivalente TP–Signal $x_{\rm TP}(t)$ nimmt ausgehend von $x_{\rm TP}(t=0)=1\ \text{V}$ auf der reellen Achse Werte zwischen $0.2\ \text{V}$ und $1.8\ \text{V}$ an   ⇒   Phase $\phi(t) \equiv 0$.
 Der Betrag $|x_{\rm TP}(t)|$ gibt die Hüllkurve $a(t)$ des physikalischen Signals $x(t)$ an. Es gilt mit $A_{\rm N} = 0.8\ \text{V}$ und $f_{\rm N} = 20\ \text{kHz}$:   $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$.
 Sowohl $x_{\rm TP}(t)$ als auch $x(t)$ sind periodisch mit der Periodendauer $T_0 = 1/f_{\rm N} = 50\ \rm µ s$.

(2)   Wie ändern sich die Verhältnisse gegenüber (1) mit $f_{\rm U} = 99 \ \text{kHz}$ und $f_{\rm O} = 101 \ \text{kHz}$ ? Wie könnte $x(t)$ entstanden sein?

 Für die Hüllkurve $a(t)$ des Signals $x(t)$ gilt weiterhin $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$, aber nun mit $f_{\rm N} = 1\ \text{kHz}$. Auch wenn es nicht zu erkennen ist:
 $x_{\rm TP}(t)$ und $x(t)$ sind weiterhin periodisch:   $T_0 = 1\ \rm ms$. Beispiel: Zweiseitenband–Amplitudenmodulation (ZSB–AM) eines Sinussignals mit Cosinus–Träger.

(3)   Welche Einstellungen müssen gegenüber (2) geändert werden, um zur ZSB–AM eines Cosinussignals mit Sinus–Träger zu gelangen. Was ändert sich gegenüber (2)?

Die Trägerphase muss auf $\varphi_{\rm T} = 90^\circ$ geändert werden   ⇒   Sinus–Träger. Ebenso muss $\varphi_{\rm O} =\varphi_{\rm U} =\varphi_{\rm T} = 90^\circ$ eingestellt werden   ⇒   cosinusförmige Nachricht
 Die Ortskurve liegt nun auf der imaginären Achse  ⇒   $\phi(t) \equiv -90^\circ$. Zu Beginn gilt $x_{\rm TP}(t=0)= - {\rm j} \cdot 1.8 \ \text{V}$.

(4)   Nun gelte   $\text{Rot:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$,   $\text{Grün:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \ \varphi_{\rm U} = 0^\circ$,   $\text{Blau:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 0^\circ$.

Welche Eigenschaften weist dieses System „ZSB–AM, wobei Nachrichtensignal und Träger jeweils cosinusförmig” auf? Wie groß ist der Modulationsgrad $m$?
 Das äquivalente TP–Signal $x_{\rm TP}(t)$ nimmt ausgehend von $x_{\rm TP}(t=0)=1.8\ \text{V}$ auf der reellen Achse Werte zwischen $0.2\ \text{V}$ und $1.8\ \text{V}$ an   ⇒   Phase $\phi(t) \equiv 0$.
 Bis auf den Startzustand $x_{\rm TP}(t=0)$ gleiches Verhalten wie bei der Einstellung (1). Der Modulationsgrad ist jeweils $m = 0.8$.

(5)   Es gelten weiter die Parameter gemäß (4) mit Ausnahme von $A_{\rm T}= 0.6 \text{V}$. Wie groß ist nun der Modulationsgrad $m$? Welche Konsequenzen hat das?

 Es liegt nun eine ZSB–AM mit Modulationsgrad $m = 1.333$ vor. Bei $m > 1$ ist die einfachere Hüllkurvendemodulation nicht anwendbar, da nun die Phasenfunktion $\phi(t) \in \{ 0, \ \pm 180^\circ\}$ nicht mehr konstant ist und die Hüllkurve $a(t)$ nicht mehr mit dem Nachrichtensignal übereinstimmt. Vielmehr muss die aufwändigere Synchrondemodulation verwendet werden. Bei Hüllkurvendemodulation käme es zu nichtlinearen Verzerrungen.

(6)   Es gelten weiter die Parameter gemäß (4) bzw. (5) mit Ausnahme von $A_{\rm T}= 0$ an   ⇒   $m \to \infty$. Welches Modulationsverfahren wird so beschrieben?

Es handelt sich um eine ZSB–AM ohne Träger und es ist eine eine Synchrondemodulation erforderlich. Das äquivalente TP–Signal $x_{\rm TP}(t)$ liegt zwar auf der reellen Achse, aber nicht nur in der rechten Halbebene. Damit gilt auch hier für die Phasenfunktion $\phi(t) \in \{ 0, \ \pm 180^\circ\}$, wodurch Hüllkurvendemodulation nicht anwendbar ist.

(7)   Nun gelte   $\text{Rot:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, f_{\rm T} = 100 \ \text{kHz}, \varphi_{\rm T} = 0^\circ$,   $\text{Grün:} \hspace{0.15cm} A_{\rm U} = 0, \ f_{\rm U} = 80 \ \text{kHz}, \varphi_{\rm U} = -90^\circ$,   $\text{Blau:} \hspace{0.15cm} A_{\rm O} = 0.8\ \text{V}, f_{\rm O} = 120 \ \text{kHz}, \varphi_{\rm O} = 90^\circ$.

Welches Konstellation wird hiermit beschrieben? Welche Eigenschaften dieses Verfahrens erkennt man aus der Grafik?
Es handelt es sich um eine Einseitenbandmodulation (ESB–AM), genauer gesagt um eine OSB–AM: Der rote Träger liegt fest, der grüne Zeiger fehlt und der blaue Zeiger (OSB) dreht entgegen dem Uhrzeigersinn. Der Modulationsgrad ist $\mu = 0.8$ (bei ESB bezeichnen wir den Modulationsgrad mit $\mu$ anstelle von $m$). Das Trägersignal ist cosinusförmig und das Nachrichtensignal sinusförmig.
Die Ortskurve ist ein Kreis. $x_{\rm TP}(t)$ bewegt sich darauf in mathematisch positiver Richtung. Wegen $\phi(t) \ne \text{const.}$ ist auch hier die Hüllkurvendemodulation nicht anwendbar:  Dies erkennt man daran, dass die Hüllkurve $a(t)$ nicht cosinusförmig ist. Vielmehr ist die untere Halbwelle spitzer als die obere   ⇒   starke lineare Verzerrungen.

(8)   Es gelten weiter die Parameter gemäß (7) mit Ausnahme von $A_{\rm O}= 0$ und $A_{\rm U}= 0.8 \text{V}$. Welche Unterschiede ergeben sich gegenüber (7)?

Nun handelt es sich um eine USB–AM: Der rote Träger liegt fest, der blaue Zeiger fehlt und der grüne Zeiger (USB) dreht im Uhrzeigersinn. Alle anderen Aussagen von (7) treffen auch hier zu.

(9)   Es gelten weiter die Parameter gemäß (7) mit Ausnahme von $A_{\rm O} = 0.2 \text{ V} \ne A_{\rm U} = 0.4 \text{ V} $. Welche Unterschiede ergeben sich gegenüber (7)?

Die Ortskurve $x_{\rm TP}(t)$ ist nun keine horizontale Gerade, sondern eine Ellipse mit dem Realteil zwischen $0.4 \text{ V}$ und $1.6 \text{ V}$ sowie dem Imaginärteil im Bereich $\pm 0.2 \text{ V}$. Wegen $\phi(t) \ne \text{const.}$ würde auch hier die Hüllkurvendemodulation zu nichtlinearen Verzerrungen führen
Die hier simulierte Konstellation beschreibt die Situation von (4), nämlich eine ZSB–AM mit Modulationsgrad $m = 0.8$, wobei das obere Seitenband aufgrund der Kanaldämpfung auf $50\%$ reduziert wird.


Zur Handhabung des Applets


Bildschirmabzug der englischen Version
  • Die roten Parameter $(A_{\rm T}, \ f_{\rm T}, \ \varphi_{\rm T})$ und der rote Zeiger kennzeichnen den Träger.
  • Die grünen Parameter $(A_{\rm U}, \ f_{\rm U} < f_{\rm T}, \ \varphi_{\rm U})$ kennzeichnen das Untere Seitenband.
  • Die blauen Parameter $(A_{\rm O}, \ f_{\rm O} > f_{\rm T}, \ \varphi_{\rm O})$ kennzeichnen das Obere Seitenband.
  • Der rote Zeiger dreht nicht.
  • Der grüne Zeiger dreht in mathematisch negativer Richtung (im Uhrzeigersinn).
  • Der blaue Zeiger dreht entgegen dem Uhrzeigersinn.


Bedeutung der Buchstaben in nebenstehender Grafik:

    (A)     Grafikfeld für das äquivalente TP–Signal $x_{\rm TP}(t)$

    (B)     Grafikfeld für das physikalische Signal $x(t)$

    (C)     Parametereingabe per Slider:   Amplituden, Frequenzen, Phasenwerte

    (D)     Bedienelemente:   Start – Step – Pause/Continue – Reset

    (E)     Geschwindigkeit der Animation:   „Speed”   ⇒   Werte: 1, 2 oder 3

    (F)     „Trace”   ⇒   Ein oder Aus, Spur des äquivalenten TP–Signals   $x_{\rm TP}(t)$

    (G)     Numerikausgabe:   Zeit $t$, Signalwerte  ${\rm Re}[x_{\rm TP}(t)]$  und  ${\rm Im}[x_{\rm TP}(t)]$,

$\text{}\hspace{4.2cm}$   Hüllkurve $a(t) = |x_{\rm TP}(t)|$  und  Phase $\phi(t) = {\rm arc} \ x_{\rm TP}(t)$

    (H)     Variationsmöglichkeiten für die grafische Darstellung

$\hspace{1.5cm}$Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

$\hspace{1.5cm}$Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” „$\rightarrow$”

    (I)     Bereich für die Versuchsdurchführung:  Aufgabenauswahl und Aufgabenstellung

    (J)     Bereich für die Versuchsdurchführung:  Musterlösung


In allen Applets oben rechts:    Veränderbare grafische Oberflächengestaltung   ⇒   Theme:

  • Dark:   schwarzer Hintergrund  (wird von den Autoren empfohlen)
  • Bright:   weißer Hintergrund  (empfohlen für Beamer und Ausdrucke)
  • Deuteranopia:   für Nutzer mit ausgeprägter Grün–Sehschwäche
  • Protanopia:   für Nutzer mit ausgeprägter Rot–Sehschwäche



Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
  • 2018 wurde dieses Programm von Xiaohan Liu im Rahmen ihrer Bachelorarbeit (Betreuer: Tasnád Kernetzky) neu gestaltet und erweitert.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen         English Applet with English WIKI description